
Image-space Caustics and Curvatures

Xuan Yu Feng Li Jingyi Yu
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716, USA

{xuan,feng,yu}@cis.udel.edu

Abstract

Caustics are important visual phenomena, as well as
challenging global illumination effects in computer graph-
ics. Physically caustics can be interpreted from one of two
perspectives: in terms of photons gathered on scene geom-
etry, or in terms of a pair of caustic surfaces. These caustic
surfaces are swept by the foci of light rays. In this paper,
we develop a novel algorithm to approximate caustic sur-
faces of sampled rays. Our approach locally parameterizes
rays by their intersections with a pair of parallel planes. We
show neighboring ray triplets are constrained to pass simul-
taneously through two slits, which rule the caustic surfaces.
We derive a ray characteristic equation to compute the two
slits, and hence, the caustic surfaces. Using the characteris-
tic equation, we develop a GPU-based algorithm to render
the caustics. Our approach produces sharp and clear caus-
tics using much fewer ray samples than the photon mapping
method and it also maintains high spatial and temporal co-
herency. Finally, we present a normal-ray surface repre-
sentation that locally parameterizes the normals about a
surface point as rays. Computing the normal ray caustic
surfaces leads to a novel real-time discrete shape operator.

1. Introduction

Caustics are important visual phenomena, as well as
challenging global illumination effects in computer graph-
ics. Bright caustic patterns are caused by the close bunching
together of light rays. Traditionally, accurate caustics are
rendered offline using backward ray-tracing [1] or photon
mapping [9]. Both methods require tracing and gathering
a large number of rays or photons to produce photorealis-
tic results. Recently, GPU-based variants of path tracing
algorithms have been developed to support near real-time
caustics rendering [4, 20, 16]. There, the focus has been to
determine the distribution, the size, and the density of pho-

Figure 1. We use our caustic-surface-based
algorithm to render the refraction caustics
cast by a crystal bunny of 69473 triangles. On
an NVidia GeForce7800, our method renders
at 115 fps at an image resolution of 512x512.

tons.
Alternatively, caustics can be interpreted from the stand-

point of caustic surfaces. These caustic surfaces are swept
by the foci of light rays [6, 10]. In applied optics and com-
puter vision, researchers have explored using the geometric
attributes of the caustic surfaces to design catadioptric mir-
rors [17]. Although the basic theory of caustic surfaces is
well understood, very little work has been done on estimat-
ing caustic surfaces of sampled rays. We [22] have recently
proposed a local ray model [21] to approximate the reflec-
tion caustic surfaces of discrete mirror surfaces. They have
also shown reflection distortions can be analyzed from the
perspective of the reflection caustics. This indicates the im-

portance of correctly estimating the caustic surfaces when
rendering.

In this paper, we develop a novel algorithm to approx-
imate the caustic surfaces of sampled rays using graphics
hardware. Our approach locally parameterizes rays by their
intersections with a pair of parallel planes. We show neigh-
boring ray triplets are constrained to pass simultaneously
through two slits, which rule the caustic surfaces. We then
derive a ray characteristic equation to compute the two slits,
and hence, the caustic surfaces. Based on this characteris-
tic equation, we develop a GPU-based algorithm to render
the caustics. Our approach produces sharp and clear caus-
tics using much fewer ray samples than the photon map-
ping method and it maintains high spatial and temporal co-
herency. Finally, we present a novel normal-ray surface rep-
resentation that locally parameterizes the normals about a
surface point as rays. Computing the normal ray caustic
surfaces leads to a new real-time discrete shape operator.

Our key contributions include:

• A new framework that relates the caustic surfaces, the
caustics, and the two-slit ray structure.

• A GPU-based algorithm that estimates the caustic sur-
faces by locally fitting the two-slit structure.

• A real-time caustics rendering algorithm using the ray
characteristic equation.

• An image-space algorithm that estimates the curva-
tures from the normal caustic surfaces.

2. Previous Work

When light rays interact with a reflective or refractive
surface, they may bend and alter their path. These refracted
or reflected rays bundle together to form bright caustics on
nearby scenes. In computer graphics, rendering caustics
has been a challenging global illumination problem. Pho-
ton mapping and beam tracing have been two classical ap-
proaches to produce photorealistic caustics.

Photon mapping tracks photons emitted from the light
source and stores their intersections with scene geometry
[9]. These photons are then gathered on the receiving ge-
ometry and their density is estimated to compute the in-
tensity of the caustics. However, to render photorealistic
caustics, a large number of photons need to be traced and
gathered. Distributed algorithms have been proposed to ac-
celerate photon mapping [5]. Purcell et al [15] used a GPU-
based ray tracer [14] to track photons stored on a uniform
grid. Wand and Strasser [18] sampled each reflective object
and treated each sample as a light source. They then gath-
ered the contributions from each light sample using graph-
ics hardware.

Recently, Wyman and Davis [20] proposed an image-
space technique to efficiently emit and gather photons. Shah

Photons

Receiver

Rays

Caustic

Surface

Figure 2. Caustics can be interpreted from
one of two perspectives: (a) in terms of pho-
tons gathered on scene geometry, or (b) in
terms of the caustic surfaces formed by light
rays.

and Pattanik [16] developed a similar method using vertex
tracing to construct a caustic map. They have also explored
tracing fewer photons using fixed- or variable-sized photon
splats. To maintain the rendering quality, they applied spa-
tial and temporal filters to reduce the aliasing artifacts, but
at the cost of additional computations [2, 19, 16].

Caustics can also be rendered using beam tracing [7, 8].
Beam tracing computes the caustic polygons formed by the
light rays on the receiver. To estimate the intensity for each
caustic polygon, Nishita and Nakamae [11] used prism-
shaped caustic volumes to calculate the energy flux passed
onto the polygon. Ernest et al. [4] simplified this compu-
tation using a caustic volume warping. Their result show
that high quality caustics can be produced with much fewer
polygons than photons.

We present a third approach based on the geometry of
caustic surfaces. In the literature, these surfaces represent
an envelop of light rays [6]. In computer vision, such caus-
tic surfaces have been used to guide the design of cata-
dioptric imaging systems. Conventional catadioptric mir-
rors place a pinhole camera at the focus of a hyperbolic
or parabolic surface to synthesize a different camera with a
wider field of view. When the camera moves off the focus,
the caustic surfaces quickly evolve into complicated shapes
[17]. We have [22] proposed a ray space algorithm to es-
timate the reflection caustic surfaces of arbitrarily shaped
mirrors. In this paper, we extend this ray space framework
to compute the caustic surfaces formed by an arbitrary set
of sampled rays using graphics hardware.

Before proceeding, we explain our notation. Super-
scripts, such as pX , pY , and pZ represent the x and y and z
component of a point or vector. Subscripts, such as fξ and
fη represents the first-order partial derivatives of f with re-
spect to ξ and η.

(a) (b) (c)

P
P

S
Γ

Figure 3. (a) The caustic surface represents
the envelop (blue) of the rays (red). (b) The
caustic surfaces (blue) formed by the rays
emitted from a point light source (red) and re-
flected by a cylindric mirror (cyan). (c) The
caustic surfaces (cyan) are ruled by the loci
of the slits (blue).

3. Caustic Surfaces

Given a point light source P and a reflective or a re-
fractive surface S, our goal is to compute the caustic sur-
face Γ formed by the light rays that are transmitted through
S, as shown in Figure 3. Assume S is parameterized
in (ξ, η), we can represent each exiting light ray as r =
Ṡ(ξ, η) + λ~D(ξ, η), where Ṡ(ξ, η) represents the origin of
the ray and ~D represents the direction.

The caustic surfaces correspond to the envelop of the
rays (Figure 3(a)) and they are tangential to each ray r along
~D. Therefore, for some λ the caustic surface lies at

Γ(ξ, η) = Ṡ(ξ, η) + λ~D(ξ, η) (1)

Since ~D must be one of the tangent direction at Γ(ξ, η), we
must have:

∣∣∣∣∣∣

SX
ξ + λ ·DX

ξ SX
η + λ ·DX

η DX

SY
ξ + λ ·DY

ξ SY
η + λ ·DY

η DY

SZ
ξ + λ ·DZ

ξ SZ
η + λ ·DZ

η DZ

∣∣∣∣∣∣
= 0 (2)

Solving for λ we get the caustic surfaces for each ray
r(ξ, η). This is often referred to the Jacobian method for
computing the ray caustic surfaces [17, 12].

Equation (2), in general, is quadratic in λ and should
have two solutions. This implies that caustic surfaces
should appear in pairs except for the degenerate cases. Near
the caustic surfaces, the light rays bunch up close together
to form high energy flux and bright caustics.

3.1. Local Ray Parametrization

While the theory of caustic surfaces is well understood,
little work has been done on estimating caustic surfaces of

s-t

u-v

(a)

[s, t, u, v]

(b)

Figure 4. (a) At each point on the surface, the
reflected (refracted) light ray is mapped into
the ray space by intersecting with the two
parametrization planes. (b) The neighboring
ray triplets are constrained to pass simulta-
neously through two slits, which are parallel
to the specified parametrization planes and
rule the caustic surfaces.

sampled rays. This is because accurately estimating the sur-
face and direction differentials (e.g., Ṡξ, Ḋξ) from sampled
rays can be difficult.

We present a new caustic surface estimation algorithm
based on the recently proposed General Linear Camera
(GLC) [21]. In the GLC framework, every ray is parameter-
ized by its intersections with the two parallel planes, where
[u, v] is the intersection with the first and [s, t] the second,
as shown in Figure 4(a). This parametrization is often called
a two-plane parametrization (2PP).

For each reflected/refracted ray r, we choose the uv
plane to be perpendicular to r. We also orient the local
frame to align the z = 0 plane with the uv plane. We posi-
tion the second st plane at z = 1 parallel to the uv plane, as
shown in Figure 4(a). Neighboring rays around each exiting
light ray r can be represented by their intersections with the
st and uv plane as [s, t, 1] and [u, v, 0], as shown in Figure
4(a).

In this paper, we use a slightly different parametriza-
tion [σ, τ, u, v], where σ = s − u and τ = t − v so that
[σ, τ, u, v] represents the direction of the ray. Under this
new parametrization, each ray maps to a point in a four-
dimensional [σ, τ, 1] ray space. Furthermore, since we have
aligned the z = 1 plane with the uv plane, neighboring rays
around r can be parameterized as in x and y as:

r(x, y) = [σ(x, y), τ(x, y), u(x, y), v(x, y)] (3)

To compute the caustic surface at r, we substitute Ṡ =
[u, v, 0] and ~D = [σ, τ, 1] into the Jacobian method (2) as:

∣∣∣∣∣∣

ux + λσx uy + λσy σ
vx + λτx vy + λτy τ

0 0 1

∣∣∣∣∣∣
= 0 (4)

In [22], we have shown that Equation (4) can be alterna-
tively formulated as:
∣∣∣∣∣∣

u + λσ v + λτ 1
(u + ux) + λ(σ + σx) (v + vx) + λ(τ + τx) 1
(u + uy) + λ(σ + σy) (v + vy) + λ(τ + τy) 1

∣∣∣∣∣∣
= 0

(5)
Equation (5) is quadratic in λ as

Aλ2 + Bλ + C = 0 (6)

where

A = σxτy − σyτx, C = uxvy − uyvx

B = σxvy − σyvx − τxuy + τyux (7)

We call Equation (5) the ray characteristic equation. The
two solutions to the quadratic equation correspond to the
depth of the caustic surfaces at each ray.

Notice, the LHS of Equation (5) can be interpreted as the
area of the triangle formed by the three neighboring rays
r, r + rx, and r + ry on the z = λ plane. This implies
that this ray triplet envelops at a line slit on each piece of
the caustic surfaces, as shown in Figure 4(b). The loci of
the slits provide an important ruling of the caustic surfaces
(Figure 3(b)).

4. Estimating Discrete Caustic Surfaces

The ray characteristic equation reveals that under the two
plane parametrization, nearby light rays will pass through
two slits that rule the two caustic surfaces. In this section,
we show how to apply the local two-slit model to efficiently
estimate the caustic surfaces from sampled rays.

Given a point light source and a reflective/refractive sur-
face with vertices and vertex normals, we first compute the
light rays exiting from the surface. For single refraction or
refraction, we rasterize the vertices and normals of the front
faces by treating the light source as a camera. We then use
Snell’s Law to calculate the exiting ray for each pixel using
the fragment shader.

To handle multiple ray bounces for dielectric objects
such as the crystal bunny (Figure 1), we employ Davis and
Wyman’s ray-depth map intersection technique [3]. We
have implemented a similar iterative multi-pass rendering
algorithm. In the first pass, we render the back faces with
respect to the light source and store their normals and depths
into two textures. In the second pass, we compute the rays
refracted from the front face using the single bounce algo-
rithm. To find the intersection point of each ray with the
back surface, we apply a GPU-based binary search that iter-
atively estimates and corrects the intersection [3]. Finally,
we use this intersection point to look up the normal from the

N

D

Πuv

Receiver

y

x

z

E
0

E

r

T

R

Figure 5. To compute the intensity for each
ray (green), we map the neighboring ray
triplet into the ray space under 2PP. We then
use the ray characteristic equation to approx-
imate the energy flex on the receiver.

back-face texture and use Snell’s Law to compute the exit-
ing ray. We store these exiting rays into two textures (one
for position and one for direction).

To estimate the caustic surfaces for each exiting ray r,
we use the fragment shader to fetch neighboring sets of
three rays around r from the ray textures. We then choose
a parametrization plane perpendicular to r and calculate the
ray coordinates of the three rays under the 2PP. Finally, we
compute the ray characteristic Equation (5), find its two so-
lutions, and store the caustic surfaces.

Notice, the most computationally expensive step in our
algorithm is to solve the quadratic ray characteristic equa-
tion. In Section 5 and 6, we show that this equation needs
not to be solved when we render the caustics or estimate the
mean and the Gaussian curvatures. Instead, we only need to
store the A, B, and C coefficients of the ray characteristic
equation.

5. Rendering Caustics

To render the caustics cast by the light rays, we first com-
pute the intersection of each ray with the receiving geom-
etry by reapplying the depth-map binary search algorithm.
The only difference is that we treat the receiver as the back
faces. Similar to [16], we store the resulting intersection
points in a caustic map.

(a) (b) (c)

(d) (e) (f)

Photon Mapping

128x128 photons

Without Filtering

110 fps

Photon Mapping

128x128 photons

With Filtering

105 fps

Photon Mapping

512x512 photons

Without Filtering

31 fps

Photon Mapping

512x512 photons

With Filtering

26 fps

Caustic Surfaces

64x64 rays

Without Filtering

120 fps

Caustic Surfaces

128x128 rays

Without Filtering

105 fps

Figure 6. We compare our caustics surface algorithm with photon mapping.

To render the caustic map, previous approaches either
render the intersection points as splats [16, 19] or compute
the intensity for each caustic polygon[11, 4]. We set out to
compute the intensity for each intersection point. Our key
idea is to trace the energy carried by each ray triplet from
the light source to the receiver. Assume the initial energy of
the triplet from the light source is E0 as shown in Figure 5.
We first compute the attenuated energy due to material ab-
sorption after it leaves the object as E = E0e

−Kad, where
Ka is the absorption coefficient and d is the average dis-
tance that the rays have traversed inside the object.

Next, we estimate the intensity of each exiting light ray
r that arrives on the receiver R. Unlike previous methods
that use the solid angle [20] or warped light volume [4], we
directly use the ray characteristic Equation (5). Recall that
the LHS of Equation (5) calculates the area of a triangle T
formed by the ray triplet on z = λ plane. It has been shown
that each ray triplet (GLC) defines a convex 2D subspace
of rays under 2PP [21] and all rays inside the triplet are
completely encapsulated by T . Therefore, the initial energy
E carried by the ray triplet is conserved on T . Since the
energy flux is inverse proportional to the area of T , when the
area of T approaches to zero, the energy flux will become
high. Thus, near the caustic surfaces, bright caustics appear.

Assume λR corresponds to the depth of the intersection

point of ray r with the receiver R under 2PP, we can com-
pute the area formed by the ray triplet on plane z = λR as
Aλ2

R + BλR + C. We then warp this area onto the receiver
as:

AreaR ≈ Aλ2
R + BλR + C

~D · N̂
(8)

where ~D is the direction of ray r and N is the normal of R.
Notice Equation (8) better approximates the area covered
by the rays formed by the triplet than directly computing
the triangular area formed by the three rays on the receiver.

Finally, we can compute the intensity of ray r as

Ir =
E

|AreaR| (9)

Since our algorithm is GPU-based, we modify Equation
(9) by adding a regularization term to avoid singularity and
to maintain precision as:

Ir =
E

|AreaR|+ ε
(10)

where ε is a fixed positive number. In addition, instead of
using one ray triplet, we average Ir using all four neighbor-
ing triplets sharing r.

We have compared our new caustic rendering algorithm
with classical photon mapping. In Figure 6, we render the

1/Κ
2

1/Κ
1

Γ
1

Γ
2

Σ

N

(a)

(b)

γ(0, 0, 0, 0)

γ
i
(σ

i
, τ

i
, u
i
, v
i
)

(s
i
, t
i
)

(u
i
, v
i
)

u-v

s-t

(a)

Figure 7. Surface normals can be repre-
sented as rays. (a) We orient the local frame
to align the uv plane with the surface tan-
gent plane. The neighboring normal rays can
be parameterized as the intersections of the
two planes as [σ, τ, u, v]. (b) A smooth sur-
face Σ has two sheets of normal ray caustic
surfaces Γ1 and Γ2, each formed as the loci
of the corresponding loci of principal curva-
ture’s radii.

caustics cast by the Beethoven model on a colored checker-
board. The Beethoven model consists of about 50K tri-
angles. By sampling rays on a 128x128 grid, our method
renders sharp and clear caustics at 105 fps on an NVidia
GeForce7800. By tracing the same number of photons,
photon mapping renders at approximately the same frame
rate as our method. However, it produces noisy and tempo-
rally incoherent caustics. These artifacts are more notice-
able in the animations. We have also increased the number
of photons (Figure 6(b)) to improve the rendering quality.
Although the resulting caustics reach a sharpness level sim-
ilar to our method, they are still noisy and the frame rate
drops to a quarter of our method. The noise level in photon
mapping can be further reduced by using a Gaussian filter
of size 7x7. However, applying these filters requires addi-
tional computations and results in an even lower frame rate
(Figure 6(e)).

6. Estimating Curvatures

Finally, we show how to use the caustic surfaces to es-
timate differential geometry attributes on discrete surfaces.
Our method is based on the observation that the vertices and
normals of the original surface can be treated as rays, where
each ray has its origin at a vertex and direction given by its
normal as shown in Figure 7. We call these rays the normal
rays.

To parameterize the normal rays, at each surface point
we align the uv plane with the tangent plane and so that
the normal corresponds to the z direction as shown in Fig-
ure 7(a). We can then compute the caustic surfaces using

the ray characteristic Equation (5). In the literature, the foci
of the normal rays are interchangeably referred to as evo-
lutes, normal caustics, centro-surfaces, and focal surfaces
[10]. We choose to use the term normal caustics to be con-
sistent with ray caustics. The normal caustics have many
important properties. For instance, they correspond to the
loci of the principal curvatures’ radii. In fact, the differen-
tial geometry of a smooth surface can be completely char-
acterized from the perspective of normal caustics [12, 13].

Recall that the ray characteristic Equation (5) computes
the depth of the caustic surfaces as λ1 and λ2. Since the nor-
mal caustics correspond to the loci of the surface’s principal
radii, we must have

λ1 = − 1
κ1

, λ2 = − 1
κ2

(11)

where κ1 and κ2 correspond to the min and the max curva-
ture. Furthermore, since the coefficients of the characteris-
tic equation must satisfy

λ1 + λ2 = −B

A
, λ1 · λ2 =

C

A
, (12)

we can re-derive the mean and the Gaussian curvature in
terms of the coefficients of the ray characteristic equation
without solving for λ1 and λ2:

K = κ1κ2 =
1

λ1λ2
=

A

C

2H = κ1 + κ2 = − 1
λ1
− 1

λ2
=

B

C
(13)

At the points where the Gaussian curvature K is zero,
we must have A = 0 and the characteristic equation de-
generates to a linear equation having at most one solution.
These points correspond to the parabolic points of the base
surface, therefore, only one normal caustics exists. If the
mean curvature H is also zero, then we must have A = 0
and B = 0, and Equation (5) has no solution. In that case,
the surface is locally flat, and there exists no normal caustic.
Finally, we can compute the discriminant ∆ = B2 − 4AC.
If ∆ = 0, then the quadratic characteristic equation has
double roots. This indicates the surface has two identical
principal curvatures at the point, and thus, is umbilical [10].

6.1. Image-Space Curvature Estimation

We have implemented a multi-pass image-space cur-
vature estimation algorithm by approximating the normal
caustics on the GPU. In the first pass, the geometry is ras-
terized into two textures, one storing the position of the ge-
ometry per pixel, the second storing the normal of the ge-
ometry per pixel. In the second pass, we use the fragment
shader to fetch neighboring sets of three pixels from both

low mean curvature

high mean curvature

(a) (b) (c)

Figure 8. We have tested our image-space curvature estimation algorithm on a Dini surface. (a) We
discretize the dini surface with a 32 by 32 mesh. We approximated the normal at each vertex by
averaging the face normals of the triangles sharing the vertex. (b) The ground truth mean curvature
of the Dini surface. (c) Our curvature estimation result using the GPU-based normal caustic surface
approximation. Our method robustly computes per-pixel-based mean curvature at 110 fps on an
NVidia GeForce7800.

textures. We then map them to the normal rays under 2PP,
and compute the solution to their characteristic equation. If
one needs to only compute the mean or the Gaussian curva-
ture, then only the A, B, and C coefficients of the equation
are required as shown in Equation (13).

We have experimented our new curvature estimation al-
gorithm on both discretized analytical surfaces and scanned
surfaces. Figure 8 shows a Dini surface that has format:

x = cos u sin v, y = sin u sin v

z = cos v + ln[tan(
v

2
)] + 0.2u

u ∈ [0, 4π], v ∈ [0.2, 1.5] (14)

We sampled the surface to form a mesh of 1024 triangles
(Figure 8a). We then apply our GPU-based algorithm to es-
timate the mean curvature from the mesh. At the rim of the
Dini surface, the mean curvature evolves rapidly as shown
in Figure 8(b). Our method faithfully captures these details
at 110 fps with an image resolution of 512x512.

On complex scanned models such as the dragon, we ap-
proximated the normal at each vertex by averaging the face
normals of the triangles sharing the vertex. Our normal
caustics method produces highly smooth curvature fields
as shown in Figure 9(a). Since the dragon model con-
sists of 126,201 vertices and 250,000 faces, it is difficult
to use traditional triangle-space curvature estimation algo-
rithms to achieve real-time performance. Our GPU-based
algorithm, on the other hand, approximates the curvatures
in the image-space, and hence, is scalable to the complex-
ity of the models. On the dragon model, our method com-

putes the mean curvature at 71 fps at an image resolution of
512x512. The image-space nature of our method also pro-
vides a multi-resolution estimation of the curvature fields.
As we zoom in towards the model, the curvature fields are
re-estimated and more details are revealed as shown in Fig-
ure 9(b).

7. Conclusions and Discussions

We have developed a novel caustic surfaces estimation
algorithm to render caustics and to compute the curvature
fields on discrete surfaces. Our approach locally parame-
terizes the rays by their intersections with a pair of parallel
planes. We have shown neighboring ray triplets are con-
strained to pass simultaneously through two slits, which are
parallel to the specified parametrization planes and rule the
caustic surfaces. These slits can be derived using the ray
characteristic equation. We have derived a ray characteris-
tic equation to compute the two slits, and hence, the caustic
surfaces. Using the characteristic equation, we have devel-
oped a GPU-based algorithm to render the caustics. Our ap-
proach produces sharp and clear caustics using much fewer
ray samples than the photon mapping method. Finally, we
have presented a novel normal-ray surface representation
that locally parameterizes the normals about a surface point
as rays. Computing the normal ray caustic surfaces leads to
a novel real-time discrete shape operator.

Our caustics rendering algorithm shares certain similari-
ties with the recently proposed caustic map [16] and volume

(a) (b)

Figure 9. Our curvature estimation computes
per-pixel-based curvatures and is scalable
to the complexity of the model. (a) On a
dragon model of 126201 vertices and 250000
triangles, our method runs at 71 fps. (b)
shows the close-up view of the dragon. When
zoomed in, our algorithm captures many fine
curvature details.

warping [4] approaches. The main difference here is that we
interpret the caustics from the standpoint of the caustic sur-
faces and derive the energy flux from the ray characteristic
equation. As for future work, since our algorithm can esti-
mate the caustic surfaces of arbitrary set of rays, we plan to
explore how to decompose environment lighting into com-
binations of special subspaces of rays so that the caustics
can be rendered by summing up the contributions from in-
dividual caustic surfaces.

Finally, it has long been recognized that higher-order ge-
ometric attributes are desirable for surface modeling and
physical-based animations. The caustic surfaces provide an
enormous wealth of such geometric insights. As our GPU-
based curvature estimation algorithm runs at the rendering
stage, it can be easily integrated into many existing model-
ing and rendering systems to provide useful caustic surface
geometries.

References

[1] J. Arvo. Backwards ray tracing. Developments in Ray Trac-
ing, pages 259–263, 1986.

[2] C. Dachsbacher and M. Stamminger. Splatting indirect illu-
mination. In SI3D ’06: Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 93–100, New
York, NY, USA, 2006. ACM Press.

[3] S. Davis and C. Wyman. Interactive refractions with total
internal reflections. In Proceedings of Graphics Interface,
May 2007.

[4] M. Ernst, T. Akenine-Möller, and H. W. Jensen. Interactive
rendering of caustics using interpolated warped volumes. In
GI ’05: Proceedings of the 2005 conference on Graphics
interface, pages 87–96, School of Computer Science, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, 2005. Cana-
dian Human-Computer Communications Society.

[5] J. Günther, I. Wald, and P. Slusallek. Realtime caustics us-
ing distributed photon mapping. In Proceedings of the Eu-
rographics Symposium on Rendering, pages 111–121, 2004.

[6] W. R. Hamilton. Theory of systems of rays. Transactions of
the Royal Irish Academy, 15:69–174, 1828.

[7] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal
objects. In SIGGRAPH ’84: Proceedings of the 11th an-
nual conference on Computer graphics and interactive tech-
niques, pages 119–127, New York, NY, USA, 1984. ACM
Press.

[8] K. Iwasaki, Y. Dobashi, and T. Nishita. A fast rendering
method for refractive and reflective caustics due to water sur-
faces. In Proceedings of EUROGRAPHICS2003 (Computer
Graphics Forum), volume 22, pages 601–609, 2003.

[9] H. W. Jensen. Realistic image synthesis using photon map-
ping. In AK Peters, 2001.

[10] J. J. Koenderink. Solid Shape. MIT Press, Cambridge, 1994.
[11] T. Nishita and E. Nakamae. Method of displaying optical ef-

fects within water using accumulation buffer. In SIGGRAPH
’94: Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages 373–379,
New York, NY, USA, 1994. ACM Press.

[12] I. R. Porteous. Geometric Differentiation for the Intelligence
of Curves and Surfaces. Cambridge University Press, Cam-
bridge, 1994.

[13] H. Pottmann and J. Wallner. Computational Line Geometry.
Springer, 2001.

[14] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray
tracing on programmable graphics hardware. ACM Trans.
Graph., 21(3):703–712, 2002.

[15] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen,
and P. Hanrahan. Photon mapping on programmable graph-
ics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, page 258, New York, NY, USA, 2005. ACM Press.

[16] M. A. Shah, J. Konttinen, and S. Pattanaik. Caustics
mapping: An image-space technique for real-time caustics.
IEEE Transactions on Visualization and Computer Graph-
ics, 13(2):272–280, 2007.

[17] R. Swaminathan, M. D. Grossberg, and S. K. Nayar.
Non-Single Viewpoint Catadioptric Cameras: Geometry
and Analysis. International Journal of Computer Vision,
66(3):211–229, Mar 2006.

[18] M. Wand and W. Strasser. Real-time caustics. In Computer
Graphics Forum, pages 611–620, 2003.

[19] C. Wyman and C. Dachsbacher. Improving image-space
caustics via variable-sized splatting. Journal of Graphics
Tools, to appear.

[20] C. Wyman and S. Davis. Interactive image-space techniques
for approximating caustics. In Proceedings of the ACM Sym-
posium on Interactive 3D Graphics and Games, pages 153–
160, March 2006.

[21] J. Yu and L. McMillan. General linear cameras. In In ECCV
(2) (2004), pages 14–27. Lecture Notes in Computer Science
3022 Springer, 2004.

[22] J. Yu and L. McMillan. Modelling reflections via multiper-
spective imaging. In CVPR ’05 - Volume 1, pages 117–124,
Washington, DC, USA, 2005. IEEE Computer Society.

