
Supplementary Material

Reformulation of Traditional Poisson Surface/Image Completion Anal-
ogous to Our Angular Surface Completion. Our spherical coordinate based
surface reconstruction method is based on formulating an over-determined lin-
ear system. To show that our formulation is valid, we first prove that traditional
spatial-domain Poisson surface integration can be formulated in the same way.

Consider a surface represented as a height field u = f(x, y). Given its gradient
field (p, q) = (ux, uy), traditional Poisson surface completion aims to find the
optimal surface v = f ∗(x, y) that satisfies the Poisson Equation ∆f ∗ = px + qy,
where (px, qy) = (uxx, uyy). To solve this equation, they then discretize the spatial
domain into a m × n as (xi, yj), i = 1, ...,m; j = 1, ..., n and then find height at
each grid vi,j . The ∆ operator can be replaced with the Laplacian and px and
py can be computed using first order differential. Therefore, traditional approach
formulates a large linear system APΩ = bP, where:

AP =


... coli−1,j ... coli,j−1 coli,j coli,j+1 ... coli+1,j ...
. . . ...

. . . . . . . . . ...
. . . ... ...

0 1 0 1 −4 1 0 1 0
... ...

. . . ...
. . . . . . . . . ...

. . .



Ω =



...
vi−1,j

...
vi,j−1

vi,j
vi,j+1

...
vi+1,j

...


bP =

 ...
(pi,j − pi−1,j) + (qi,j − qi,j−1)

...
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We show that the problem can be (much easily) reformulated as to solve an
over-determined linear system. For every grid point, we have{

vi+1,j − vi,j = pi,j

vi,j+1 − vi,j = qi,j
(1)

We can then stack all these equations to obtain a linear system ÃPΩ = b̃P,
where

ÃP =



... coli−1,j ... coli,j−1 coli,j coli,j+1 ... coli+1,j ...
... ... ... ... ... ... ... ... ... ...
rowl ... −1 0 1 0 ... 0 ...
rowk ... 0 ... −1 1 0 ... 0 ...
rows ... 0 ... 0 −1 1 ... 0 ...
rowt ... 0 ... 0 −1 0 ... 1 ...
... ... ... ... ... ... ... ... ... ...



Ω =



...
vi−1,j

...
vi,j−1

vi,j
vi,j+1

...
vi+1,j

...


b̃P =



...
...

rowl pi−1,j

rowk qi,j−1

rows pi,j
rowt qi,j
...

...



In ÃP, every two rows correspond to Eq. (1). Since a point only has relation
with its four neighbors, every column only has four non-zero elements (1,1,-1,-1).
However, ÃP is not a square matrix as every grid maps to two equations, thus
forming an over-determined linear system. To solve this system, we can simply
apply SVD as Ã⊤

PÃPΩ = Ã⊤
Pb̃P.

We prove that the linear system obtained by SVD based approach is identical
to the Poisson solution, i.e., Ã⊤

PÃP = AP and Ã⊤
Pb̃P = bP.
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Ã⊤
P =



· · · coll colk cols colt · · ·
... · · · · · · · · · · · · · · · · · ·
rowi−1,j · · · −1 0 0 0 · · ·
... · · · · · · · · · · · · · · · · · ·
rowi,j−1 · · · 0 −1 0 0 · · ·
rowi,j · · · 1 1 −1 −1 · · ·
rowi,j+1 · · · 0 0 1 0 · · ·
... · · · · · · · · · · · · · · · · · ·
rowi+1,j · · · 0 0 0 1 · · ·
... · · · · · · · · · · · · · · · · · ·


Without loss of generality, let us randomly pick a row, e.g., rowi,j in Ã⊤

P for
computing Ã⊤

PÃP. Notice that there are only four non-zero elements (1,1,-1,-1) in
rowi,j at coll, colk, cols, colt. As for ÃP, only coli−1,j, coli,j−1, coli,j, coli,j+1, coli+1,j

have non-zero elements on rowl, rowk, rows, rowt. We therefore only need to
consider these five column in ÃP when multiplying it with rowi,j in ÃP to pro-
duce non-zero elements in Ã⊤

PÃP = AP. We therefore have:

Ã⊤
PÃP =


... coli−1,j ... coli,j−1 coli,j coli,j+1 ... coli+1,j ...

... . . . ...
. . . . . . . . . ...

. . . ... ...
rowi,j 0 −1 0 −1 4 −1 0 −1 0
... ... ...

. . . ...
. . . . . . . . . ...

. . .


For Ã⊤

Pb̃P, we also take rowi,j in ÃP to multiply with b̃P and we have:

Ã⊤
Pb̃P =


...

...
rowi,j (pi−1,j − pi,j) + (qi,j−1 − qi,j)
...

...


This reveals that the linear system obtained by the SVD solution is identical to the
one from the Poisson equation.

The proof illustrates that a simple solution for solving the shape from gradien-
t/normal field is to formulate an over-determined linear system. In the same vein,
we formulate our spherical coordinate based shape from normal as a linear system
and solve for the optimal radius at each angular using SVD.
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