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Abstract

We present a novel method for analyzing reflections on
arbitrary surfaces. We model reflections using a broader
than usual class of imaging models, which include both per-
spective and multiperspective camera types. We provide an
analytical framework to locally model reflections as spe-
cific multiperspective cameras around every ray based on a
new theory of general linear cameras. Our framework bet-
ter characterizes the complicated image distortions seen on
irregular mirror surfaces as well as the conventional cata-
dioptric mirrors. We show the connection between multiper-
spective camera models and caustic surfaces of reflections
and demonstrate how they reveal important surface rulings
of the caustics. Finally, we show how to use our analysis
to assist mirror design and characterize distortions seen in
catadioptric imaging systems.

1. Introduction

Reflections are important visual phenomena, as well as
a potential class of images suitable for analysis by com-
puter vision. Although the basic physics and the geom-
etry of reflections are well understood, analyzing reflec-
tions on arbitrary mirror surfaces is still complicated, and
quantitative classification of reflection distortions still re-
mains an open problem. Most research on analyzing re-
flections has focused on catadioptric mirrors, such as hy-
perbolic and parabolic mirrors [17, 1, 12, 6, 19], to obtain
single viewpoint (pinhole) optics. Different methods have
been proposed to calibrate these catadioptric imaging sys-
tems [9, 17]. However, when the reflected rays do not con-
verge to a single viewpoint, the corresponding imaging ge-
ometry becomes difficult to analyze [18].

In this paper, we propose a different method to analyze
reflected images seen on arbitrary mirrors. While most pre-
vious research has been restricted to simple parametric re-
flectors such as spherical or conical mirrors [6, 19], and
equiangular mirrors [15], our method applies to reflections
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Figure 1. A reflected image seen on a car window. Sub-
regions illustrate multiperspective distortions such as shear-
ing (yellow), uneven aspect ratio (red), and duplications
(green).

off of any parametric or mesh surface. Our goal is to model
the group behavior of each reflected ray and its neighbor-
ing rays as if they are captured from a multiperspective
camera. Our approach is to first map reflections to two-
dimensional manifolds in a four-dimensional ray space. At
each point/ray on these reflection manifolds, the local tan-
gent planes can be characterized to determine the local ge-
ometric properties of the reflection.

Our analysis is based on the recently proposed general
linear camera (GLC) model [20] that characterizes all 2D
planes in the ray space as one of the eight multiperspec-
tive cameras. This analysis allows us to identify the type
of the GLC camera at each point in a reflected image. Our
framework shows that, when viewed from a pinhole or an
orthographic camera, local reflections seen on mirror sur-
faces can originate from only four of the eight possible GLC
cameras – pushbroom [8], cross-slit [22], pinhole, or ortho-
graphic cameras. The imaging properties of these multi-
perspective GLCs explain the distortions seen in a reflected
image. We show how these distortions relate to their local
GLC type, and how the GLC type dictates reflection prop-
erties. Furthermore, we show the caustic surface relates to
the geometric features of cross-slit cameras. In general, the
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Figure 2. General Linear Camera Models. (a) A GLC Model collects radiance along all possible affine combination of three rays.
The rays are parameterized by their intersections with two parallel planes. There are precisely eight GLCs, shown in (b) to (i). (b)
In a pinhole camera, all rays pass through a single point. (c) In an orthographic camera, all rays are parallel. (d) In a pushbroom, all
rays lie on a set of parallel planes and pass through a line. (e) In a cross slit camera, all rays pass through two non-coplanar lines.
(f) In a pencil camera, all coplanar rays originate from a point on a line and lie on a specific plane through the line. (g) In a twisted
orthographic camera, all rays lie on parallel twisted planes and no rays intersect. (h) In an bilinear camera, no two rays are coplanar
and no two rays intersect. (i) In an EPI camera, all rays lie on a 2D plane.

two slits rule the caustic surface and determine the orienta-
tion of the distortions as well as the aspect ratio seen in the
reflected image.

Our method works for either parametric or mesh sur-
faces. We show how to locally model reflected rays as
GLCs in both cases. Our method works robustly with coarse
mesh surfaces and accurately predicates reflection distor-
tions. Finally, we show how to use our framework to assist
mirror design and to improve catadioptric imaging systems.

Before proceeding, we explain our notation. Super-
scripts, such as px, py , and pz represent the x and y and
z coordinate of a point or vector. Subscripts, such as fx and
fy represents the first-order partial derivatives of f with re-
spect to x and y. And similarly, fxx refers to the second-
order partial derivative of f with respect to x.

2. Previous Work

The classic pinhole camera model collects rays passing
through a single point. Because of its simplicity, this single
viewpoint camera model is commonly used to analyze re-
flections. Catadioptric imaging systems place a virtual pin-
hole camera at the focus of a hyperbolic or parabolic surface
to synthesize a pinhole camera with a wider field of view
[12, 1]. This setup requires accurate alignment of the view-
ing camera [9, 17]. When the camera moves off the focus,
the caustic surface of the rays quickly evolves into com-
plicated shapes with discontinuities such as cusps [17, 18].
Closed-form solutions of caustics are restricted to mirrors
with simple shapes [17, 15]. The caustic surface models ev-
ery ray as originating from a single, but spatially varying,

pinhole, and it does not provide much insight into the group
behavior of neighboring rays, and hence, cannot be used for
interpreting the imaging properties at local regions of the
reflected image.

Alternative camera representations known as multiper-
spective cameras, capture rays from spatially varying view-
points. Multiperspective cameras include pushbroom cam-
eras [8], which collect rays along parallel planes from points
swept along a linear trajectory, and Cross-slit cameras,
which collect all rays passing through two lines. Zomet et
al [22] did an extensive analysis and modelling of Cross-slit
(XSlit) multiperspective cameras. Swaminathan and Nayar
[16] also analyzed the distortion of multiperspective images
with known scene geometry.

2.1. General Linear Cameras

Yu and McMillan [20] proposed a general linear cam-
era (GLC) model that unifies traditional perspective, ortho-
graphic, and multiperspective cameras models. In the GLC
framework every ray is parameterized by its intersections
with the two parallel planes, where [s, t] is the intersec-
tion with the first and [u, v] the second, as shown in Fig-
ure 2a. This parametrization is often called a two-plane
parametrization (2PP) [11, 7]. Except for rays parallel to
the two planes, 2PP uniquely represents each ray by map-
ping it to a point in a 4D ray space.

A GLC is defined as the affine combination of three rays:

GLC = {r : r = α · [s1, t1, u1, v1] + β · [s2, t2, u2, v2]
+(1 − α − β) · [s3, t3, u3, v3],∀α, β}
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Many well-known multiperspective cameras, such as push-
broom, cross-slit, linear oblique cameras are GLCs. Fur-
thermore, [20] provides a characteristic equation to deter-
mine the type of the multiperspective camera for any GLC
specification:

∣
∣
∣
∣
∣
∣

λ · s1 + (1 − λ) · u1 λ · t1 + (1 − λ) · v1 1
λ · s2 + (1 − λ) · u2 λ · t2 + (1 − λ) · v2 1
λ · s3 + (1 − λ) · u3 λ · t3 + (1 − λ) · v3 1

∣
∣
∣
∣
∣
∣

= 0

(1)
The number of solutions to this quadratic equation in λ

determines how many singularities (lines or points) that all
rays in the GLC can pass through. A total of eight GLC
types describe all 2D linear manifolds in the ray space, and
their imaging geometries are shown in Figure 2.

We simplify the analysis of [20] by substituting σ =
s − u and τ = t − v. In this paper, we use this [σ, τ, u, v]
parametrization to represent rays. We also assume the de-
fault uv plane is at z = 0 and st plane at z = 1. With this
new parametrization, the characteristic equation (1) simpli-
fies to

∣
∣
∣
∣
∣
∣

u1 + λ · σ1 v1 + λ · τ1 1
u2 + λ · σ2 v2 + λ · τ2 1
u3 + λ · σ3 v3 + λ · τ3 1

∣
∣
∣
∣
∣
∣

= 0 (2)

resulting in a quadratic equation Aλ2 +Bλ+C = 0 where

A =

∣
∣
∣
∣
∣
∣

σ1 τ1 1
σ2 τ2 1
σ3 τ3 1

∣
∣
∣
∣
∣
∣

, C =

∣
∣
∣
∣
∣
∣

u1 v1 1
u2 v2 1
u3 v3 1

∣
∣
∣
∣
∣
∣

B =

∣
∣
∣
∣
∣
∣

σ1 v1 1
σ2 v2 1
σ3 v3 1

∣
∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
∣

τ1 u1 1
τ2 u2 1
τ3 u3 1

∣
∣
∣
∣
∣
∣

(3)

Given any GLC, one can determine its type examining its A
coefficient and discriminant ∆ = B2 − 4AC of its charac-
teristic equation.

3. Reflection Ray Manifold

Reflected images can be analyzed using the GLC frame-
work. Given a viewing camera and a mirror surface, we can
map each reflected ray into [σ, τ, u, v] ray space. Assume
the mirror surface is of form z(x, y). We can compute ev-
ery reflected ray as follows:

�r =�i − 2(n̂ ·�i)n̂ (4)

where�i is the incident ray and n̂ is a unit normal that can be
computed by normalizing [−zx,−zy, 1]. Intersecting the
ray with the st and uv plane as shown in Figure 3, the
[σ, τ, u, v] coordinate of the ray can be computed as:

[σ, τ, u, v] = [
rx

rz
,
ry

rz
, x − z · rx

rz
, y − z · ry

rz
] (5)

Incident Ray

Normal

(s, t
)

(u, v)

Camera

st 
 plane

uv plane

Image
Plane

(x, y)

(σ, τ, u, v)

Figure 3. At each point on the surface, the reflected ray
is mapped into the ray space by intersecting with the two
parametrization planes.

All variables r, z, σ, τ , u, and v are functions in x and
y, hence, the set of reflection rays from the mirror surface
form a ray-space parametric manifold in x and y

Σ(x, y) = [σ(x, y), τ(x, y), u(x, y), v(x, y)] (6)

At every (x, y), we can compute the local tangent plane in
4D. The tangent plane describes the local behavior of the
reflections. Recall that all planes in the ray space are char-
acterized by one of the eight types of GLCs, thus, the local
tangent plane reveals the unique multiperspective properties
around every reflection ray.

At every point on the reflected image manifold
[σ, τ, u, v], a tangent plane can be computed with two span-
ning vectors �d1 and �d2:

�d1 = [σx, τx, ux, vx], �d2 = [σy, τy, uy, vy] (7)

Its characteristic equation can be computed by choos-
ing three points on the tangent plane, which are Σ(x, y),
Σ(x, y) + �d1, and Σ(x, y) + �d2 using (2) as:
∣
∣
∣
∣
∣
∣

u + λσ v + λτ 1
(u + ux) + λ(σ + σx) (v + vx) + λ(τ + τx) 1
(u + uy) + λ(σ + σy) (v + vy) + λ(τ + τy) 1

∣
∣
∣
∣
∣
∣

= 0

(8)
yielding to the quadratic equation Aλ2+Bλ+C = 0 where

A = σxτy − σyτx

B = σxvy − σyvx − τxuy + τyux

C = uxvy − uyvx (9)

The discriminant, ∆, can be computed as

∆ = (τyux − τxuy + σxvy − σyvx)2

− 4(σxτy − σyτx)(uxvy − uyvx) (10)

The edge-parallel condition [20], used to distinguish pin-
holes from pencils, and twisted orthographic from ortho-
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Table 1. Characterize General Linear Cameras by Characteristic Equation

Characteristic Equation 2 Solution 1 Solution 0 Solution ∞ Solution

A �= 0 XSlit Pencil/Pinhole† Bilinear Ø
A = 0 Ø Pushbroom Twisted/Ortho.† EPI

†: A GLC satisfying edge-parallel condition is pinhole(A �= 0) or orthographic (A = 0).

graphic cameras, is given as

σxvx − τxux = 0, σyvy − τyuy = 0 (11)

(σx − σy)(vx − vy) − (τx − τy)(ux − uy) = 0

4. Differential Invariant Property

The GLC camera type is determined by, A, ∆, and
the edge-parallel equation under the default parametriza-
tion planes, as shown in Table 1. Next we address what
happens when we choose a different set of parametrization
planes. Apparently, the same rays will have different ray
coordinates under the new parametrization and the reflec-
tion ray manifold will be different from the original one.
The local tangent plane at the same ray will also be different
under the new parametrization. An intrinsic reflection prop-
erty would reveal that the behavior of rays is independent of
their parametrization, i.e., local reflections around the same
ray should correspond to the same multiperspective camera
model under different parametrization planes. We show the
GLC analysis satisfies this invariant property. Specifically,
we show that the signs and zeros of the characteristic equa-
tion’s A and ∆ terms, as well as the edge-parallel condition,
are invariant to the parametrization.

Given a set of rays that map to a 2D manifold under the
default parametrization, we first compute the transforma-
tion from the old manifold to the new one. Assume the new
parametrization planes are specified by two points ṗ and q̇
on each of the planes, and two spanning directions �d1, �d2 of
the plane. For every ray [σ, τ, u, v] on the old manifold, we
compute intersections of the ray with the two new planes
[s′, t′] and [u′, v′] by solving the equations:

[u, v, 0] + λ1[σ, τ, 1] = ṗ + �d1s
′ + �d2t

′ (12)

[u, v, 0] + λ2[σ, τ, 1] = q̇ + �d1u
′ + �d2v

′

It was shown in [20] that the characteristic equation of a
GLC does not change when translated in the parametriza-
tion plane. Assuming the two planes are not parallel to the
z axis, we can choose ṗ = [0, 0, pz] and q̇ = [0, 0, qz] to
simplify our analysis. Otherwise, we can choose their inter-
sections with with the x or y axis and similar results hold.
The new [σ′, τ ′, u′, v′] can be computed as:

σ′ = s′ − u′ =
(pz − qz)(dy

2σ − dx
2τ)

γ

τ ′ = t′ − v′ =
(qz − pz)(dy

1σ − dx
1τ)

γ

u′ =
qz(dy

2σ − dx
2τ) + dy

2u − dx
2v + dz

2(σv − τu)
γ

v′ =
qz(dx

1τ − dy
1σ) + dx

1v − dy
1u − dz

1(σv − τu)
γ

where

γ =

∣
∣
∣
∣
∣
∣

dx
1 dy

1 dz
1

dx
2 dy

2 dz
2

σ τ 1

∣
∣
∣
∣
∣
∣

(13)

The new [σ′, τ ′, u′, v′] parametrization is bilinear ratio-
nal function of σ, τ, u, v. The transformation has a singu-
larity where γ is zero. This happens when the reflected ray
is parallel to the new parametrization plane.

The spanning vectors of a tangent plane under the
new parametrization can be computed by taking the par-
tial derivations of [σ′, τ ′, u′, v′] as [σ′

x, τ ′
x, u′

x, v′
x] and

[σ′
y, τ ′

y, u′
y, v′

y] using the chain rule. The new characteris-
tic equation can be computed using Equation (8).

As a result, the relationship between the default charac-
teristic coefficients A and ∆ as in (9) and (10) and the new
ones A′ and ∆′ satisfy:

A′ =
(dx

1dy
2 − dx

2dy
1)

2(pz − qz)2A
γ3

(14)

∆′ =
(dx

1dy
2 − dx

2dy
1)

2(pz − qz)2∆
γ4

The edge-parallel equations can be computed as:

σ′
xv′

x − τ ′
xu′

x = µ(σxvx − τxux)
σ′

yv′
y − τ ′

yu′
y = µ(σyvy − τyuy)

(σ′
x − σ′

y)(v′
x − v′

y) − (τ ′
x − τ ′

y)(u′
x − u′

y)
= µ((σx − σy)(vx − vy) − (τx − τy)(ux − uy))

where

µ =
(dx

1dy
2 − dx

2dy
1)(p

z − qz)
γ2

(15)

Since the two planes intersect the z axis at two different
points ṗ and q̇, pz − qz �= 0. The two spanning vec-
tors on the parametrization plane have to be different, so
dx
1dy

2 − dx
2dy

1 �= 0. Thus, A′ = 0 if and only if A = 0.
Similarly, the sign of ∆′ is the same as ∆, and the new edge
parallel condition is satisfied if and only if the original one
is satisfied.
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Figure 4. (a) If viewed from an orthographic camera, the
parametrization plane is perpendicular to the incident direc-
tion. (b) If viewed from a pinhole camera, the parametriza-
tion plane at each point on the surface is parallel to its tan-
gent plane.

5. Multiperspective Reflection Model

The differential invariant property provides the freedom
to reparameterize any tangent plane to analyze the local
GLC-type-specific behavior on the reflection manifold. In
this section, we analyze reflections off of arbitrary mirror
surfaces when viewed from orthographic and pinhole cam-
eras.

5.1. Orthographic Viewing Camera

Orthographic cameras collect rays with a common direc-
tion. We choose the two parametrization planes perpendic-
ular to the viewing directions so that all incident rays have
direction (0, 0, 1), as is shown in Figure 4. Assume the mir-
ror surface is z(x, y) with respect to the uv plane, at every
point on the mirror, the [σ, τ, u, v] coordinate of the reflec-
tion ray can be computed using equation (4) as:

[σ, τ, u, v] = [
2zx

α
,
2zy

α
, x − 2zxz

α
, y − 2zyz

α
] (16)

where
α = z2

x + z2
y − 1 (17)

Notice, the denominator α is zero if and only if the reflected
ray is parallel to the parametrization planes. If it happens,
we can choose a different set of parametrization planes.

The resulting characteristic coefficients and edge-
parallel equations are:

A = −K
4β3

α3
, B = −2zA − 2β

α2
(zxx + zyy)

∆ =
4β2

α4
((zxx − zyy)2 + 4z4

xy)

σxvx − τxux =
2β

α2
zxy

σyvy − τyuy = −2β

α2
zxy

(σx − σy)(vx − vy) − (τx − τy)(ux − uy)

=
2β

α2
(zxx − zyy) (18)

where

β = z2
x + z2

y + 1

K =
zxxzyy − z2

xy

(z2
x + z2

y + 1)2
(19)

According to Table 1, if the local tangent plane has A = 0,
the corresponding GLC is either a pushbroom camera when
B �= 0, or an orthographic/twisted orthographic cameras
when B = 0. From equation (18), A = 0 if and only if
K = 0. K represents the Gaussian curvature at the point.
K is zero when the ray is reflected at parabolic points and
planar points.

When A = 0 and B = 0, the local reflected GLC corre-
sponds to an orthographic camera. We must have

zxx = zxy = zyy = 0 (20)

This occurs when the local surface is flat, i.e., it is locally a
planar mirror. It is also easy to verify that the edge-parallel
equations are zero when zxx = zxy = zyy = 0. Thus,
local reflected rays cannot be a twisted orthographic cam-
era. In the generic case when A = 0, the reflected rays
at the parabolic points locally behave as a pushbroom cam-
era. Koenderink [10] shows that specular reflections exhibit
“duplications” at the parabolic points. This “duplication” is
in fact a common feature for pushbroom cameras.

Now let us consider ∆ and A �= 0. From equation (18),
∆ ≥ 0, i.e., the reflection tangent-plane GLCs cannot be
of the bilinear GLC-type. Therefore, local reflected rays
either behave like a cross-slit camera when ∆ > 0 or a
pinhole/pencil when ∆ = 0. By equation (18), ∆ = 0
occurs only when

zxy = 0 and zxx = zyy (21)

It is easy to verify that the edge-parallel equations in (18)
are zero whenever zxy = 0 and zxx = zyy . Therefore, all
solutions with ∆ = 0 can only corresponds to pinhole GLC
camera types. Solving equation (21) gives a paraboloid. A
similar result has been shown in [1].

In general, local reflection images observed via an or-
thographic camera can only be cross-slit, pushbroom, pin-
hole, or orthographic images. No bilinear (oblique), twisted
orthographic, or pencil images can be ever observed as
a single-surface reflection image seen by an orthographic
camera.

5.2 Pinhole Camera as View Camera

The analysis of a reflected image seen by a pinhole cam-
era is more complicated. Assume that camera’s center-of-
projection is at the origin, the GLC differential invariant
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Figure 5. The caustic surface and its ruling of typical mirrors. The viewpoint is shown as a blue sphere. (a) A hyperbolic mirror.
(c) A parabolic mirror. (e) A cylindrical mirror. (b), (d), and (f) show the ruling of the caustics of (a), (c), (e), respectively.

property allows us to choose a different parametrization for
every reflected ray. We choose the parametrization planes
parallel to the tangent plane of the 3D reflection surface at
each reflected ray, and uv plane to pass through the origin,
as shown in Figure 4. This transformation is analogous to
the Legendre transformation of the curve equation [2, 13].
The mirror surface is also modelled as a Monge function
z(x, y) with respect to the parametrization planes. Under
this choice of parametrization, we must have zx = zy = 0
at the reflected ray we analyze.

The direction (σ, τ) of the reflection ray can be com-
puted using (4) as

σ =
x(z2

x − z2
y − 1) + 2zxzyy − 2zxz

−2zxx − 2zyy − zα
(22)

τ =
2zxzyx − y(z2

x − z2
y + 1) − 2zyz

−2zxx − 2zyy − zα

In [21], we show that ∆ ≥ 0 and ∆ = 0 if and only if

zxx(x2 + z2) − zyy(y2 + z2) = 0 (23)

zxy =
−xy(zxxx2 + zyyy2 + z2(zxx + zyy))

2(x2 + z2)(y2 + z2)

A = 0 and B = 0 if and only if

zxx = − y2 + z2

2z(x2 + y2 + z2)
, zxy =

xy

2z(x2 + y2 + z2)

zyy = − x2 + z2

2z(x2 + y2 + z2)
(24)

In [21], we show that if ∆ = 0, the edge-parallel equa-
tions are zero, i.e., it is always a pinhole camera. Similarly,
if A = 0 and B = 0, the edge parallel equations are also
satisfied, i.e., there is no twisted orthographic cameras. Un-
like the orthographic case when we choose a fixed 2PP, here
we change the parametrization plane with the normal of the
mirror surface. Thus, recovering the surface requires in-
verse Legendre transformation and is outside the scope of
this paper.

In general, all reflections observed by a pinhole or an
orthographic camera can be characterized as four types of

GLCs: cross-slit, pushbroom, pinhole, or orthographic. No
pencil, twisted orthographic, or bilinear cameras are ob-
served. This is because these three cameras contain pure
twisting rays [20] which cannot occur due to the fundamen-
tal geometric properties of the surface. In the future, we
intend to further investigate the underlying theory.

6. Caustic Surfaces and GLCs

To show the relationship of the multiperspective GLC
model to the caustic surface, we first compute the caustic
surface using the Jacobian method [5, 17]. Consider each
reflected ray is parameterized as (σ, τ, u, v) with source
S(u, v, 0) and direction V (σ, τ, 1). The Jacobian matrix
det[J(S + λV )] can be computed as:

∣
∣
∣
∣
∣
∣

ux + λσx vx + λτx σ
uy + λσy vy + λτy τ

0 0 1

∣
∣
∣
∣
∣
∣

= 0 (25)

which corresponds to the same quadratic characteristic
equation of the local GLC model as equation (8). There-
fore, the unions of the solutions to the characteristic equa-
tion for every local GLC form the caustic surface. And be-
cause the roots of the characteristic equation often corre-
spond to cross-slit cameras and have two solutions, caustics
surfaces are formed in pairs. A similar result is shown in
[18]. For rotationally symmetric mirrors viewed along its
rotation axis, the rotation axis is one of the caustics.

The characteristic equation not only gives two caustic
points, but also two slits, i.e., points with directions. In the
conventional method, the caustic surface is regarded as the
loci of the virtual viewpoint for every single ray. Our ap-
proach models the group behavior of nearby rays as a local
GLC where rays simultaneously pass through the two slits,
one on each of the caustic surfaces. Therefore, the obtained
slits not only provide the caustic surface but also reveal a
ruling upon it. In Figure 5, we illustrate three commonly
used mirrors. The mirror surface is drawn in cyan, the caus-
tic surface in blue and viewpoint as blue circle. Notice, the
rotation axis is the second caustic surface for both hyper-
bolic and spherical mirrors. The slits are shown on the cyan
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caustic surface as blue line segments. These rulings deter-
mine which rays lie on the local tangent GLC and the local
distortions seen in the reflection, as we show in Section 7.

In addition, the spatial separation of the corresponding
slits are also important. If the two slits intersect, the local
GLC corresponds to a pinhole camera. Notice, the center of
the hyperbolic and parabolic mirrors satisfy this condition,
therefore the center of the image looks least distorted. In
the cylindrical mirror, however, the two slits at the cusp do
not intersect, which results in the apparent bending seen at
the center of the image in Figure 6c.

The ruling of the slits on the caustic surface is closely
related to the fact that the 3D caustic surface exists only if
the reflected rays form a developable surface which is not a
generalized cylinder or a cone [4, 13]. We intend to further
investigate their relationship in the future.

7. Characteristic GLC Distortions

Our analysis has shown that reflections viewed from a
pinhole or an orthographic camera off any mirror surface
can only locally behave as one of the four GLC cameras.
The reflection distortions seen in the reflected image can be
completely characterized by analyzing the imaging property
of these camera types.

7.1. Cross-slit Distortion

The image distortion of a cross-slit camera depends on
the spatial relationship between the two slits and the im-
age plane [22]. Specifically, if one slit is much closer to
the image plane than the other, the orientation of the image
will be dominated by the closer slit. In Figure 6, we com-
pare the ray-traced reflection images seen from hyperbolic,
parabolic and cylindrical mirrors. The ruling of the closer
caustic surface, as shown in Figure 5, determines the orien-
tation in the reflected image (e.g., the slit of the hyperbolic
and parabolic mirrors form concentric circular patterns and
the cylinder mirror exhibits bending vertical patterns, which
can be observed in the reflections seen in Figure 6).

The distance between the two slits determines the as-
pect ratio distortions. Pushbroom, orthographic, and pin-
hole cameras can all be characterized as special cases of
cross-slit cameras [22, 20]. When the two slits intersect,
it transforms into a pinhole camera with small aspect ratio
distortion. When one of the slits goes to infinity, the cross-
slit transforms into a pushbroom camera with large aspect
ratio distortions. In Figure 6, we plot the slit-distance image
of the three mirrors. The hyperbolic mirror has an overall
small distance map (6d), thus, its image (6a) has an uniform
aspect ratio distortion. The spherical mirror has small dis-
tance map near the center, that grows larger near the bound-
ary (6e). Thus, we observe more severe distortions near the

(c)

(f )

(b)

(d) (e)

(a)

Figure 6. Aspect ratio distortion. Top row: reflected im-
ages of a hyperbolic, spherical, and cylinder mirror. Bottom
row: estimated ratio distortion by the slits distance of the
respective mirrors.

boundary of the mirror than at the center (6b). The cylin-
drical mirror has an overall large distance map (6f), and the
whole image (6c) is stretched vertically since the vertical
slit is closer to the image plane.

With one slit at infinity, the local GLC corresponds to a
pushbroom, and things faraway will map to duplicate im-
ages, as shown in Figure 1c and 7c. Duplications often hap-
pen at the parabolic points when viewed from faraway, as
we have shown in Section 4 for the orthographic camera
case. A similar analysis is shown by Koenderink [10] for
specular reflections.

7.2. Predicting Distortions on Mesh Surfaces

Reflections seen on a mesh surface are difficult to an-
alyze using conventional methods. We can use a similar
technique to that used to analyze a parametric surface. For
each triangle of the mesh, we compute the three reflected
rays from the vertexes and model it as a GLC. To minimize
errors, we choose the average reflected direction of the rays
as the normal direction of the parametrization plane. By
computing the characteristic equation and two slits of the
GLC for each triangle, we can measure their distances and
estimate their aspect ratio and duplication distortions.

In Figure 7, we give an example of the pear-shaped mir-
ror modelled by the following function

z = exp(−x2 + y2

0.15
) − (x2 + y2) (26)

We discretize the surface as a triangle mesh, shown in Fig-
ure 7a. At each triangle, we compute the local GLC and
show the distance map between the two slits in Figure 7b.
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(c)

(a)

(b)

Figure 7. (a) A pear-shaped mesh. (b) Estimated distor-
tions. Bright colors correspond to large distortions and dark
colors correspond to small distortions. (c) A ray-traced im-
age of the parametric surface.

The brightest region predicts where the pushbroom distor-
tions occur. Figure 7(c) shows a ray traced image of the
parametric surface. Our method predicts the low and high
distortions regions, as shown in the yellow, red, and blue
rectangle. In fact, the two bright bends estimated from the
mesh surface correspond to the parabolic curve (red-dashed
curve) of the surface. Duplicated reflections can be seen on
either side of these parabolic curves, shown in the red and
blue outlined regions.

8. Conclusions

We have presented a novel method for analyzing reflec-
tions on arbitrary surfaces using multiperspective cameras.
We provide an analytical framework to locally model reflec-
tions as specific multiperspective cameras around every ray
based on the theory of general linear cameras. Our frame-
work better characterizes image distortions seen on irregu-
lar mirror surfaces as well as the conventional catadioptric
mirrors. The local multiperspective model also reveals the
relationship between the two caustic surfaces and reveals an
important surface ruling of the caustics. Finally, our anal-
ysis provides useful information to design special featured
mirrors or to avoid undesirable imagery properties.
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