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Abstract

We present theories of multiperspective projection and
collineation. Given an arbitrary multiperspective imaging
system that captures smoothly varying set of rays, we show
how to map the rays onto a 2D ray manifold embedded in a
4D linear vector space. The characteristics of this imaging
system, such as its projection, collineation, and image dis-
tortions can be analyzed by studying the 2-D tangent planes
of this ray manifold. These tangent planes correspond to the
recently proposed General Linear Camera (GLC) model.

In this paper, we study the imaging process of the GLCs.
We show the GLC imaging process can be broken down into
two separate stages: the mapping of 3D geometry to rays
and the sampling of those rays over an image plane. We
derive a closed-form solution to projecting 3D points in a
scene to rays in a GLC. A GLC image is created by sam-
pling these rays over an image plane. We develop a notion
of GLC collineation analogous to pinhole cameras. GLC
collineation describes the transformation between the im-
ages of a single GLC due to changes in sampling and image
plane selection. We show that general GLC collineations
can be characterized by a quartic (4th order) rational func-
tion. GLC projection and collineation provides a basis
for developing new computer vision algorithms suitable for
analyzing a wider range of imaging systems than current
methods, based on simple pinhole projection models, per-
mit.

1. Introduction

The imaging process entails mapping 3D geometry onto
a two dimensional manifold via some camera or imaging
model. This projection depends on both the geometry of
the imaging system and the parametrization of the image
plane. The most common imaging model is the pinhole
camera, which collects rays passing through a point and
organizes rays onto a image plane. This mapping can be
fully described using the classic 3 x 4 camera matrix [5].
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Figure 1. (a) An image captured on a pear-shaped mirror.
(b) Cross-slit type distortions. (c) Pushbroom type distor-
tions.

These mappings are unique down to a scale factor, and
the same infrastructure can also be used to describe ortho-
graphic cameras. When the image plane of the pinhole cam-
era changes, the corresponding images change according.
The transformation between images on two different planes
is often referred to as homography. In the pinhole case, it
is a projective transformation and, thus, lines are still pre-
served as lines despite the change of the image plane.

Recent developments have suggested alternative imag-
ing models such as pushbroom [10], cross-slit [16, 8], and
oblique [7] cameras. These cameras collect rays under dif-
ferent geometric constraints. For instance, all rays pass
through a particular line in a pushbroom camera. All rays of
a cross-slit cameras pass through two lines, and, in oblique
cameras no two rays can intersect or be parallel. These
camera models are often referred to as multiperspective
cameras. They provide alternate and potentially advanta-
geous imaging systems for understanding the structure of
observed scenes. The mapping from 3D points to pixels is
no longer a projective transformation in these cameras, and
is often difficult to calculate. For instance, the collineation
is a 3x3x3 tensor in a cross-slit camera [16]. Interesting
multiperspective distortions are also observed on these cam-



eras, as shown in Figure 1.
When we model complex imaging systems such as cata-

dioptric mirrors, it is difficult to compute the mapping from
3D points to 2D images because it requires an inverse map-
ping from rays to points and a closed-form solution may
not exist. The lack of a closed-form projection prohibits
further analysis of the resulting images. In practice, how-
ever, many catadioptric imaging systems do exhibit local
distortions that are similar to pushbroom or cross-slit dis-
tortions (Figure 1). In this paper, we show that these visual
phenomenon are not coincidental. In fact, these imaging
systems can be precisely modelled by a special class of lo-
cal multiperspective camera models. Furthermore, we give
a closed-form solution for finding the local multiperspective
camera models and demonstrate that all possible images can
be formed by these cameras.

Given any imaging system, we first map the rays col-
lected by the system to a two dimensional ray manifold em-
bedded in a 4D ray space. We benefit from the recently
proposed General Linear Camera (GLC) model [17], which
describes all possible linear manifolds. We use the GLC
model to locally analyze the ray manifold using its tan-
gent plane which can be completely characterized as one
of the eight GLCs. We provide a closed-form solution to
Projection for all GLCs. Next, we show how to deter-
mine the Collineation using the GLC intrinsics. We show
the Collineation between two image planes is, in general,
a quartic (4th order) rational transformation. Most imag-
ing systems, such as the catadioptric mirrors, can be easily
analyzed using our framework and distortions can be in-
terpreted using the local GLC Projection and Collineation
model.

2. Previous Work

Pinhole cameras collect rays passing through a single
point. Because of its simplicity, the projection is the clas-
sic 3 x 4 camera matrix [5], which combines six extrin-
sic and five intrinsic camera parameters into a single op-
erator that maps homogenous 3D points to a 2D image
plane. These mappings are unique down to a scale factor,
and the same infrastructure can also be used to describe or-
thographic cameras. When only the image plane changes
while the pinhole remains constant, the transformation be-
tween the two images is a projective transformation, which
is called a homography.

Recently, several researchers have proposed alternative
multiperspective camera models, which capture rays origi-
nating from different points in space. These multiperspec-
tive cameras include pushbroom cameras [10], which col-
lect rays along parallel planes from points swept along a
linear trajectory, two-slit cameras [8, 16], which collect all
rays passing through two lines, and oblique cameras [7],
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Figure 2. (a) and (c) are cross-slits images synthesized
from light fields. (b) and (d) are pushbroom images synthe-
sized from light fields. The distortions of the curved isolines
on the objects illustrate various multi-perspective effects of
GLC cameras in (a) and (b). The pushbroom camera (b)
and (d) exhibits apparent stretching/duplications of objects
lying far away from the image plane.

in which each pair of rays are oblique. The resulting im-
ages captured by these cameras are easily interpretable, yet
they exhibit interesting multiperspective distortions. For in-
stance, lines often project to curves as shown in Figure 2 and
a single 3D point might project to multiple points, causing
feature duplications shown in Figure 2(d).

Multiperspective imaging techniques have also been ex-
plored in the field of computer graphics. Example images
include multiple-center-of-projection images [2], manifold
mosaics [9], and multiperspective panoramas [15]. Multi-
perspective distortions have also been studied on real cata-
dioptric imaging systems [1, 13] and are often characterized
using caustics [13]. Zorin and Barr [19] studied the use of
multiperspective and other geometric distortions to improve
perceptual qualities of images. Swaminathan et al [14] pro-
posed a method to compute minimally distorted images us-
ing simple geometry priors on scene structure.

Seitz [11] has analyzed the space of multiperspective
cameras to determine those with a consistent epipolar ge-
ometry. His work suggests that only a small class of
multiperspective images can be used to analyze three-
dimensional structures, mainly because the epipolar con-
straints cannot be established over the these images.

General projection and imaging models have also been
studied in terms of rays. Pajdla proposed the ray-closure
model to describe a camera and its projection. Gu et al [4]
explicitly parameterized rays under a particular 4D map-
ping known as a two-plane parametrization. Most recently,
we characterize all linear manifolds in the 4D ray space de-
fined by a two-plane parametrization, which we call Gen-
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Figure 3. General Linear Camera Models. (a) A GLC Model collects radiance along all possible affine combination of three rays.
The rays are parameterized by their intersections with two parallel planes. There are precisely eight GLCs, shown in (b) to (i). (b)
In a pinhole camera, all rays pass through a single point. (c) In an orthographic camera, all rays are parallel. (d) In a pushbroom, all
rays lie on a set of parallel planes and pass through a line. (e) In a cross slit camera, all rays pass through two non-coplanar lines.
(f) In a pencil camera, all coplanar rays originate from a point on a line and lie on a specific plane through the line. (g) In a twisted
orthographic camera, all rays lie on parallel twisted planes and no rays intersect. (h) In an bilinear camera, no two rays are coplanar
and no two rays intersect. (i) In an EPI camera, all rays lie on a 2D plane.

eral Linear Cameras. Most of these cameras satisfy Seitz’s
criterion [11]. In this paper, we use GLCs as a first-order
differential model for modelling arbitrary imaging systems.

3. General Linear Cameras

The general linear camera (GLC) model proposed unifies
traditional perspective, orthographic, and multiperspective
cameras models. In the GLC framework, every ray is pa-
rameterized by its intersections with the two parallel planes,
where [s, t] is the intersection with the first and [u, v] the
second, as shown in Figure 3(a). This parametrization is of-
ten called a two-plane parametrization (2PP) [6, 3]. Except
for those rays parallel to the two planes, 2PP uniquely repre-
sents each ray by mapping it to a point in a four-dimensional
ray space.

A GLC is defined as a plane in the 4D ray space and is
specified as three rays as:

GLC = {r : r = α · [s1, t1, u1, v1] + β · [s2, t2, u2, v2]
+ (1− α− β) · [s3, t3, u3, v3],∀α, β}

Most well-known multiperspective cameras, such as push-
broom, cross-slit, linear oblique cameras are GLCs. We
simplify the analysis of [17] by substituting σ = s − u
and τ = t − v. In this paper, we will use this [σ, τ, u, v]
parametrization to represent rays. We also assume the de-
fault uv plane is at z = 0 and st plane at z = 1. To de-
termine the type of the multiperspective camera, [17] pro-
vides a characteristic equation that computes how many slits

(lines) in 3D space that all rays will pass through:∣∣∣∣∣∣
u1 + λ · σ1 v1 + λ · τ1 1
u2 + λ · σ2 v2 + λ · τ2 1
u3 + λ · σ3 v3 + λ · τ3 1

∣∣∣∣∣∣ = 0 (1)

which results in a quadratic equation of the form Aλ2 +
Bλ + C = 0 where

A =

∣∣∣∣∣∣
σ1 τ1 1
σ2 τ2 1
σ3 τ3 1

∣∣∣∣∣∣, C =

∣∣∣∣∣∣
u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣
B =

∣∣∣∣∣∣
σ1 v1 1
σ2 v2 1
σ3 v3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣

τ1 u1 1
τ2 u2 1
τ3 u3 1

∣∣∣∣∣∣ (2)

The GLC type is determined by its A, B, and C coefficients
and its discriminant ∆ = B2 − 4AC of the characteristic
equation. A total of eight GLC types describe all 2D lin-
ear manifolds in the ray space, and their characteristics are
shown in Table 1.

3.1. Local GLC Model

Given any imaging system that describes a continuous
set of rays, e.g., catadioptric imaging systems or multiper-
spective panoramas, we can analyze this system using local
GLC models. Specifically, let Σ(x, y) be a continuous 2D
ray manifold implicitly parameterized in x and y, i.e.,

Σ(x, y) = [σ(x, y), τ(x, y), u(x, y), v(x, y)] (3)

We can approximate the local behavior of the rays by com-
puting the tangent plane about any specified ray. The tan-
gent plane can be expressed as two spanning vectors ~d1 and



Table 1. Characterize General Linear Cameras by Characteristic Equation

Characteristic Equation 2 Solution 1 Solution 0 Solution ∞ Solution

A 6= 0 XSlit Pencil/Pinhole† Bilinear Ø
A = 0 Ø Pushbroom Twisted/Ortho.† EPI

†: A GLC satisfying edge-parallel condition is pinhole(A 6= 0) or orthographic (A = 0).

~d2:
~d1 = [σx, τx, ux, vx], ~d2 = [σy, τy, uy, vy] (4)

Note that every tangent plane corresponds to a GLC.
Therefore, we can use the characteristic equation to de-
termine the local GLC-type of every tangent plane. This
corresponds to choosing three points on the tangent plane,
Σ(x, y), Σ(x, y) + ~d1, and Σ(x, y) + ~d2 using (2) as:∣∣∣∣∣∣

u + λσ v + λτ 1
(u + ux) + λ(σ + σx) (v + vx) + λ(τ + τx) 1
(u + uy) + λ(σ + σy) (v + vy) + λ(τ + τy) 1

∣∣∣∣∣∣ = 0

(5)
yielding to the quadratic equation Aλ2+Bλ+C = 0 where

A = σxτy − σyτx

B = σxvy − σyvx − τxuy + τyux

C = uxvy − uyvx (6)

The discriminant, ∆, can be computed as

∆ = (τyux − τxuy + σxvy − σyvx)2

− 4(σxτy − σyτx)(uxvy − uyvx) (7)

In Figure 1(a), we show the local GLC model for a
peartop mirror surface. Our analysis from [18] shows that
local GLC models on this mirror correspond to either cross-
slit 1(b) or pushbroom 1(c). In fact, the yellow region lie
close to the parabolic curve of the surface.

4. GLC Projection

GLC projection is the mapping of points in 3D to to their
corresponding ray in a specific GLC. We next consider pro-
jecting a 3D point onto a GLC. To simplify the analysis, we
use a canonical GLC representations with the three gener-
ator rays [σ1, τ1, 0, 0], [σ2, τ2, 1, 0], and [σ3, τ3, 0, 1]. This
setup describe almost all GLCs (except for a subspace of
GLCs whose slits lie on the uv plane). Every ray r in the
GLC can be written as the following affine combination:

r[σ, τ, u, v] = (1− α− β) · [σ1, τ1, 0, 0]
+α · [σ2, τ2, 1, 0] + β · [σ3, τ3, 0, 1] (8)

where σi, τi, i = 1, 2, 3 are constant for a given GLC. It is
easy to see that α = u and β = v under this simplification.

Πz

uv

T1

T2
T3

P

r1(σ1, τ1, u1, v1)

r2(σ2, τ2, u2, v2)

r3(σ3, τ3, u3, v3)

r = (1-α−β)r1+αr2 + βr3

r1(σ1, τ1, u1, v1)

r2(σ2, τ2, u2, v2)

r3(σ3, τ3, u3, v3)

P = (1-α−β)T1+αT2 + βT3

(a) (b)

Figure 4. (a) Projecting a point P to a ray in the GLC. (b)
The projection of P can be computed using the same affine
coordinate on the sweeping plane Πz .

Equation (8) is also equivalent to the following two linear
constraints:

σ = (1− u− v)σ1 + uσ2 + vσ3 (9)
τ = (1− u− v)τ1 + uτ2 + vτ3

The GLC ray that passes through a point Ṗ (x, y, z) in
3D satisfy the following linear constraints [4, 17]:

u + z · σ = x (10)
v + z · τ = y

The ray passing through P is, thus, the solution of the four
equations in (9) and (10) and can be computed as:

u = − (z2(σ1τ3−σ3τ1)−z(σ1(y−1)−σ3y−x(τ1−τ3))−x)
Az2+Bz+C

v = (z2(σ1τ2−σ2τ1)−z(σ1y−σ2y+τ1(1−x)+τ2x)+y)
Az2+Bz+C (11)

where Az2 + Bz + C = 0 corresponds to the characteris-
tic of the GLC. We call this equation the GLC Projection
Equation.

4.1 Plane Sweeping

The GLC Projection Equation has an intuitive geometric
interpretation. Consider a plane Πz parallel to the uv plane
and passing through Ṗ . The three generators will intersect
Πz at Ṫ1, Ṫ2, Ṫ3, where

Ṫ1 = (0, 0, 0) + z · (σ1, τ1, 1) = (σ1z, τ1z, z) (12)
Ṫ2 = (1, 0, 0) + z · (σ2, τ2, 1) = (σ2z + 1, τ2z, z)
Ṫ3 = (0, 1, 0) + z · (σ3, τ3, 1) = (σ3z, τ3z + 1, z)



The affine combination [α, β] of the three generator rays
that passes through P , is:

Ṗ = (1− α− β) · Ṫ1 + α · Ṫ2 + β · Ṫ3 (13)

[α, β] can be computed using the ratio of the signed areas
formed by triangle ∆Ṫ1Ṗ Ṫ3, ∆Ṫ1Ṫ2Ṗ over ∆Ṫ1Ṫ2Ṫ3, as
is shown in Figure 4. Notice the area formed by ∆Ṫ1Ṫ2Ṫ3

corresponds to the characteristic equation of the GLC. Thus,
the affine coefficients (α, β) can be computed as:

u = α =
∆Ṫ1Ṗ Ṫ3

∆Ṫ1Ṫ2Ṫ3

=

∣∣∣∣∣∣
zσ1 zτ1 1

x y 1
zσ3 1 + zτ3 1

∣∣∣∣∣∣
Az2 + Bz + C

(14)

v = β =
∆Ṫ1Ṫ2Ṗ

∆Ṫ1Ṫ2Ṫ3

=

∣∣∣∣∣∣
zσ1 zτ1 1

1 + zσ2 zτ2 1
x y 1

∣∣∣∣∣∣
Az2 + Bz + C

Equation (14) and Figure 4 gives a geometric interpretation
to the Projection Equation.

4.2 Singularities

Notice Equation (14) may lead to no solution or multiple
solutions when the denominator Az2 + Bz + C = 0 (i.e.,
the characteristic equation is zero). This happens when P
lies at the depth of a slit. Thus, using Table 3.1, we can
conclude that these singularities can only happen in cross-
slits, pushbroom, pencil, and pinhole cameras.

When the points lie precisely on the slits, duplicated
images will occur, because multiple GLC rays will pass
through these points. The ray passing through the point
is determined by the solution to a 4x4 system of equations
given in (9) and (10). When the point lies on the slit, the
determinant of this matrix is zero, and, therefore, the four
equations become linearly dependent. For pinhole cameras,
when the point coincides with the center of projection, the
4 linear equations will degenerate to 2 linear equations as
(10) and the projection of the point will cover the whole
image. For pushbroom, cross-slits, and pencils, the 4 linear
constraints will degenerate to three independent equations,
and the projection of each point on the singularity covers a
1D subspace of rays, or in its image it will project to as a
line. A similar case happens with EPI cameras.

Furthermore, not all 3D points project onto a given GLC.
There are two possible un-projectable situations: 1) there
is no ray in the camera that can pass through the point, or
2) the ray that passes through the point is parallel to 2PP,
and hence cannot be represented. Points that cannot be
projected can only happen when the denominator of equa-
tion (14) is zero and the numerator is non-zero. For cross-
slit cameras, these points lie on the two planes Πz=z1 and

Πz=z2 that contain the slits but do not lie on these slits.
This is representative of the first case. For pencil and push-
broom cameras, these singularity points lie on plane Πz=z1

that contains the slit but do not lie on the slit, and it fol-
lows the second case. Pinhole cameras are a special case
of pencil cameras. In theory, it can image all points in 3D
space. However, for points that lie on the plane parallel to
the parametrization plane and passing through the COP, the
corresponding rays are parallel to 2PP and hence cannot be
imaged by a pinhole GLC.

4.3 Projections of Lines

Now we consider the projections of lines onto various
GLCs. If l is parallel to the uv plane, we can parameterize l
as a point [x0, y0, z0] on the line and the direction [dx, dy, 0]
of the line. All rays passing through l satisfy

[u, v, 0] + λ1[σ, τ, 1] = [x0, y0, z0] + λ2[dx, dy, 0] (15)

It has been shown in [4] that equation (15) is equivalent to
the linear constraint

(u + z0σ − x0)dy − (v + z0τ − y0)dx = 0 (16)

The GLC rays passing through l is the intersection of three
linear constraints: equation (9) and (16). Thus, the rays
collected by any GLC passing through l are, in general, a
1D linear manifold. If we assume the uv plane is the default
image plane, then (u, v) gives the pixel coordinates of the
projection. This implies that the image of a line l parallel to
the uv plane also a line.

If l is not parallel to the uv plane, then l will intersect uv
plane at (u0, v0, 0) and has direction (σ0, τ0, 1). All rays
passing through l in this case satisfy the bilinear constraint
[4]:

(u− u0)(τ − τ0)− (v − v0)(σ − σ0) = 0 (17)

The projection of l hence can be computed using equation
(9) and equation (17) as follows:

(u− u0)((1− u− v)τ1 + uτ2 + vτ3 − τ0) (18)
−(v − v0)((1− u− v)σ1 + uσ2 + vσ3 − σ0) = 0

which corresponds to a 1D quadratic manifold of rays. Sim-
ilarly, if we take the uv plane as the image plane, the image
of l is a quadratic curve on the image plane as shown in
Figure 2(a) and 2(b).

4.4 Projections of Points at Infinity

We can use the the properties of GLC line projection to
determine the GLC projections of points lying in the plane
at infinity. An infinite point can be written as:

P (x, y, z) = (u0, v0, 0) + z(σ0, τ0, 1), z →∞ (19)



Substituting P in equation (14), it is easy to see that the nu-
merator and the denominator of u and v are both quadratic
in z. However either or both terms may degenerate to linear
or constant.

For pinhole, pencil, bilinear, and cross-slits, the first
GLC characteristic equation (the denominator in the projec-
tion equation) is always general quadratic in z, as is shown
in Table 1. And since the numerator is at most a quadratic
in z, when z → ∞, both u and v will have finite values,
i.e., points infinitely far away from the image plane all have
a projection in the camera.

Substituting [x, y, z] in the Projection Equation (11), we
get

u = Auz2+Buz+Cu

z2(s1(t2−t3)+s2(t3−t1)+s3(t1−t2))−z(s1−s2+t1−t3)+1

v = Avz2+Bvz+Cv

z2(s1(t2−t3)+s2(t3−t1)+s3(t1−t2))−z(s1−s2+t1−t3)+1

where

Au =

∣∣∣∣∣∣
σ1 τ1 1
σ0 τ0 1
σ3 τ3 1

∣∣∣∣∣∣, Av =

∣∣∣∣∣∣
σ1 τ1 1
σ2 τ2 1
σ0 τ0 1

∣∣∣∣∣∣ (20)

Thus, the coefficients of z2 in both the numerator and de-
nominator of the projection equation are functions of σ0,
τ0, and the intrinsic parameters of the GLC, not u0 or v0.
This implies the final projection is only dependent on the
direction of the infinite points. In the pinhole case, these
points correspond to the vanishing points associated with
directions and such vanishing points also exist for all pen-
cil, bilinear, and cross-slits cameras.

For pushbroom cameras, the directions of three genera-
tor rays are parallel to some plane Πpushbroom and its char-
acteristic equation is linear in z. The denominator in the
Projection Equation (11) is, thus, a linear function in z.
However, the numerator can be quadratic in z as shown in
equation (20). Therefore, only when

Au =

∣∣∣∣∣∣
σ1 τ1 1
σ0 τ0 1
σ3 τ3 1

∣∣∣∣∣∣ = 0, Av =

∣∣∣∣∣∣
σ1 τ1 1
σ2 τ2 1
σ0 τ0 1

∣∣∣∣∣∣ = 0

(21)
can the point be projected into the camera. However, since
the three generator rays are parallel to some plane, we must
also have ∣∣∣∣∣∣

σ1 τ1 1
σ2 τ2 1
σ3 τ3 1

∣∣∣∣∣∣ = 0 (22)

From equation (21) and (22), [σ0, τ0, 1] must be a direc-
tion parallel to Πpushbroom. Thus, the projection of the in-
finite points are constrained to one dimensional subspace
and causes infinite stretching at the other, as is commonly
observed in pushbroom panoramas. Cross-slit GLCs, how-
ever, are able to project all points infinitely far away and,

(a) (b)

(c) (d)

Figure 5. (a) Imaging the GLC on a plane parallel to the
uv plane. (b) Imaging the GL on a different plane. (c) A
GLC image of a toy dog synthesized from a video using
image plane (a). (d) A different image of the same GLC
camera using image plane (b).

therefore, are a better choice for creating panoramas. Figure
2(a) and 2(c) compares pushbroom and cross-slit panora-
mas. Objects far away are stretched in pushbroom cameras,
but not in cross-slit cameras.

Similarly, for orthographic and twisted orthographic
cameras, whose characteristic equations are constant, an in-
finite point has a projection only if [σ0, τ0, 1] is the direction
of the ray of the GLC at point [u0, v0, 0]. For instance, for
orthographic cameras, only infinite points along the view
direction can be seen in the projection.

5 GLC Collineation

In the previous section, we study the projections of
points and lines in a GLC by taking the uv plane as its
default image plane. In this section, I derive how a given
GLC image transforms as it is sampled over different im-
age planes. This transformation is analogous to planar
collineation (homography) to pinhole cameras.

Assume the new image plane Πnew is specified by an
origin ṗ and two spanning directions ~d1, ~d2. For every ray
r[σ, τ, u, v] parameterized under the default 2PP, we inter-
sect the ray r with Πnew to obtain its new pixel coordinate
[i1, j1]:

[u, v, 0] + λ[σ, τ, 1] = ṗ + ~d1i1 + ~d2j1 (23)

To simplify our computation, we translate origin ṗ on the
plane to simply our computation. If we assume the new
image plane is not parallel to the z axis, we can choose
ṗ = [0, 0, pz]. Otherwise, we can choose the image plane’s
intersections with either the x or y axis, and similar results
hold. The new image coordinate of the ray [i1, j1] can be



computed by solving equation (23) as:

i1 = pz(dy
2σ−dx

2τ)+dy
2u−dx

2v+dz
2(σv−τu)

γ (24)

j1 = pz(dx
1τ−dy

1σ)+dx
1v−dy

1u−dz
1(σv−τu)

γ

where

γ =

∣∣∣∣∣∣
dx
1 dy

1 dz
1

dx
2 dy

2 dz
2

σ τ 1

∣∣∣∣∣∣ (25)

Since all rays lie in a GLC satisfy equation (9), thus,
σ and τ are linear functions in u and v. Furthermore, γ
is linear in σ and τ , and, therefore, can also be written as
γ = a3u + b3v + c3. Thus, i1 and j1 can be computed as:

i1 = a1u2+b1uv+c1v2+d1u+e1v+f1
a3u+b3v+c3

(26)

j1 = a2u2+b2uv+c2v2+d2u+e2v+f2
a3u+b3v+c3

γ is zero when the ray is parallel to the new parametrization
plane, which we will not consider. The numerator is, in
general, a quadratic function in u2, v2, uv, and, therefore,
the collineation from the default image plane (uv plane) to
a new image plane is quadratic rational.

5.1 General Collineation between GLCs

Finally, we can compute the collineation between any
two planar parameterizations of the same GLC. Suppose
we want to compute the collineation from image plane
Π1 = {ṗ, ~d1, ~d2} with pixel coordinate [i1, j1] to image
plane Π2 = {q̇, ~d3, ~d4} with pixel coordinate [i2, j2]. First,
we compute the transformation from Π1 to the default im-
age plane. Second we use the transformation from the de-
fault image plane to Π2.

The first transformation is in fact simply projecting each
point on Π1 onto the default plane, which can be de-
scribed by the Projection Equation (11). Consider each
pixel m[i1, j1] corresponds to point M

Ṁ [x, y, z] = ṗ + ~d1i1 + ~d2j1 =

 px
1 + i1d

x
1 + j1d

x
2

py
1 + i1d

y
1 + j1d

y
2

pz
1 + i1d

z
1 + j1d

z
2


(27)

The projection of M onto the uv plane is quadratic ratio-
nal in [x, y, z] and [x, y, z] is linear in [i1, j1] as shown in
equation (11), therefore, the composed transformation can
written as

u =
f1(i1, j1)
θ(i1, j1)

v =
f2(i1, j1)
θ(i1, j1)

(28)

where

f1(i1, j1) = A1i
2
1 + B1i1j1 + C1j

2
1 + D1i1 + E1j1 + F1

f2(i1, j1) = A2i
2
1 + B2i1j1 + C2j

2
1 + D2i1 + E2j1 + F2

θ(i1, j1) = A3i
2
1 + B3i1j1 + C3j

2
1 + D3i1 + E3j1 + F3

Thus, the transformation from [u, v] is quadratic rational in
i1 and j1.

Next, we compute the Collineation from [u, v] to
Π2[i2, j2] using equation (26) and result is a composition
of two quadratic rational functions, which is a quartic ratio-
nal function that has the form:

i2 =
H1(i1, j1)
I(i1, j1)

, j2 =
H2(i1, j1)
I(i1, j1)

(29)

where H1(i1, j1), H2(i1, j1) and I(i1, j1) are all quartic
(4th order) polynomials in i1 and j1.

In Figure 5, we show two images (in red rectangle) of
the same GLC camera using two image planes. The GLC
used is a cross-slit. This indicates, although the collineation
is quartic rational, the behavior of changing the image plane
is similar to homography in a pinhole image.

5.2 Collineation Degeneracies

The planar collineation of a GLC is, in general, a quar-
tic rational function. However, it may degenerate into a
quadratic or even a linear rational function for specific types
of GLCs. In this section, the form of special collineations
for cross-slit, pushbroom, and pinhole cameras are consid-
ered.

First, consider equation (24), which maps rays parame-
terized onto an image plane Π1 as pixel [i1, j1], as a func-
tion of u, v, σ, and τ . Given a second image plane Π2, we
can represent u, v, σ, and τ in terms of its pixel coordinate
[i2, j2], and directly compute the collineation from Π2 to
Π1.

If the Π2 is parallel to the default 2PP, then u, v, σ, and
τ are linear functions of i2 and j2 [17]. Substituting them
into equation (24) gives a quadratic rational (quadratic in
the numerator and linear in the denominator) collineation. If
Π2 is not parallel to the default 2PP, then it is non-trivial to
represent σ, τ , u, and v in terms of i2 and j2 and σ, τ , u, and
v are no longer linear functions of i2 and j2. However, for
some special types of GLCs, such as pinhole, pushbroom,
and cross-slits, it is still possible to represent σ, τ , u, and v
in a simpler form of i2 and j2.

For cross-slit cameras, if Π2 is not parallel to the de-
fault 2PP, then the two slits will intersect the new 2PP
and can be represented as two lines l1[σ1, τ1, u1, v1] and
l2[σ2, τ2, u2, v2]. If we choose Π2 as the parametrization
plane, then each ray can be represented as [σ, τ, i2, j2]. Re-
call that all rays passing through l1 and l2 are subject to two
bilinear constraints (17). Thus:

(i2 − u1)(τ − τ1)− (j2 − v1)(σ − σ1) = 0 (30)
(i2 − u2)(τ − τ2)− (j2 − v2)(σ − σ2) = 0

we can solve σ and τ in terms of i2 and j2 as:

σ = A2i22+B2i2j2+C2j2
2+D2i2+E2j2+F2

A1i2+B1j2+C1
(31)



τ = A3i22+B3i2j2+C3j2
2+D3i2+E3j2+F3

A1i2+B1j2+C1

where Ai, Bi, Ci, Di, Ei, Fi, i = 1, 2, 3 are all constant.
Expanding equation (30) gives

i2τ − j2σ = A4i2 + B4j2 + C4σ + D4τ + E4 (32)

Finally, if we substitute σ, τ , and i2τ − j2σ into equa-
tion (24), the quartic rational collineation degenerates to
quadratic rational (quadratic in numerator and denomina-
tor). An alternative proof using a quadratic tensor is shown
in [16].

For pushbroom cameras, if Π2 is not parallel to the de-
fault 2PP, then the slit will intersect the new 2PP as the line
[σ1, τ1, u1, v2], and the new ray parametrization [σ, τ, i2, j2]
is subject to one bilinear constraint, as is the case for the
cross-slit GLCs:

(i2 − u1)(τ − τ1)− (j2 − v1)(σ − σ1) = 0 (33)

In addition, since all rays of a pushbroom GLC are parallel
to some plane, all rays must also satisfy a second constraint

[σ, τ, 1] · [n0, n1, n2] = n0σ + n1τ + n2 (34)

Solving for σ and τ of equation (33) and (34) gives

σ = A2i2+B2j2+C2
A1i2+B1j2+C1

(35)

τ = A3i2+B3j2+C3
A1i2+B1j2+C1

Similarly, we can substitute σ, τ , and i2τ − j2σ in equa-
tion (24), and the quartic rational collineation degenerates
to a quadratic rational (quadratic in numerator and linear in
denominator).

For pinhole cameras, rays in the GLC satisfy equation
(10) as i2 + pzσ = px and j2 + pzτ = py . We can solve
σ and τ as σ = − 1

pz i2 + px

pz and τ = − 1
pz j2 + py

pz . If
we substituting σ and τ into the collineation equation, the
quartic rational collineation degenerates to a linear rational
(a homography).

Finally, for bilinear, pencil, twisted-orthographic GLCs,
when the first image plane is not parallel to the default 2PP,
it is non-trivial to solve σ and τ in term of i2 and j2 in gen-
eral. And the quartic rational collineation will not reduce
into simpler form.

6. Conclusions

We have presented theories of projection and
collineation for GLC images. A closed-form solution
for projecting 3D points to rays in a GLC was derived. In
addition, we showed that colllneations between the images
of the same GLC but on different imaging planes are up
to quartic (4th order) rational. Using GLC projection and
collineation theory, it is easy to explain the multiperspective
distortions such as curving of lines, apparent stretching and
shrinking, and duplicated projections of a single point.
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