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Abstract

We present a novel and simple computational imaging
solution to robustly and accurately recover 3D dynamic flu-
id surfaces. Traditional specular surface reconstruction
schemes place special patterns (checkerboard or color pat-
terns) beneath the fluid surface to establish point-pixel cor-
respondences. However, point-pixel correspondences alone
are insufficient to recover surface normal or height and they
rely on additional constraints to resolve the ambiguity. In
this paper, we exploit using Bokode - a computational op-
tical device that emulates a pinhole projector - for cap-
turing ray-ray correspondences which can then be used to
directly recover the surface normals. We further develop
a robust feature matching algorithm based on the Active-
Appearance Model to robustly establishing ray-ray corre-
spondences. Our solution results in an angularly sampled
normal field and we derive a new angular-domain surface
integration scheme to recover the surface from the normal
fields. Specifically, we reformulate the problem as an over-
constrained linear system under spherical coordinate and
solve it using Singular Value Decomposition. Experiments
results on real and synthetic surfaces demonstrate that our
approach is robust and accurate, and is easier to implement
than state-of-the-art multi-camera based approaches.

1. Introduction
The problem of modeling and reconstructing time-

varying specular surfaces such as dynamic 3D fluid wave-
front has attracted much attention in recent years [16, 6, 23].
Successful solutions can benefit numerous applications in
oceanology[10], fluid mechanism [2] and computer graph-
ics [7] as well as lead to new insights towards shape recon-
struction algorithms. The problem, however, is inherent-
ly difficult for a number of reasons. First specular surface
does not have its own image. Instead, it borrows appearance
from nearby diffuse objects. Second, determining the light
path for shape reconstruction is non-trivial since refraction-
s or reflections non-linearly alter the light paths. Finally,
dynamic specular surfaces often exhibit spatially and tem-
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Figure 1. A Bokode projects a pattern toward the fluid surface and
by matching the pattern with pixels, we obtain ray-ray correspon-
dences for reconstructing angularly sampled surface normals.

porally varying distortions that are hard to correct.
Existing solutions on specular surface reconstruction can

be essentially viewed as a special class of multi-view re-
construction algorithms. Often a known pattern such as a
checkerboard is positioned near the surface and conceptu-
ally one can analyze the corresponding feature points in
the observed cameras views and then apply stereo [16] or
volumetric reconstruction [6] techniques for recovering the
surface. In reality, point-pixel correspondences are under-
constrained even for single reflection or refraction: to de-
termine the surface normal, it is necessary to know both the
incident and the exit ray directions; the pixel location pro-
vides the exit direction but the 3D point does not provide
the incident direction, unless the surface height is known in
prior. To resolve this ambiguity, additional constraints such
as the planarity assumption [9, 17], surface smoothness pri-
or [20] and surface integrability constraints [21] have been
proposed.

In this paper, we present a novel and simple solution for
resolving the point-pixel ambiguity. Our solution leverages
recent advances in computational photography. Specifical-
ly, we place a special optical device called the Bokode [15]
beneath the surface where the Bokode behaves as a pinhole
projector that emits rays from a common 3D point. We then
mount a high resolution camera on top of the fluid surface to
observe the distorted projection pattern. By associating the
projected and the observed patterns, we instantly obtain ray-
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ray correspondences that resolve the previous point-pixel
ambiguity as shown in Fig.1.

In theory, the ray-ray intersections should directly corre-
spond to the wavefront surface whereas the two ray direc-
tions would provide the surface normal. In reality, the sur-
face obtained from ray-ray intersections can be highly noisy
due to calibration and numerical errors. We therefore only
use the ray directions to recover the surface normal. The
resulting normal field, however, is sampled angularly. We
therefore derive a new angular-domain surface integration
scheme. We first show that traditional spatial-domain sur-
face integration problem, i.e., Poisson surface completion,
can be reformulated as to solve an over-determined linear
system. Likewise, we formulate the angular-domain sur-
face reconstruction as a similar linear system under spher-
ical coordinate and solve it using Singular Value Decom-
position. We experiment our new fluid surface reconstruc-
tion approach on both synthetic and real data. Experimental
results show that our technique is robust and accurate and
is easier to implement than state-of-the-art multi-camera
based solutions.

2. Related Work
Existing specular (reflective and refractive) surface

reconstruction algorithms have generally followed the
correspondence-based approaches and we classify them in-
to two categories based on different types of correspon-
dences.

Point-Pixel Correspondences. Most existing solution-
s for specular surface reconstruction build upon point-pixel
correspondences where a special planar pattern such as a
checkerboard is placed near the surface and a single or
multiple cameras are used to acquire the distorted pattern
for shape reconstruction. Murase [17] analyzed the optical
flow between the distortion image and the original one and
used the center of trajectory to establish point-point corre-
spondences. Blake [3] examined the variation of reflected
highlight by changing the viewing position to recover the
surface geometry and reflective properties Bonfort and S-
turm [4] used images captured by multiple calibrated cam-
eras to reconstruct specular surface with voxels. Recently
Sankaranarayanan et al. [19] used standard SIFT algorithm
to match point-pixel correspondences resulting from specu-
lar flow and further used quadrics approximation to recov-
er mirror-type surfaces from sparse samples. A common
issue in point-pixel based solutions is ambiguity: a pixel
corresponds to a ray from the camera while the specular
surface can lie at any position along the ray. Tremendous
efforts have been focused on adding additional constraints
[9, 17, 20, 21] for resolving this ambiguity.

The problem of acquiring dynamic specular surfaces is
relatively new to computer vision. Morris and Kutulakos
[16] tracked the corners of the checkerboard pattern over

time to establish point-pixel correspondences and then im-
posed the refractive disparity constraint to iteratively solve
for surface height and surface normal. However, robust-
ly tracking feature points on dynamic surfaces is challeng-
ing as the observed image can exhibit sever distortions and
motion blurs. In a similar fashion, Ding et al. [6] recent-
ly constructed a camera array system to obtain multi-view
point-pixel correspondences. When one of the cameras los-
es track, the rest of the cameras can still recover the sur-
face and the result can be used to warp the lost-track feature
points back to the camera.

Ray-Ray Correspondences. A different class of solu-
tions that can directly resolve the point-pixel ambiguity is
to use ray-ray correspondences. The earlier work of Sander-
son et al. [18] controlled the illumination direction and cou-
pled it with the observed specular highlights to form ray-
ray correspondences. Kutulakos and Steger [12] recovered
complex-shaped static specular objects by computing the
light paths from the specular object to the camera. By s-
tudying indirect projection of 3D points, they formulated
the problem of recovering the light path as a general trian-
gulation problem. However their framework by far can only
handle static objects as it requires acquiring the object twice
whereas we present a simpler solution to directly handle dy-
namic 3D fluid surfaces.

Closely to our solution, Wetzstein et al. [23] recently to
replace the conventional checkerboard pattern with a light
field probe which encodes 4D spatial and angular informa-
tion. In their setup, they used color gradients to code the
2D incident ray direction and 1D (vertical) feature point
position. The second (horizontal) dimension of the fea-
ture point can be recovered through geometric constraints.
Their approach can achieve highly accurate ray-ray corre-
spondences. Our solution differs from theirs in a number of
ways. First, we use a much simpler and affordable device,
a Bokode that can be easily constructed from a webcam,
in place of the light field probes. Our ray-ray correspon-
dences, however, are less accurate than the ones obtained
by the light field probe and they cannot be used to direct-
ly recover the surface. We therefore only use the recovered
normal field and develop an angular-domain normal field
integration scheme. Finally, dynamic fluid surfaces often
cause strong chromatic abberations and intensity changes
due to caustics. Therefore, we choose not to use the color-
coded pattern but a special monochromatic pattern and ap-
ply Active Appearance Model (AAM) for correspondence
matching.

3. Bokode-based Acquisition System
Fig.2 shows the algorithm flow our proposed Bokode-

based fluid surface reconstruction framework. We use
Bokode projecting out pattern towards fluid surface and
capture the distorted pattern. By associating the distorted



pattern with the projected one using AAM matching, we
then obtain the incident-exit ray correspondences for com-
puting surface normals. Since the normals are sampled in
angular-domain, we therefore reconstruct the surface with
our new spherical coordinate based surface integration al-
gorithm.
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Figure 2. A block diagram that shows the pipeline of our Bokode
based fluid surface reconstruction framework.

Bokode is an optical device that resembles a pinhole pro-
jector [15]. In essence, a Bokode emits lights originating
from the common 3D point over different angles as shown
in Fig.3(a). When capturing a Bokode using a camera with
a small aperture, the Bokode would appear as a single dot
as the camera only captures a specific angle of rays. In con-
trast, if a Bokode is captured by a camera with a large aper-
ture, the pattern emitted the Bokode can be partially cap-
tured as shown in Fig.3(b). Using this unique feature, Mo-
han et al. [15] proposed to use Bokode as an invisible iden-
tification tag. In the similar vein, we explore using Bokode
as a special active illumination device for fluid surface re-
construction.

To physically implement a Bokode, the simplest ap-
proach is to construct a pinhole type of device that only
allows the lights to pass through the hole. However, sim-
ilar to pinhole cameras constructed as such, this design suf-
fers from blurry images and insufficient lights. In reality,
a Bokode can be approximated using a small lens projec-
tor with the projection pattern positioned at the focal length.
The viewing camera is then position relatively faraway from
the Bokode and focuses at infinity to effectively sample the
angular rays emitted from the Bokode as shown in Fig.3(a).

It is important to note that a commodity projector cannot
be directly used as a Bokode. Although both Bokode and
commodity projectors use back light to illuminate the pro-
jection pattern, the Bokode requires the pattern be placed at
the depth of the focal length whereas the projector places
the pattern much farther away from the lens for magnify-
ing the pattern. Further, the Bokode uses a much smaller
aperture to effectively emulate a pinhole system while the
aperture of a commodity projector is set ultra large to en-
sure the brightness of projection. In our setup, we construct
a lens-based Bokode that contains four layers: lens, pattern,
diffuser and light source. We use the lens of a commodity
web camera as the Bokode lens. The lens has a diameter
of 2mm and a focal length of 8mm. We print a special
monochrome pattern on a transparency at a resolution of
5080 dpi. We further use the diffuser to ensure that lights
emits towards all directions. Finally, to increase the bright-
ness, we use an ultra-bright LED flash light of 400 lumen
as the back light to the Bokode.
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Figure 3. How Bokode is viewed by a camera. (a) Parallel lights
emitting from a point on the Bokode pattern converge to the same
pixel on image plane of a camera focusing at infinity; (b) A typical
Bokode image captured by a camera with wide aperture focusing
at infinity.

Fig.4 shows our Bokode-based fluid surface acquisition
system. We place the Bokode underneath a water tank to
project lights towards the fluid surface. Since the bottom of
water tank is flat and thin, we ignore the refraction effects
and view the Bokode as if it sits directly at the bottom of
the tank. We assume each feature on the projection pattern
corresponds to a thin beam of parallel light rays and the top
(wavefront) fluid surface interacting with each light beam is
nearly flat. Therefore, their corresponding exit rays remain
approximately parallel.

Let Pi(xi, yi) be a point on the projection pattern on the
Bokode , where (xi, yi) are the relative coordinates of Pi

to the lens’ optical center, and fb be the focal length of
the Bokode lens. Pi then maps to a light beam with direc-
tion αi = arctan

√
xi

2 + yi2/fb. We call the ray direction
from the Bokode towards the fluid surface the incident ray
direction.

On the camera side, we use a calibrated camera focusing
at infinity to capture the light rays after being refracted by
the fluid surface. For each pixel P ′

i (xi
′, yi

′) on the captured
image, we can use the camera parameters to obtain its cor-
responding ray direction as βi = arctan

√
xi

′2 + yi′
2/fc

where fc is the focal length of the camera lens. We call βi

the exit ray direction. Notice that once we obtain Pi and
Pi

′ correspondences, we can simply intersect the rays to
obtain the fluid surface position and normal, although in re-
ality only the directions of the rays are useful. In this paper,
we call Pi and Pi

′ correspondences the Incident-Exit-Ray
(IER) correspondences.

To calibrate our system, we first calibrate the camera and
align its optical axis with the Bokode’s main axis. We then
capture a Bokode image without adding any fluid to the
tank. In this case, the exit ray directions captured by the
camera are identical to the incident ray directions. In our
implementation, the Bokode projects a special pattern with
many feature points and the calibration process associates
the feature points with the incident ray directions from the
Bokode. Once the tank is filled with fluid, we then find the
matching feature points (see Sec.4) which would directly
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Figure 4. Each point on the Bokode pattern maps to a beam of
parallel rays. These rays are refracted by fluid surface and gathered
by the viewing camera at a pixel.

provide IER correspondences.

4. Correspondence Matching
The choice of the projection pattern is important for re-

liable correspondence matching and hence surface recon-
struction. Most previous approaches use a checkerboard
pattern and track the feature points (corners). For our
Bokode-based solution, checkerboard pattern is less suit-
able. This is because existing two-view or multi-view based
approaches assume that the cameras can view the complete
checkerboard, which greatly helps tracking the pattern over
time and across views. In our case, the Bokode has a much
wider field of view with 130◦ compared to the viewing cam-
era with merely 20◦. Therefore, the camera can only view
part of the pattern and since checkerboard patterns are high-
ly symmetric, tracking the features consistently is challeng-
ing. Another option is to use the color-based pattern. For
example, Wetzstein et al. [23] red, blue, and green gradient
to encode the 2D directions and 1D vertical positions. The
color-based pattern is suitable for static surface but can cast
challenge to dynamic fluid surfaces due to chromatic abber-
ations and caustics. Chromatic abberations destroys color
calibration results and caustics changes the intensity, mak-
ing it difficult to match colors. Further, the color patterns
are usually of a much lower resolution. The common reso-
lution of color printer is 1440 dpi while our Bokode pattern
is printed at 5080 dpi.

We choose to use an irregular monochrome patterns as
shown in Fig.3(b) and apply Active Appearance Model for
correspondence matching. Our pattern consists of an array
of tiled asymmetric symbols. Each symbol has the size of
80µm and the entire pattern is of dimension 1cm × 1cm.
The symbol has sharp corners and edges to provide effective
feature points. Specifically, we use the corners as the ma-
jor feature points and interpolate along the edges between
every pair of major features to generate secondary feature
points. Further, we place a checkerboard square marker at
the center of the pattern calibrating its position and add a dot
to the top-corner of the square to identify its orientation.

To track the feature points, we apply the Active Ap-
pearance Model (AAM) [5, 14] that was originally devel-

(a)

(b) (c)

Figure 5. Active appearance model for pattern-pixel matching. (a)
Shape model: the shape in blue is the mean shape s0 and the
ones in red are shape variations estimated by PCA; (b) Appear-
ance model: the left shows the mean appearance A0 and the first
two eigen appearance; (c) An example of AAM matched pattern.

oped for pattern recognition. An AAM is composed of t-
wo components: a shape model and an appearance model.
The shape model is described using as a set of N feature
points (x1, y1, x2, y2, ..., xN , yN ) and is represented as a
mean shape s0 with a linear combination pi of variations
on n shape basis {si}:

s(p) = s0 +

n∑
i=1

pisi (1)

The appearance model is defined as the intensity of im-
age patches surrounding the mean shape. Similar to the
shape model, we model the appearance model with a mean
appearance A0 plus a linear combination λi of variations on
m appearance basis {Ai}:

A(p) = A0 +

m∑
i=1

λiAi (2)

Same as classical AAM-based recognition techniques
[5, 14], we obtain the mean shape s0, the mean appearance
A0, the shape variations {pi} and the appearance variations
{λi} by applying the Principal Component Analysis (PCA)
to our training data. Fig.5(a) shows the mean shape and
some shape variations; Fig.5(b) shows the mean appearance
and two appearance bases. To match the shape to a specific
image, the AAM technique finds the optimal shape param-
eters and appearance parameters that minimize the appear-
ance variations:

Ea(x) =
∑
x∈s0

[A0(x) +
m∑
i=1

λiAi(x)− I(W (x;p))]2 (3)

where W (x;p) is the affine warping defined by a shape
model s(p) and the mean shape s0 that maps every pixel
from the model coordinate to the corresponding image co-
ordinate.

We generate our training data by rendering a large set
of distorted patterns using varying fluid surface normals,
height, and orientations. To match a new distorted pattern,
we first segment the captured image to small patches, each
containing a single symbol. We then perform AAM search
on each symbol to robustly handle non-uniform intensity



caused by the caustics. In the first frame of the video se-
quence, we initialize the match by aligning the model and
the capture symbols at their centroid. For the consecutive
frames, the matched shape from the previous frame is used
to initialize the matching process. Since our symbols are
have high contrast to the background, we further generate a
distance map Md based on contour of the shape as addition-
al cost constraint to guide the AAM search:

Ed(x) =
∑
x∈s0

(Md(W (x;p)))2 (4)

Therefore, the total cost function for shape matching hence
becomes E = Ea + wEd, where w is the weighting fac-
tor to the distance map constraint. Fig.5(c) shows an AAM
matched result of captured image.

Once we match the captured symbol with the projected
one, we instantly obtain IER correspondences. Recall that
the incident ray directions din are encoded in the projected
Bokode image and are precomputed in the calibration step
and the exit ray directions dexit can be calculated with the
viewing camera parameters. We assume that the refraction
indices of air and the fluid n1 and n2 are known in prior
respectively and we can solve for the surface normal using
the Snell’s law as:

n = n2din − n1dexit (5)

Since we only sample a relatively sparse set of feature
points on the pattern, we obtain a sparsely and irregular-
ly sampled normal field. We then apply the Radial-Basis
Function (RBF) function to interpolate the normal field.

5. Surface Reconstruction from Angularly
Sampled Normals

Next, we show how to reconstruct the fluid surface from
the angularly sampled normal field recovered from Bokode
discussed in Sec.4. Recall that the key advantage of our ap-
proach is that it directly recovers the normal direction from
the IER correspondences. The resulting normal field, how-
ever, is very different from the classical height-field based
one. To elaborate, if we model the surface as a height field
z(x, y), the scaled normal vector at each point (x, y) is sim-
ply (zx, zy,−1); when given the boundary condition (Neu-
mann or Dirichlet) and the height-field based normal field,
the problem of integrating the normal field to recover the
same can be formulated to find the optimal surface f where:

min
f

∫∫
((fx − zx)

2 + (fy − zy)
2))dxdy (6)

Previous approaches [11, 1] have shown that solving
this optimization problem is equivalent Poisson equation:
∆f = zxx + zyy , where ∆ is the Laplacian operator:
∆ = ∂2/∂x2 + ∂2/∂y2. In the discrete case, one can lin-
earize the Laplacian and the derivative operator and form an
linear system in f and directly solve for f as shown in the
supplementary material.

Our angular normal sampling scheme, in contrast, mea-
sures normals at discrete inclination and azimuth angles.
These angular domain normals cannot be directly mapped
to spatial domain normals, i.e., we cannot perform ray-
surface intersection as the surface is unknown. Further, by
using a wide aperture viewing camera, we can only recov-
er the exit ray direction rather than the ray itself, i.e., we
cannot perform ray-ray intersections [22]. We therefore de-
rive a new angular-domain surface integration scheme. We
parameterize the surface in spherical coordinates as r(θ, ϕ)
where the origin coincides with the Bokode’s pinhole, r is
the radial distance from the origin, and θ and ϕ correspond
to the azimuthal and polar angles respectively. Our sam-
pling essential recovers the normals at discrete samples of
θ and ϕ and our goal is to recover the radius r from the
sampled normal field.

At each surface point r(θ, ϕ), we can compute its gra-
dients under spherical coordinate as (∂r/∂θ, ∂r/∂ϕ). In
reality, we only have sampled normal directions measured
in the Cartesian coordinate. We therefore need to further
convert the gradients in Cartesian coordinate to spherical
coordinate.

Recall that x = r sinϕ cos θ, y = r sinϕ sin θ, and z =
r cosϕ, we have:

∂r

∂θ
= r ·

sinϕ(
∂z

∂x
sin θ −

∂z

∂y
cos θ)

sinϕ(
∂z

∂x
cos θ +

∂z

∂y
sin θ)− cosϕ

,

∂r

∂ϕ
= r ·

sinϕ+ cosϕ(
∂z

∂x
cos θ +

∂z

∂y
sin θ)

cosϕ− sinϕ(
∂z

∂x
cos θ +

∂z

∂y
sin θ)

.

(7)

Eq.(7) illustrates the constraint between radius gradient to
surface normal. Our goal is to find the optimal surface r (in
spherical coordinate) under the constraints.

We first discretize the surface r in discrete (θi, ϕj). We
can then approximate Eq.(7) using finite difference as:{

ri+1,j − rij = rij · Pij

ri,j+1 − rij = rij ·Qij
(8)

where

Pij = ∆θ ·
sinϕj(

∂z

∂x
(i, j) sin θi −

∂z

∂y
(i, j) cos θi)

sinϕj(
∂z

∂x
(i, j) cos θi +

∂z

∂y
(i, j) sin θi)− cosϕj

Qij = ∆ϕ ·
sinϕj + cosϕj(

∂z

∂x
(i, j) cos θi +

∂z

∂y
(i, j) sin θi)

cosϕj − sinϕj(
∂z

∂x
(i, j) cos θi +

∂z

∂y
(i, j) sin θi)

In {Pij} and {Qij},
∂z

∂x
(i, j) and

∂z

∂y
(i, j) are observed nor-

mals in Cartesian coordinate corresponding to (θi, ϕj). As-
sume we have discretized θ and ϕ into a m×n grid, we then
form an over-constrained linear system from Eq.(8): we
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Figure 6. Results on a synthetic sinusoid wave (top rows) and on a Helmholtz wave (bottom two rows). We show the cropped Bokode
pattern used in reconstruction. In particular, column 2 are sampled surface normals under spherical coordinate in respect to θ and ϕ and we
further compute normal maps in Cartesian coordinate and compare with the ground truth ones to demonstrate the accuracy of our method
as shown in column 6 and 7. The complete sequences can be found in the supplementary video.

have two equations for each radius rij except for the bound-
ary. For the θ boundaries, we have r(0, ϕj) = r(2π, ϕj),
i.e., r0j = rmj . However, for the ϕ boundaries, it is not easy
to acquire radius at those points. We solve this problem by
using the current frame’s reconstruction result to predict the
boundary of later frames. In all we have mn unknowns and
2mn linear equations. By stacking these together, we ob-
tain a linear system with equations AΘ = 0, where A is the
coefficient matrix formed by {Pij , Qij , i = 1, ...,m; j =
1, ..., n} and Θ = {rij}, i = 1, ...,m; j = 1, ..., n. Then
we apply Singular Value Decomposition (SVD)on our lin-
ear system to obtain the least square solution of surface ra-
diuses.. In the supplementary material, we prove that this is
a valid approach as traditional spatial-domain surface com-
pletion can also be formulated and solved using a similar
over-constrained linear system.

6. Experiments
We have validated our approach on both synthetic and

real fluid surfaces. For synthetic surfaces, we have imple-
mented a Ray-tracer that back-traces feature points from the
Bokode pattern to pixels in the viewing camera. For real
surfaces, we capture video streams of dynamic fluid sur-
faces using our acquisition system (see Sec.3).

6.1. Synthetic Scene Simulation

We first conduct experiments on a synthet-
ic sinusoidal wave: z(x,y,t) = 20 + cos(πt√
(x− w/2)2 + (y − h/2)2/200 ), where w = h = 300.

On the Bokode side, we use a pattern of physical size

300× 300 with 48 symbols on it. In our setup, the viewing
camera captures 32 symbols. We also use the Helmholtz
Equation to propagate the of the same wavefront at t = 0,
to synthesize more realistic fluid effects and test the
robustness of our algorithm. In the Helmholtz wave case,
we use a higher resolution pattern of 600 × 600 with 220
symbols to improve the angular resolution. The refraction
index of the fluid is set to be 1.33 to emulate water.

To generate the AAM training data, we render 100 dis-
torted pattern image on randomly sampled normals. Since
we use ray-tracing, we obtain ground-truth feature points at
both the corners and along edges. In our experiment, we use
8 corner points and 10 edge points in between each pair of
neighboring corners on the symbol. We apply AAM match-
ing to the synthesize fluid images using the training data
and obtain the ray-ray correspondences. We then compute
the surface normal at each feature point and interpolate a
dense normal field. For the sinusoidal wave, the angularly
resolution of our sampled normal map is 0.33◦ and for the
Helmholtz wave, we generate a higher angular resolution of
0.2◦ to recover fine details. Finally, we apply our spherical
coordinate surface integration scheme. In both cases, we
use the ground truth wave boundary for integration.

Fig.6 shows our recovered wavefronts at different time
instances. The video sequence of the results can be found
in supplementary material. We further compute the recon-
struction error to illustrate the accuracy of our method. The
amplitude of sinusoidal wave is in range of [19.9, 20.1] and
our average reconstruction error is 9.782×10−4. Helmholtz
wave is in a similar range and our reconstruction error is
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Figure 7. Our experimental setup. We construct a Bokode using
a flashlight, a diffuser, a high-resolution pattern and webcam lens.
We also use an auxiliary bi-convex spherical lens to collect lights
refracted by the fluid surface (top right).

7.773×10−4. This implies that using a denser pattern would
improve accuracy. In reality, however, producing a dense
pattern for the Bokode is challenging due to the resolution
limit on commodity printer.

6.2. Real Scene Experiments

To capture real fluid surfaces, we set up our system for
capturing real fluid surface as shown in Fig.7. We construc-
t a Bokode that consists of a bright flash light of 400 lu-
men, a micro-pattern and a lenslet with 2mm aperture and
8mm focal length dissembled from a cheap conventional
web camera. We print a monochrome Bokode pattern at
a resolution of 5080 dpi on a 1cm × 1cm transparency
using the professional printing service provided by Page-
Works (http://www.pageworks.com). On the viewing side,
we couple a high resolution DSLR camera (Canon 60D,
lens 85/1.8) with an auxiliary bi-convex spherical lens of
100mm with focal length 170mm to capture a wider angu-
lar range of rays. We adjust the viewing camera to focus at
the focal plane of the auxiliary lens to record an HD video
at a resolution of 960 × 720 at 30 fps. Our water tank is of
size 24cm × 18cm × 36cm and the viewing camera under
our lens and aperture setting can observe an area of around
600mm × 600mm. We pre-calibrate the viewing camera
using Zhang’s algorithm[24] and then capture the image of
the Bokode pattern with water for obtaining the incident ray
direction with respect to each feature point on the pattern.

We experiment our method on two types of wavefron-
t. The first one is created by randomly perturbing the flu-
id at one end of the water tank to propagate the wave to-
wards the other end; The second is a “ring-type”wave that
is created by blowing air into towards the fluid. One ma-
jor challenge that we observe in the real fluid surface case
but not in the synthetic one is the effects of caustics which
changes the intensity of the observed patterns. To reuse the
training data, we use only the binary gradient map of the
rendered images as the appearance model and then apply

AAM Features
Surface

Normal map
Recovered

Surface

Frame 25

Frame 57

Frame 2

Frame 11

Recovered Normal 
in Spherical-Coord

Figure 8. Results on two sets of real data (a perturbed wave and a
ring wave). From left to right: we show the captured image with
matched features, the sampled normal under spherical coordinate,
the reconstructed surface, and the surface normal field computed
from the reconstructed surface.

AAM matching. In some cases, the acquired image can ex-
hibit motion blurs and we need to apply manual alignments.
To integrate the surface, we assume that the fluid boundary
is flat in the first frame and then apply the Navier Stokes
(NS) model to propagate the boundary [13]. Fig.8 shows
our acquired raw data, the AAM tracked results, and our re-
constructions a number of frames of real fluid surfaces. In
the “ring-type”wavefronts, several acquired patches exhibit
strong distortions. Our technique is able to reasonably align
the distorted pattern using AAM and our reconstruction re-
sults are consistent with the observed distortions. In fact,
the quality of our reconstruction can be further improved
by using more training samples in AAM. We refer the re-
viewers to the supplementary videos for the completely re-
constructed sequences.

7. Discussions and Conclusions

We have presented a novel and affordable solution for re-
constructing dynamic fluid surfaces by using a special opti-
cal device called the Bokode to emulate a pinhole projector.
By associating the projection pattern with the observed pix-
els, we directly obtain ray-ray correspondences that can be
used to recover the surface normal field. Our method hence
is one of the few that directly resolves the point-pixel ambi-
guity in single-view based solution. Another unique feature
of our approach is that it provides an angular reconstruction
of the normal field whereas most, if not all, previous ap-
proaches recover a spatial (height-field) sampling. We have
hence developed a tailored surface integration algorithm for



integrating the normal field.

Our technique has a number of limitations. First, we rely
the AAM technique for feature alignment. We chose not
to use color patterns as chromatic abberations caused by
refraction can greatly affect color registration. The quali-
ty of AAM, however, depends heavily on the training data.
In our first few trials on acquiring real surfaces, we were
unable to match many symbols due to distortions and we
had to render a much larger set of training data and occa-
sionally need to conduct manual alignment. In the future,
we plan to explore more robust feature matching algorithm-
s. For example, one possible solution is to use temporally
coded patterns[8], which would provide a reliable and much
denser set of feature correspondences. The challenge there,
however, would be the frame rate as we aim to acquire dy-
namic surfaces.

Another important future direction we plan to explore is
on surface reconstruction from angularly sampled normal-
s. In our implementation, we only approximate the bound-
ary condition for integrating the surface. In the future we
will investigate how to acquire the ground truth boundary,
e.g., by using auxiliary cameras or other types of sensors.
Further, it is important to note that our surface integration
scheme only provides an approximation. Previous spatial-
domain surface completion scheme finds the global optimal
surface that best matches the normal field (in L2 normal).
Ours finds the local optimal by discretizing the constraints
into piecewise linear ones, although our results show that
this approximation is highly effective and accurate. In the
future, we plan to conduct a more comprehensive study on
angular-domain surface completion by using the Variational
method in a similar fashion to Poisson surface/image com-
pletion.

Our current setup only allows us to capture a small area
of the fluid surface. The Bokode itself has a very wide field-
of-view of up to 160◦ (depending on the pattern size and
the lens’ focal length) and can a single Bokode can cover a
large surface. The limitation is on the viewing camera side
whose aperture is usually much smaller. Our current solu-
tion is to an auxiliary lens to refocus the rays toward the
camera. The range of acquisition hence is restricted by the
size of the auxiliary lens. A simple solution is to use an
ultra-large lens but at a much higher cost. A more practi-
cal solution is to construct an auxiliary lens array to emu-
late the large lens. Finally, compared with the recent light
field probe based solution[23] which inspired our work, our
ray-ray correspondences are less accurate and cannot be di-
rectly used for recovering the surface height. In the future,
we plan to work with the authors to compare the reconstruc-
tion results on a number of benchmark surfaces and explore
possible integrations of the two systems.
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