
Real-Time Reflection Mapping with Parallax

Jingyi Yu∗ Jason Yang∗

Massachusetts Institute of Technology
Leonard McMillan†

University of North Carolina at Chapel Hill

Figure 1: Reflections on a moving sphere rendered using our method. Notice the change of parallax: the table is partially occluded by the green chair (left) and turns gradually
visible (middle and right).

Abstract

We present a novel algorithm to efficiently render accurate reflec-
tions on programmable graphics hardware. Our algorithm over-
comes problems that commonly occur in environment mapping
such as the lack of motion parallax and inaccuracies when objects
are close to the reflectors. In place of a 2D environment map, which
only represents points infinitely far away from the reflector, we use
six 4D light field slabs to represent the surrounding scene. Each
reflected ray is rendered by indexing into these precaptured envi-
ronment light fields. We are able to render accurate reflections with
motion parallax at interactive frame rates independent of the re-
flector geometry and the scene complexity. Furthermore, we can
move the reflectors within a constrained region of space and guar-
antee that the environment light field provides the necessary rays.
We benefit from the programmability of existing graphics hardware
to efficiently compute the reflected rays and transform them into
the appropriate light field index. We also take advantage of the
large texture memories and memory bandwidth available in today’s
graphics card to store and query hardware-compressed light fields.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

Keywords: reflections, light fields, pixel shader

∗e-mail: {jingyi, jcyang}@graphics.lcs.mit.edu
†e-mail: mcmillan@cs.unc.edu

1. Introduction

The depiction of accurate reflections is still an earmark of ray trac-
ing lying just beyond the reach of interactive rendering. Environ-
ment mapping is the most commonly used method for rendering ap-
proximate reflections interactively [Blinn and Newell 1976; Greene
1986]. An implicit assumption in environment mapping is that all
scene elements are located infinitely far away from the reflecting
surface. Equivalently, it models the reflector as a single point.
When scene elements are relatively close to the reflectors, the re-
sults of environment mapping are inaccurate.

In place of a 2D environment map, we use 4D light fields to rep-
resent the surrounding scene. Each reflected ray is rendered by in-
dexing into a precaptured environment light field. Light fields are
image-based representations that describe the transmitted radiance
along a sampling of rays without using the scene geometries. Its 4D
nature enables us to render accurate reflections with motion paral-
lax independent of the scene complexity. Our reflection mapping
method is enabled by recent advances in programmable graphics
hardware and the availability of large texture memories. A fragment
shading program is used to dynamically select, sample, and inter-
polate approximate reflections upon any rendered surface. Correct
parallax is observed as either the surface or viewpoint is changed.
For convex objects, our reflection maps are a close approximation
to a ray traced image.

2. Previous Work

Classic environment mapping [Blinn and Newell 1976; Greene
1986] has been widely used to approximate reflection in interac-
tive computer graphics. Common variants include a sphere map
[Blinn and Newell 1976] in which the entire reflection is described
in a single parametrization, and a cube map [Greene 1986], which
maps all reflection directions onto one of six cube faces. There
are two fundamental shortcomings of the environment mapping
method. First, the infinitely faraway environment assumption is
not always valid. When it is violated, significant inaccuracies ap-
pear on the rendered reflectors, as shown in Figure 10. Second,

Reflector

Geometry

Transform

Vertex Position

(x, y, z)

Transform

Normal

Light Field

Slabs

Compute

reflected ray

per pixel

Warp to LF

(s, t, u, v)

Vertex Shader Fragment Shader

View Point

Reflections Query

Figure 2: The pipeline of our method to render reflectors. First, the position and the normal at each vertex is transformed in the vertex shader. The rasterizer then interpolates both
values for each pixel. Finally, the reflected ray is computed for each pixel and queried into the light field slabs in the pixel shader.

environment mapping loses crucial cues for 3D geometries, and in
particular, cannot present motion parallax when the eye point or the
reflector moves. Cabral et al [Cabral et al. 1999] suggest using mul-
tiple 2D environment maps to obtain view-dependency. Hakura et
al [Hakura et al. 2001] proposed using location and view-dependent
environment maps to capture local reflections. However, the tran-
sitions between different environment maps are difficult to control
and may lead to discontinuity.

Ofek and Rappaport [Ofek and Rappoport 1998] developed an al-
ternative method for computing interactive reflections called the ex-
plosion map. Their method warps the surrounding scene geometry
such that it appears as a correct virtual image when drawn over top
of the reflector. They also tessellate the reflectors and compute a re-
flection subdivision for each cell of the reflector to efficiently index
these scene objects. Since their method transforms all scene geom-
etry, and usually requires fine tessellation, it can be computational
expensive.

Accurate reflection can also be achieved by ray tracing [Whitted
1980]. With advances in programmability at both the vertex and
fragment (pixel) level [ATI 2001, Nvidia 2001], current graphics
hardware can be modified to accommodate ray tracing [Purcell et al.
2002]. However, since both vertex and fragment shaders only sup-
port limited simple instructions, it is still difficult to accomplish
sophisticated illumination effects at an interactive speed.

Alternative approaches to photo-realistic rendering are studied by
researchers in image-based modelling and rendering. A light field
[Levoy and Hanrahan 1996; Gortler et al. 1996] stores regularly
sampled views looking at an object on a 2D sampling plane. These
views form a 4D ray database. New views are synthesized by query-
ing and blending existing rays. A sufficiently sampled light field
can support view-dependent effects such as varying illumination,
specular highlights, and even reflections. Lischinski and Rappoport
[Lischinski and Rappoport 1998] used layered light fields (LLF)
to render fuzzy reflections on glossy objects and layered depth im-
ages (LDI) were used to ray-trace sharp reflections. Hendrich et
al [Heidrich et al. 1999] used two light fields to simulate accurate
reflections. The first, like ours, models the radiance of the environ-
ment. The second maps viewing rays striking the object to outgoing
reflection rays, thus allowing for inter-reflections. Compared to our
method, theirs requires more storage, which they address with com-
pression. Their method would also be enhanced by our light field
slab approach described in Section 5. Most recently, Masselus et al
[Masselus et al. 2003] use precaptured light fields to relight objects.

Alternatively, surface light fields [Wood et al. 2000] can also be
used to render reflections. However, in practice, realistic rendering
without aliasing artifacts requires extremely high sampling rate, and

therefore, these methods are usually used to produce low frequency
illumination effects rather than sharp reflections. Light field map-
ping[Chen et al. 2002] treats the outgoing radiance function like a
light field to allow object motion and uses PCA to compress the ray
database. Sloan [Sloan et al. 2002; Sloan et al. 2003] uses com-
pressed precomputed radiance transfer functions to model inter-
reflections between incident and exit rays and uses environment
mapping to relight objects. Most of these methods do not handle
motion parallax since they rely on environment mapping to model
the scene’s illumination and are limited to recovering low frequency
illuminations due to compression.

Our method employs light fields in a different way. Instead of us-
ing them to represent the reflecting object, we use them to repre-
sent the environment. Unlike 2D environment maps, light fields
are sufficient descriptions of the local environment. By using a
two-plane parametrization (2PP), the environment light fields can
be efficiently compressed and stored on today’s graphics hardware
as high dimensional texture maps.

3. Environment Light Field Map

Light fields are simple image-based representations using rays in
place of geometry. Light fields capture all the necessary rays within
a certain sub-space so that every possible view within a region can
be synthesized. In a light field, a sequence of images are captured
on a regularly sampled 2D plane, as shown in Figure 3. Rays are in-
dexed as (s, t,u,v) where (s, t) and (u,v) are the intersection of each
ray with the st plane z = zst and the uv plane z = zuv. In practice, a
light field is stored as a 2D array of images. Each pixel in the image
can be indexed as an integer 4-tuple (s′, t ′,u′,v′), where (s′, t ′) is the
image index in the array and (u′,v′) is the pixel index in the texture.
This st-uv-index representation, however, requires additional trans-
formations to warp the canonical (s, t,u,v) representation. Fortu-
nately, all images in a light field are regularly sampled, therefore,
the transformation from the camera locations (s, t) into the camera
indexes (s′, t ′) can be easily computed using scaling and translation.
Similarly, the pixel coordinate (u′,v′) can be calculated by comput-
ing the relative coordinate of (u,v) with respect to camera (s, t), as
shown in Equation (1).

s′ = s · s1 + s0 (1)
t ′ = t · s1 + t0
u′ = (u− s) · s2 +u0

v′ = (v− t) · s2 + v0

where s1 and s2 are scaling factors and s0, t0, u0, v0 are the neces-
sary translations to guarantee that both camera and pixel index start

Camera Plane

Image Plane

(s, t)

(u, v))

Camera Index

Pixel Index

(s', t')

(u', v')

(0, 0) (1, 0) (2, 0)

Figure 3: Light field parametrization. Top: a ray can be parameterized as (s, t,u,v)
where (s, t) is the intersection with the camera plane and (u, v) is the intersection with
the image plane. Bottom: a ray can also be represented by image-pixel coordinate as
(s′, t ′,u′,v′) where (s′, t ′) is the image index, (u′,v′) is the pixel index.

V

V'

D incident

D exit

N

(s, t)
(u, v)

P

Figure 4: Reflected rays are computed and used to index the light fields. When the
reflector is convex, the virtual viewpoint V’ is further away from the light field.

from 0. Each pixel index (u′,v′) represents a common ray direction.

With a 4D st-uv-index light field parametrization, it is easy to test
if a ray can be queried from the light field by checking if it lies
within the 4D bounding volume [0, 0, 0, 0] to [NUM − 1,NUM −
1,RESx − 1,RESy − 1], where NUM is the maximum image in-
dex, and RESx and RESy are the image resolution. If a ray can
be queried, we can then estimate its radiance from its neighboring
rays. Bilinear interpolation is often used for blending the sampled
rays.

4. Reflection Mapping

The core of our rendering algorithm is to compute reflected rays
and transform them into a light field ray parametrization. We take
advantage of programmable vertex and fragment shaders to achieve
efficient computations. For each vertex of the reflector, we store
its position P(px, py, pz) and normal N(nx,ny,nz). The position and
normal map are transformed by the vertex shader. The graphics
hardware then automatically interpolates and assigns a position and
normal at each pixel.

At the fragment level, for each pixel on the reflector, the reflected
ray is computed as follows. Given a viewpoint V(vx,vy,vz), the in-
cident direction of the ray is Dincident = P - V, and the exit direction
Dexit can be computed as

Dexit = 2 ·N(Dincident ·N)+Dincident (2)

(a)

(c)

(b)

(d)

Figure 5: Reflection mapping on graphics hardware. (a) The (x,y,z) position image
of the teapot. (b) The normal image of the teapot. (c) The computed (s, t,u,v) image
of the teapot. (d) Rendered teapot in a light field environment.

float4 main(float4 vert : TEXCOORD0, float3 Normal : TEXCOORD1) : COLOR
{

//----Calculate Reflected Ray

float3 EyeToVerT = Vert.xyz - eyepos;
float3 Reflect = reflect(EyeToVert,normalize(Normal));
Reflect = Reflect/abs(Reflect.z);

//----Calculate STUV

float4 ST = (Vert.xyxy + (SToffset - vert.z) * Reflect.xyxy) + offset;
float4 UV = Reflect.xyxy * UVScale + UVCenter;
float4 outcolor = LFFetch(ST, UV, LFNum, Disparity);

return outcolor;
}

Figure 6: Code fragment for computing reflected rays.

The reflected ray is then warped to the light field parametrization
by intersecting it with the st and uv planes. This intersection can be
computed as follows:

P+Dexit ·λ1 = (s, t,zst) (3)
P+Dexit ·λ2 = (u,v,zuv)

The (s, t,u,v) coordinate is obtained by solving Equation (3) as
shown below:

(s, t,zst) = P+Dexit ·
zst − pz

Dexit z
(4)

(u,v,zuv) = P+Dexit ·
zuv − pz

Dexit z

We warp the ray to st-uv-index coordinates by Equation (1). All
of these computations are per-pixel based vector calculations and,
hence, can be efficiently implemented on the fragment shader. Fig-
ure 5(a) and (b) shows the colored positions and normals for a sam-
ple reflector. Figure 5(c) shows the computed (s′, t ′,u′,v′) map on
the graphics card. The final reflectance image is shown in Figure
5(d). The fragment code is given in Figure 6.

5. Light Field Slabs

We surround the reflectors with light field slabs arranged as six
faces of a 3D bounding box, as shown in Figure 7. In order to allow
objects to move freely within this region, we need to guarantee that

l/tan(θ)

l

θ

(a) (b)

(c) (d)

Figure 7: Light field slabs. (a) The green ray cannot be queried from any light field.
(b) We can extend the light field slabs to capture missing rays. (c) Light field slabs can
be used to guarantee all rays passing through the bounding volume can be queried. (d)
A sample image rendered using light field slabs. Each color represents one of the six
slab faces.

all rays going through the box are captured by one of the six light
fields. It is insufficient to only build light fields on the six faces
of the box, as in Figure 7(a). This arrangement does not guarantee
that all rays passing through the box will be captured. For instance,
the green ray in Figure 7(a) intersects the box but is not contained
in any of the six light fields. One way to solve this problem is to
extend the range of the light fields on each face.

For simplicity, we assume all the light field sampling cameras are
of the same field-of-view 2θ . We first build up a bounding box of
the reflector with length l, as shown in Figure 7(b). To guarantee
no ray passing through the bounding box is missing, we extend the
vertical slab with length lextend = l

tanθ
. It is easy to verify that when

θ ≥ π

4 , such an extension can capture all rays passing through the
bounding box. In practice, we prefer cameras with smaller field-
of-view to increase the uv resolution. Therefore, we choose a very
simple setup of θ = π

4 with orthogonal slabs of length 3l, as shown
in Figure 7(c).

Under this construction, the eye point can move freely without con-
straints to observe accurate reflections. The reflector can also move
freely within the cell without missing a ray. When it moves out of
a cell, we need to further extend the light field slabs.

We could store the six light field slabs as individual texture maps.
In order render each ray, it is necessary to select the appropriate
slab for each query. However, the dynamic branching operation is
not supported on the current generation of graphics cards on the
GPU and all branches are executed. Therefore, the hardware will
perform 24 bilinear texture fetches before it selects the proper color
to render. We avoid this problem by combining all six slabs into a
single texture volume. Then we adapt a commonly used technique
in cubic environment mapping - we choose the light field slab us-
ing the largest absolute directional component of the reflected ray.
Knowing the proper slab allows us to determine the corresponding
slice in the texture volume.

float4 LFFetch(float4 ST, float4 UV, float LFnum, float disparity)
{
 //-----Calculate closest integer ST coords
 int4 vST = floor(ST)+int4(0,0,1,1);

 //-----Find interpolaion coeff
 float4 delta = frac(ST)-float4(0,0,1,1);

 //-----Claculate UV with disparity offset
 float4 UVD = UV - disparity * delta;

 //-----Calculate Texture coords
 float4 fcoord1 = vST%dimface + UVD;
 fcoord1 *= TexScale;

 //----Find LF slice

 int4 idx = vST/dimface;
 float4 fdepth = 1/128.0f * (idx.yyww * numgroup + idx.xzxz)
 + 1/256.0f + LFnum * LFoffset;
 float4 color1 = tex3D(LightField, float3(fcoord1.x, fcoord1.y, fdepth.x));
 float4 color2 = tex3D(LightField, float3(fcoord1.z, fcoord1.y, fdepth.y));
 float4 color3 = tex3D(LightField, float3(fcoord1.x, fcoord1.w, fdepth.z));
 float4 color4 = tex3D(LightField, float3(fcoord1.z, fcoord1.w, fdepth.w));

 //----Interpolate
 float4 temp1 = lerp(color1, color2, delta.x);
 float4 temp2 = lerp(color3, color4, delta.x);

 return lerp(temp1, temp2, delta.y);
}

Figure 8: Partial fragment code for querying the rays.

6. Rendering

The final stage in rendering the reflection is to query the light field.
Conventional light field rendering algorithms select 16 neighbor-
ing rays and blend them using quadralinear interpolation. In order
to reduce storage overhead, the st camera space are often sparsely
sampled. When undersampled, light field rendering usually exhibits
aliasing artifacts. The aliasing artifacts can be significantly reduced
by using simple geometric proxies like a focal plane [Isaksen et al.
2000; Chai et al. 2000].

Our system allows users to interactively adjust the disparity
to achieve satisfactory rendering quality. Given a warped ray
r(s′, t ′,u′,v′), we first round (s′, t ′) to compute the four neighbor-
ing integer image indices.

(s1, t1) = (bs′c,bt ′c) (5)
(s2, t2) = (bs′c,dt ′e)
(s3, t3) = (ds′e,bt ′c)
(s4, t4) = (ds′e,dt ′e)

We then compute the pixel index at each of the four camera using
user specified disparity.

(ui,vi) = (u′,v′)+disparity · (si − s, ti − t), i = 1,2,3,4 (6)

For each (si, ti) pair from Equation (5) we fetch and bilinearly inter-
polate the four neighboring pixels to (ui,vi). Therefore, it requires
16 texture fetches to render a single ray. To reduce the texture fetch
overhead, we take advantage of bilinear texture interpolation capa-
bilities on the graphics hardware. By storing a light field as tex-
tures, we only need perform four hardware bilinear texture fetches
for each (si, ti) pair and a final bilinear interpolation on the results
of those queries.

Once the reflectors are rendered, we can render the background
scene using the standard graphics pipeline. However, since we al-
ready have the necessary light fields around the reflector, we can
also use the same light fields to render the background, so long as

Table 1: Comparison between Environment Map, Explosion Map, Light field map [Heidrich et al. 1999] and our method.

Method
 Reflection Type1

 D N T S
Texture Storage

GPU Computation

 Per Vertex Per Pixel

Requires
Environment Geometry

Preprocessing Cost2

Dynamic Reflector Dynamic Environment

Environment Map Yes No No No Low Low Low No None Low
Explosion Map Yes Yes Yes No Low High Low Yes High Moderate
Light field Map Yes Yes No Yes High3 Low Moderate3 No High High
Our method Yes Yes No No High Low Moderate No Low High

1 Reflection type includes distance reflection (D), near reflection (N), touching reflection (T), and self-reflection (S).
2 Preprocessing overhead cost is incurred per rendered frame for dynamic reflector and dynamic scenes.
3 Because Light field map stores a second light field to map viewing rays to outgoing reflection rays to support self-reflection, it requires additional texture storage and per pixel (ray)

processing overhead compared to our method.

(a)

(b)

(c)

Figure 9: Aliasing artifacts can be reduced using a focal plane. (a) A sample image
rendered using the kitchen light field. (b) The focal plane is on the front chair and we
observe aliasing artifacts on the background table.(c) Aliasing artifacts can be reduced
using the optimal focal plane.

the viewpoint does not move out of the bounding slabs. In fact, it is
easy to modify the fragment program to render the background by
replacing the reflected direction with the viewing direction at each
pixel and taking the viewpoint as the origin of the ray. We can then
use the same rendering pipeline to warp and query the ray from the
light fields.

In Figure 8, we compare the rendering quality of our algorithm us-
ing different disparity values. The aliasing artifacts on the reflectors
are significantly reduced when the optimal disparity is used [Chai
et al. 2000]. In general, aliasing artifacts on convex reflectors are
much less significant than the background, if both are rendered us-
ing light fields. This is because the ”virtual viewpoint”, shown as
V ′ in Figure 4, is farther away from the light fields.

7. Results

We have implemented our algorithm using DirectX9 and HLSL on
an ATI Radeon 9700 Pro with 128MB texture memory. We pre-
captured the light fields for different scenes and scaled the reflected
objects to fit them into the bounds of the light field slabs.

The museum environment with colored columns is prerendered us-
ing DirectX as six slabs of 32x32x128x128 light fields. These
light field slabs are stored as a single 64MB volume texture with
DXT1 compression. These volume textures are of dimension
1024x1024x128 with each light field slab occupying a space of

1024x1024x16. The total volume texture size is actually the size
of 8 light fields slabs due to power-of-two texture dimension re-
quirements. The environment is rendered as regular geometries.
In Figure 10, we compare our method with environment mapping.
Since environment mapping assumes that the scene geometry is lo-
cated at infinity, its rendered columns are smaller than they should
actually appear. In addition, our method renders accurate motion
parallax while environment mapping does not. To show this, we
rotate the viewpoint around the sphere. The change in occlusions
between the foreground columns and the background paintings can
be clearly observed. There is no such motion parallax if we use
environment mapping, as shown in the bottom row of Figure 10.
Better comparisons can be seen in the supplementary video.

The kitchen scene is prerendered using POVRay, where six slabs
of 32x32x128x128 light fields are captured. Both the reflector and
the background are rendered using light fields. Because the light
fields are undersampled, we observe aliasing artifacts on the back-
ground. These artifacts are reduced when using the optimal dis-
parity, as shown in Figure 8 and the video. We also observe less
aliasing on the reflectors, because the resolution of the reflector is
lower and the virtual eye point is farther away from the light fields.

Currently, due to instruction limitations in the shaders, we use a
two pass implementation. In the first pass, we render environment
geometry into the backbuffer and calculate stuv coordinates for the
reflector and write them into an off screen buffer. In the second
pass we re-render the reflector by using the previously computed
stuv values to query the light field from the volume texture. This
implementation, however, will not be necessary in the next genera-
tion of graphics hardware.

The rendering time of our algorithm is independent of the reflector
complexity since it does per-pixel based computation on GPU. The
major cost of our algorithm comes from two parts: the fragment
shader program which computes and warps the reflected ray and
four bilinear texture fetches into the light field per pixel. In Table 2,
we compare the cost of these two components for different models
and scenes.

8. Conclusions

We have presented a novel algorithm to efficiently render accu-
rate reflections on programmable graphics hardware. Our algorithm
overcomes many of the problems inherent to environment mapping
by six 4D light field slabs to represent the surrounding scene. How-
ever, our approach does not solve the problem of self-reflection,
inter-reflection between the objects, or dynamic environments.

In Table 1, we compare our method with conventional environment
mapping and explosion maps. While explosion maps also render
accurate reflections, it is expensive for complex scenes, and, hence,
is not scalable. Our method can both render accurate reflections and

Figure 10: When the viewpoint changes, parallax is visible using our method. Top row: three views rendered using environment mapping. Bottom row: three views rendered
using our method. Notice the front columns exhibit occlusion variations around the background paintings but remain static with environment mapping.

Model Vertices Faces RM fps EM fps

Teapot 1178 2256 80 400
Sphere 9902 19800 90 340
Hippo 18053 51584 70 260
Skull 31076 60339 70 200

Table 1: Comparing Reflection Map (RM) and Environment Map (EM) on
ATI Radeon 9700 Pro. All models are rendered at 512x512 resolution using six
32x32x128x128 light fields slabs.

is scalable. However, our method requires large memory storage for
light fields while the other two do not. With upcoming generations
of graphics hardware supporting larger texture memories, higher
memory bandwidth, and more efficient high dimensional texture
maps, our method has the potential to be used in both realistic ren-
dering and computer games as an alternative to environment maps.

Acknowledgement

We would like to thank Jaime Vives Piqueres for the PovRay
kitchen model.

References

BLINN, J. F., AND NEWELL, M. E. 1976. Texture and reflection in computer gener-
ated images. Commun. ACM 19, 10, 542–547.

CABRAL, B., OLANO, M., AND NEMEC, P. 1999. Reflection space image based
rendering. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, 613–620.

CHAI, J.-X., CHAN, S.-C., SHUM, H.-Y., AND TONG, X. 2000. Plenoptic sam-
pling. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, 307–318.

CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND GRZESZCZUK, R. 2002. Light
field mapping: efficient representation and hardware rendering of surface light
fields. In Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, 447–456.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. 1996. The
lumigraph. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, 43–54.

GREENE, N. 1986. Environment mapping and other applications of world projection.
IEEE Comput Graphics Appl.

HAKURA, Z. S., SNYDER, J. M., AND LENGYEL, J. E. 2001. Parameterized envi-
ronment maps. In SI3D ’01: Proceedings of the 2001 symposium on Interactive 3D
graphics, ACM Press, 203–208.

HEIDRICH, W., LENSCH, H., COHEN, M., AND SEIDEL, H.-P. 1999. Light field
techniques for reflections and refractions. In Eurographics Rendering Workshop.

ISAKSEN, A., MCMILLAN, L., AND GORTLER, S. 2000. Dynamically
reparametrized light fields. In Proc. ACM SIGGRAPH ’00, ACM Press / ACM
SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM,
297–306.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, 31–42.

LISCHINSKI, D., AND RAPPOPORT, A. 1998. Image-based rendering for non-diffuse
synthetic scenes. In Eurographics Rendering Workshop, 301–314.

MASSELUS, V., PEERS, P., DUTR, P., AND WILLEMS, Y. D. 2003. Relighting
with 4d incident light fields. In Proc. ACM SIGGRAPH ’03, ACM Press / ACM
SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, ACM,
613–620.

OFEK, E., AND RAPPOPORT, A. 1998. Interactive reflections on curved objects. In
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, 333–342.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. 2002. Ray tracing
on programmable graphics hardware. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, 703–712.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance trans-
fer for real-time rendering in dynamic, low-frequency lighting environments. In
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, 527–536.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered principal
components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382–
391.

WHITTED, T. 1980. An improved illumination model for shaded display. Commun.
ACM 23, 6, 343–349.

WOOD, D. N., AZUMA, D. I., ALDINGER, K., CURLESS, B., DUCHAMP, T.,
SALESIN, D. H., AND STUETZLE, W. 2000. Surface light fields for 3d pho-
tography. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, 287–296.

Figure 1: Reflections on a moving sphere rendered using our method. Notice the change of parallax: the table is partially occluded by the green chair (left) and turns gradually
visible (middle and right).

(a)

(c)

(b)

(d)

Figure 2: Reflection mapping on graphics hardware. (a) The (x,y,z) position image
of the teapot. (b) The normal image of the teapot. (c) The computed (s, t,u,v) image
of the teapot. (d) Rendered teapot in a light field environment.

(a)

(b)

(c)

Figure 3: Aliasing artifacts can be reduced using a focal plane. (a) A sample image
rendered using the kitchen light field. (b) The focal plane is on the front chair and we
observe aliasing artifacts on the background table.(c) Aliasing artifacts can be reduced
using the optimal focal plane.

Figure 4: When the viewpoint changes, parallax is visible using our method. Left
column: three views rendered using environment mapping. Right column: three views
rendered using our method. Notice the front columns exhibit occlusion variations
around the background paintings but remain static with environment mapping.

