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Robust image-based 3D Modeling of Root Architecture

Luis D. Lopez · Deepak Shantharaj · Lu Liu · Harsh Bais · Jingyi Yu

Abstract Root system architecture (RSA) plays an

important role in plant development and survival. The

ability to accurately model and quantify properties of

root architecture is fundamental for sustainability stud-

ies, crop improvement, and studies of plant-microbal

interactions. Existing methods to model RSA either re-

quire a dense set of images or rely on 3D scanning meth-

ods for dense reconstruction. In this paper, we present

an image-based technique for recovering complex 3D

root geometry from a sparse set of viewpoints. Our

solution incorporates 2D/3D root system topology as

shape prior into the geometric reconstruction process.

For every input view, we apply image matting for seg-

menting the root from the background. We then recover

a 2D skeleton graph of the root from its matte im-

age and find its corresponding 2D topology tree from

the skeleton graph. Next, we present an iterative al-

gorithm for computing the 3D topology tree that is

most consistent with the set of 2D topology trees. Fi-

nally, we apply volumetric reconstruction for recover-

ing the complete 3D root model from its 3D topology

tree. We demonstrate our framework on roots of rice
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(Oryza sativa) and brachypodium (B. distachyon) and

our experiments show that our method is robust and

accurate.
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1 Introduction

Root system architecture (RSA) plays an important

role in plant development and survival. Accurately re-

covering 3D root system architecture (RSA), however,

is a challenging task and has received increasing atten-

tion from many research areas in recent years. Roots are

difficult to model due to their highly complex branching

structures and heterogenesis across species. Successful

solutions for 3D root modeling have numerous appli-

cations in computer graphics/vision and plant science.

For example, 3D root models can help plant scientists

to identify and quantify plant growth dynamics and

the effect of environmental factors in the development

of plants. Recovering topological structures can also re-

veal new botanical information that leads to a more

accurate simulation of the root system. Realistic 3D

root models can also be used for physical-based sim-

ulation for scientific study, computer animations, and

movie special effects.

In computer graphics, several approaches have been

developed for producing realistic-looking root models,

e.g., by using rule-based systems [8], fractals [24],

physical simulations [14], or botanical rules [19]. Ad-

ditional stochastic processes can model unpredictable

changes in root growth [19]. Although these methods

can generate naturally-looking roots, the synthesized

root geometry can differ from the real one.

In computer vision, a few methods have been pro-

posed for capturing 3D models of real roots. Most pre-
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Fig. 1 Recovering a Root Architecture Model Using Our Approach. Left: four sample input images; middle: our recovered 3D
Topology tree; right: our reconstructed 3D model.

vious work relies on computerized tomography (CT)

technologies such as magnetic resonance imaging (MRI)

[23], X-ray [20,4], or ground penetrating radar (GPR) [16]

to obtain range data of the roots. These methods are

able to observe the root in soil but require ad-hoc filter-

ing techniques and additional processes to reconstruct

the 3D model [28,34]. Further, they can be limited by

cost, image resolution, and container size.

In this paper, we present an image-based technique

for recovering complex 3D root geometry from a sparse

set of viewpoints. Figure 2 illustrates our processing

pipeline. We first construct an acquisition system for

automatically capturing the images of the roots. We

then select a small set of images for for reconstructing

the 3D model. By using only a small number of input

images, we minimize both user effects for root segmen-

tation and computational cost for geometric process-

ing. For every input view, we apply image matting for

segmenting the root from the background. We then re-

cover a 2D skeleton graph of the root from its matte

image and find its corresponding 2D topology tree from

the skeleton graph. Next, we present an iterative al-

gorithm for computing the 3D topology tree that is

most consistent with the set of 2D topology trees. Fi-

nally, we apply volumetric reconstruction for recover-

ing the complete 3D root model from its 3D topology

tree. We demonstrate our framework on roots of rice

(Oryza sativa) and brachypodium (B. distachyon) and

our experiments show that our method is robust and

accurate.

2 Related Work

Most existing root modeling tools can be classified into

two categories: synthesis methods and reconstruction

methods.

Synthesis Methods: Approaches in this category

focus on synthesizing the root geometry. Leitner et al.

[7] generate the RSA using a small set of grammar-like

generative rules called L-system. These rules are associ-

ated with dynamic parameters. By changing these pa-

rameters over time they synthesize different roots from

the same initial parameters. Every set of rules con-

structs a specific type of root, and cannot be applied to

new roots. De Willigen et al. [32] derived an analyti-

cal solution to model root growing as a two-dimensional

diffusion process. They use different ratios of their diffu-

sion coefficients to obtain roots with different shape and

distribution patterns. Their volumetric results, how-

ever, do not reveal the actual geometric structures of

real roots. Pages et al. [19] synthesized the RSA using a

set of translations combined with morphogenetic rules.

Realistic-looking roots are achieved by adding stochas-

tic processes that model the unpredictable character-

istics of the trajectories, branching factors, and size.

It is important to note that all these approaches focus
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Fig. 2 Overview of Our Image-based Root Modeling System.

on visualization. Usually they assume an homogeneous

distribution of the roots in the volume, and the syn-

thesized tree geometry may differ greatly from the real

one.

Reconstruction Methods: In contrast, reconstruc-

tion methods attempt to recover root geometry from

actual roots. Gregory et al. [4] use a X-ray to acquire

range data of roots rotating in a turntable. After filter-

ing the density values to remove overlapping between

the root, soil and container, they are able to recover an

accurate volumetric model of the roots. MacFall et al.

[23] capture 3D images using magnetic resonance imag-

ing. Their approach reconstructs low resolution models.

Similarly, Wielopolski et al. [16] use a ground pen-

etrating radar to recover a volumetric model of large

roots. Although computerized tomography technology

can overcome the constraint imposed by opaque medium

soil, these expensive devices have a limited resolution

and require high imaging time, which makes it less suit-

able for large-scale application.Instead of computerized

tomography, several approaches performed quantitative

analysis of root architecture in 2D planes. For exam-

ple, Liao et al [12] use a paper pouch system combined

with image processing to analyze variation in root ar-

chitecture on common beans. Devienne et al. [3] study

the growth dynamic using a transparent wall technique

to observe roots of Arabidopsis while they are grow-

ing in soil. Iyer-Pascuzzi et al. [22] use a turntable to

capture a large number of images from fixed angles to

perform a detailed measurement of several properties

(e.g. root number, length, volume) of roots growing in

a gel system. The main disadvantage of this method is

that, it is not able to recover the 3D model. Lopez et

al. [15] show that it is possible to recover real, instead

of realistic-looking, 3D geometry of tree-like structures

from a sparse set of images by using the skeleton trees

as shape priors. We adopt a similar approach for find-

ing the optimal 3D skeleton of the root that is most

coherent with the 2D skeletons. We therefore briefly

reiterate the main steps. The major difference is that

their approach reconstructs the main trunks but is un-

able to recover tree geometry with fine details, whereas

our solution can reconstruct micro-structures, such as

root hairs that are important for characterizing their

growth. Therefore, our method is more suitable to per-

form quantitative description and analysis on 3D root

architecture from the recovered models. In line with our

method Zhu et al. [29] reconstruct a visual hull from

a large number of images surrounding the root. Their

method is able to recover accurate volumetric models.

The main disadvantages of their technique, however, are

that by computing the 3D skeleton directly from the

volume, they cannot guarantee connectivity and their

method is susceptible to errors during segmentation and

calibration. Similar to us Tian et al. [28] use a simple

cylindrical representation derived from a volume space

to model the root branches. Their method reconstructs

realistic-looking roots. However, they only can recover

vertical branches. In contrast by using a local volume

space we are able to recover 3D root branches despite

their orientation.
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Fig. 3 Acquisition System.

3 Preliminary Processing

3.1 Plant Growth

In this paper, we use rice (Oryza sativa) and brachy-

podium (B. distachyon) for reconstructing root system

architecture. We follow standard procedures to grow the

seeds in gel system. Specifically, we dehusk the seeds

to remove surface borne pathogens, sterilize them with

50% sodium hypochlorite for 5 mins, and then rinse

them three times with sterile water. Sterilized seeds

grow in a vented tissue culture flask 75cm2 filled with

growth medium consisting full strength MS and 0.15%

phytagel (pH-5.8). Plants grow at room temperature

with a photoperiod of 12 − hr day/night. Finally we

separate the rice from the gel after 15 days and the

Brachypodium after 30 days.

3.2 Image Acquisition and Camera Pose Recovery

We developed an acquisition system (figure 3) that

consists of the following devices:

– a single CCD-camera (figure 3a), Canon EOS Dig-

ital Rebel Xti SLR camera with 55 mm focal length

and a resolution of 2592x3888 pixels.

– a turntable (figure 3b) used to obtain multiple views

of the roots, with 20cm of diameter, its position can

be specified with an accuracy of 1.0o.

– a calibration pattern (figure 3c) used to extract

point correspondence and run structure-from-motion

on them to recover camera parameters.

– a blue-light lamp (figure 3d) used to illuminate the

root during acquisition.

We capture a dense set of viewpoints with 90o cover-

age around the root. We then obtain the camera calibra-

tion matrix for each view, using the approach described

a) b) c)

Fig. 4 Matte estimation using [31] algorithm (A) Input Im-
age; (B) User Input Strokes; (C) Estimated Alpha Matte.

in [17]. One of the main problems during calibration

is that branches of roots have very similar colors and

textures, and appearance can vary significantly across

views due to changes in occlusion patterns. To resolve

this problem, we only extract point correspondences

from the calibration pattern in the acquisition system.

We then select a sparse set of images from the dense set

of viewpoints to use in the following processes. We do

that because even with advanced segmentation [21,5]

and matting tools [31,11], segmenting a large number

of images is time consuming and tedious. Therefore, we

pursue a solution that uses much fewer images.

Similar to the image-based method for the auto-

matic phenotyping of root systems [22], we start with

segmenting the foreground root from the background

region. However, we choose to find a smooth alpha matte

of the root while [22] uses an adaptive thresholding

technique for segmentation. This is because roots con-

tain thin secondary branches with intricate boundaries

that blend into the background and are difficult to seg-

ment using standard thresholding techniques. The al-

pha matte, instead, can capture these small details and

is consistent with our approach for finding the root

topology (Section 4). Several techniques have been de-

veloped to estimate the alpha matte of an image [21,26,

9,10,30]. In our experiments we use the Robust Matting

technique proposed by Wang et al. [31]. This method

allows the user to draw foreground and background

strokes and progressively refine the alpha matte. Fig-

ure 4 shows the recovered alpha matte of a sample

input image.

4 Recovering 2D Root Topology

4.1 Robust 2D Skeleton Graph

Similar to the image-based approach by Zhu et al. [29],

we use the skeleton to describe the shape and topology

of the roots. Their method computes coarse skeletons
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(a) (b) (c)

Fig. 5 Robust Skeletonization using [13] algorithm (A) In-
put Cell Complex; (B) Medial Persistence MP from (A);
(C)Skeleton Graph computed by simple, iterative cell removal

from the volumetric model. Unlike [29] we compute

fine skeleton graphs by using high resolution images.

Our solution is robust to noisy boundaries, and we can

guarantee the connectivity in our reconstructed model.

In our solution the matte image is converted to a cell

complex [33]. For every pixel in the foreground region,

we create a 3D cube by mapping its image position to

a normalized device coordinate (NDC) system in two

parallel planes. Neighboring pixels share points used to

create the edges that define one of their six faces.

To extract the skeleton graph from the cell complex,

we directly use the robust thinning algorithm developed

by Liu et al. [13]. The thinning algorithm formulated a

skeleton significance measure, called medial persistence.

Guided by this measure, the previous algorithm pro-

duces a family of topology and shape preserving skele-

tons whose shapes and composition can be flexibly con-

trolled by the desired level of medial persistence. Figure

5 shows the skeleton graph (Fig. 5c) extracted from a

sample input image (Fig. 5a).

4.2 Construction 2D Topology Tree from Graph

The previous section described how the skeleton graph

is extracted from the matte image. Given the skeleton

graph, we construct its corresponding 2D topology tree.

To do so, we first convert the skeleton graph into an

undirected graph where the nodes are defined by leaves

and junctions in the skeleton graph (Fig. 6b). We use

the connectivity of the points in the skeleton to identify

the leaf and junction nodes. Leaf nodes are detected by

finding the endpoints, while the junction nodes corre-

spond to the 3-connected and 4-connected points in the

skeleton. We then find the edges that connect the nodes

in the undirected graph by removing the interior points

in the path between every pair of connected nodes (Fig.

6c).

(a) 2D Skeleton Graph (b) 2D Nodes (c) 2D Edges

(d) Incorrect Path(e) Disambiguation

(f) 2D Topology Tree

Fig. 6 Reconstruction of 2D Skeleton Trees from 2D Graphs
(A) An Input 2D Skeleton Graph; (B) to (D): We identify the
nodes of the Skeleton Tree and their connectivity; (E) We fix
the incorrect paths;(F) Our final recovered 2D Skeleton Tree

Finally, we identify and discard the multi-furcation

points that are caused by occlusions between the branches

(Fig. 6d). To do so, from the matte image, we compute

a distance field [1]. For each pixel p, we compute its

shortest distance to the boundary (i.e., pixels whose al-

pha value is zero) and map the corresponding distance

to the nodes in the undirected graph. We then check

for every pair of connected nodes with the same degree

and an Euclidean distance smaller than their distance

field value. If this is the case, those nodes correspond

to a branch intersection, and we need to remove the

nodes and fix the connectivity. We do that, by first re-

moving the edge that connects them, then checking the

angle between the remaining edges, and finally apply-

ing a Greedy algorithm to find the optimal connectiv-

ity that yields the highest angle consistency. In the rare

case when multiple branches occlude each other at the

same point, it is highly challenging to automatically

correct the connectivity between the nodes. Therefore,

our framework allows users to manually fix the connec-

tivity in such cases.

5 3D Root Topology Recovery

We next proceed to compute the 3D topology tree that

is most consistent with the set of 2D topology trees.

The core of our approach is to match a pair of trees.

We developed an iterative tree matching technique in-

spired by the recent approach proposed by Charnoz et

al. [2] that estimates the optimum match between two

skeleton trees, computed from CT-scan images, using

geometric and topological cues. The major difference

between the two approaches is that, rather than dis-

carding solutions based on their cost, we use a simple

but efficient dynamic pruning technique that only dis-

cards unfeasible solutions. As shown in the results sec-
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tion our approach is able to find the global solution

while controlling the growth of the search space.

Pairwise Tree Matching Given two 2D topology

trees tleft and tright we first compute the matching cost

between all pairs of nodes across the trees. For simplic-

ity, we use li to denote the i − th node in tleft, and

rj to represent the j − th node in tright. our goal is

to use geometric and topological attributes to compute

the optimum match between their respective nodes.

Our approach to compute the matching cost is based

on the observation that a pair of 2D trees correspond

to the same 3D tree observed from different viewpoints.

Therefore, if a pair of nodes match, they should corre-

spond to the same 3D point. Thus, For a given pair of

nodes li and rj we compute their matching cost as the

minimum distance between their corresponding rays in

3D space C(i, j) = di,j , where the rays are computed

from the recovered camera parameters (figure 7a). If

this cost is too large, then it indicates that the two rays

do not intersect, and we simply mark the cost as infinity

C(i, j) = ∞. If the midpoint of the minimal distance

segment Qi,j lies out of a pre-defined bounding frustum,

we also mark the cost as infinity as it indicates an incor-

rect correspondence. We also discard correspondences

by considering a local window. If the 2D Euclidean dis-

tance between the pair of nodes is too large, we mark

the cost as infinity.

Once we finish building the cost matrix we start

matching the nodes by constructing a hypothesis tree

using a breadth-first search approach. Every node in

the hypothesis tree consists of a likely solution of the

matching problem. We initialize our algorithm by as-

suming that the root nodes l0 and r0 always match and
make their match as the root of the hypothesis tree.

Starting at the root node, for each matching pair (li, rj)

we enumerate all combinations of possible matches be-

tween their child nodes (CH(li), CH(rj)) as hypothesis

nodes(figure 7b). Since partial occlusion or other ge-

ometric artifacts can change the connectivity between

the topology trees in some intermediate nodes, we need

to consider potential matches in subtrees and not only

in child nodes. To resolve this issue we also consider the

hypothesis of matching grandchild nodes GCH(li) and

GCH(rj) against the child nodes CH(li) and CH(rj)

respectively. If a specific hypothesis node contains a

matching pair with ∞ matching cost, we simply dis-

card that node. In some cases, the number of the chil-

dren nodes in the two trees is not equal. For example

one has three children nodes, the other has two. In these

cases, we insert special empty nodes to match the num-

ber of children. This usually happened when a branch

appears in one view but its occluded in the other. Fi-

nally the optimal matching combination corresponds to
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Fig. 7 Pairwise Topology Tree Matching; (A)Computing
matching cost (B)Pruning Hypothesis Tree using the Cost
Matrix; (C) Growing the Hypothesis Tree

the leave node in the hypothesis tree with the minimum

overall accumulated cost.

3D Tree Construction To reconstruct the 3D

topology tree we first pick the 2D tree that captures

most visible branches as reference and apply our pair-

wise matching algorithm between this reference tree

and the rest of the input 2D topology trees. This signif-

icantly reduces the computational cost. Then, for every

node in the reference tree, we find its corresponding

node in the rest of the skeleton trees and apply trian-

gulation. We then create a 3D node by computing the

centroid of the set of 3D points from triangulations.

Finally, we construct the 3D Tree by connecting the

recovered 3D nodes using the topology of the reference

tree. Fig 9 shows several 3D skeleton trees recovered

by our method.

6 Model Recovery

Once we recover the optimum 3D topology tree, we

apply a revised volumetric reconstruction approach to

recover the complete model of the root. For each edge

in the 3D topology tree, our approach applies a space

carving method on a local volume to estimate the branch

geometry (e.g., shape and size). Our solution is based

on the observation that topology tree casts important

geometry constraints. Therefore, by actively integrat-

ing the recovered 3D topology tree as shape priors we

effectively reduce the initial volume size. Furthermore

we show that unlike the classical visual hull approach,

our technique is still able to faithfully and robustly re-

cover high quality root geometry even employing few

input viewpoints.
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(a) Input 3D Tree (b) Input Edge (c) Local Space Carving

(d) Minimal Cost Path (e) 3D Surface Model

Fig. 8 Topology-driven Model Reconstruction

6.1 Per-Branch Cylindrical Modeling

Classical volumetric approaches [18,6] reconstruct the

shape of complex objects by first covering the scene

with a 3D space by intersecting the view frustums of all

cameras. This space is then discretized into voxels. The

sampling resolution of the discrete 3D space is limited

by the input image size. Notice that in order to recover

fine details from the input images, large image resolu-

tion needs to be used for discretization (e.g., 3Kx4K

in our case). and the resulting volume size would be

too large to process or store. To fix these problems,

existing volumetric-based modeling methods trade off

volume resolution for processing speed, and they are

only able to recover coarse geometry [25].

Our technique, instead, resolves the resolution is-

sue by directly using the recovered 3D topology tree to

guide a local volume discretization. Specifically, we use

a 3D cylinder to bind each branch. The radius of the

cylinder is chosen to be large enough to cover all pixels

of the branch when back-projected onto the views. We

then discretize each cylinder into voxels at a resolution

of twice the image resolution to avoid undersampling.

Since each branch only covers a small amount of pix-

els, our method significantly reduces the initial volume

size. In our experiments, the size of our cylinder volume

representation is usually only 5 percent or less of the

standard view frustum discretization.

Next, we directly apply space carving on each dis-

crete cylindrical volume (Fig. 8c). For each voxel inside

the cylinder, we project it back to all input images. To

further reduce the computational overhead, we simply

carve out the voxel if its corresponding pixel lies in the

background of the matte image in any views.

To recover the actual branch geometry, classical vol-

umetric reconstruction [6] could be applied to refine

the volume. However, since we only use very few views,

the volumetric results are usually very noisy. Therefore,

we use a piece-wise cylindrical model to represent the

actual 3D root geometry. This representation seems to

be a more natural fit to branches, requires less mem-

ory, and allows the visualization of the model without

any special hardware. Specifically, we first locate two

voxels that correspond to the endpoints of the branch

edge in the 3D topology tree. We then use Fast March

algorithm [27] to compute the optimal path between

the two nodes. Finally, we approximate the branch ge-

ometry by concatenating cylinders along the pass. To

estimate the cylinder radius, at every voxel V on the

optimal path, we first estimate a local cut plane and

find all uncarved voxels lying on the plane. We further

find the minimum distance from V to the edge and use

it as the radius of the curved cylinder to approximate

the 3D branch. Since we use the minimum distance to

the peripheral voxels, our estimated radius tends to be

smaller than its actual value. Figure ( 8e) shows our re-

construction result of a sample branch on a rice’s root.

We refer the readers to the supplementary video to view

the complete model.

7 Results

We demonstrate our framework on recovering 3D root

architecture models for a variety of roots with different

shape and density of branches. In all our experiments,

we only use four images covering 900 around the root.

The images were captured using the acquisition device

as discussed in Section 3.2. Root imaging took about

5 minutes for each root.

We conduct our reconstruction algorithms on a DELL

PC with Intel Core i7 2.8Ghz CPU and 8GB of RAM.

Computational time for reconstruction depends on the

complexity of the root. The resolution of the input im-

ages is 2592 × 3888. We use full image resolution in

all the processes. For camera calibration, our structure

from motion algorithm takes approximately 1 minute

on average for each input sequence. Segmenting the im-

age using Robust Matting algorithm [31] takes about

2 minutes per image for the user to specify the strokes

and obtain the mattes. Recovering the 2D topology tree

takes about 10 seconds for each input image. On aver-

age our algorithm to reconstruct the 3D topology tree

described in Section 5 takes less than 2 seconds for each

tree. Generating the cylindrical model takes about 20 to

40 seconds depending on the number of branches in the

root. Table 1 summarizes the image resolution (after

cropping) and the number of branches recovered from

the input images.

Rice. The first row of Figure 9 shows a rice root re-

constructed by our algorithm. This root has four large

broad primary branches. One of these primary branches

has a curved cap holding several large and thin lateral

roots with complex occlusion patterns. These proper-

ties make it challenging for segmentation and topology

recovery processes. In this experiment an user needs to
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Table 1 Root information in our experiments

Sequence Resolution Num branches Recovered

Rice 668×1180 46 39
Brachypodium 700×800 10 10
Rice EA-104 800×950 57 46

manually remove the leaf-like surface (Scutellum) that

covers the seed, and we can automatically recover the

2D topology trees without user intervention. Column

(a) shows the view that we pick for 3D reconstruc-

tion. Column (b) shows the reconstructed 3D topol-

ogy tree. Columns (c) and (d) show the geometry of

our recovered model. Our method accurately recovers

all the primary branches and about 80% of the sec-

ondary branches. Most of the missed branches occur

when thin roots are clusterized in small zones. When

several branches are close to each other, it is not easy

to determine their correspondence in the other views;

therefore, our algorithm can incorrectly associate a node

in the reference view with the children or grandchildren

node of the correct match, creating fake gaps. We re-

fer the reviewers to the supplementary video for the

complete 3D model recovered by our algorithm.

Brachypodium. The second row of Figure 9 shows

our reconstruction results on a Brachypodium root. This

root has only two large broad primary branches and

few secondary branches. All the branches contain thou-

sands of hairs that merge with the background. These

features make the modeling process easy and the seg-

mentation process very challenging. We minimize the

effect of root hairs by setting a high threshold to bi-

narize the matte images. Topology extraction and 3D

modeling are straightforward. Notice that although sev-

eral branches are strongly curved, our method is able to

accurately recover the 3D geometry of all the branches.

Rice EA-104. In the bottom row of Figure 9, we

apply our reconstruction method on a rice treated with

a bacteria (EA-104) that inhibits the growing of their

branches. Similar to the regular rice, it has few large pri-

mary branches, and one primary branch with a curved

cap holding several short and thin lateral branches. The

segmentation was fully automatic, but we require more

user interaction in the 2D topology recovery process

to fix the connectivity in several branches due to com-

plex occlusion. Our technique recovered very accurate

geometry of all the primary branches and most of the

lateral roots. In all three examples, our approach is able

to reconstruct accurate models that comprise the root

topology and with a geometry consistent with the input

images.

8 Conclusions and Discussions

We have presented an image-based solution for recon-

structing 3D root models from images. Our method is

able to recover accurate 3D geometry using a sparse

set of images. The core of our approach is to guide the

modeling process imposing 2D and 3D root topology

information as shape priors. Specifically, we have de-

veloped an iterative matching algorithm to combine 2D

topology trees from different views and recover the most

consistent 3D root topology. We have then used the re-

constructed 3D topology tree to guide per-branching

cylindrical modeling for recovering the complete geom-

etry of the roots. We have demonstrated our framework

on a variety of plants. Our results have shown that our

method is robust, accurate and reliable.

There are several future directions for improving our

current implementation. For instance, one limitation of

our approach is that we pick the image that contains

most visible branches as the reference view for recover-

ing the 3D topology tree, and if a branch is missing in

the reference view, we will not be able to recover it. In

the future we plan to study more complex 2D topology

tree matching algorithm that can recover the branches

observed from any view.

Another promising direction of future research is

incorporate traditional segmentation techniques in the

matting algorithm to automatically segment the roots

from the background. In particular, we plan to use in-

tensity information to automatically generate the trimap

image for the image matting algorithm and use an it-

erative approach to refine the segmentation results.

An apparent limitation of our technique is that it

cannot handle clusters of branches. In our framework,

a pure geometric approach to construct the optimum

3D topology tree can generate fake gaps in the re-

constructed model. One possible solution is to explore

other heuristics to rank the nodes in the hypothesis

tree. Our algorithm is purely image-based and does not

use botanical information. In the future, we also plan

to integrate botanical information to increase the per-

formance in the 3D topology reconstruction. For exam-

ple, we can conduct a template matching to find similar

parametric models and use this information to improve

the reconstructed topology.
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Fig. 9 3D Models Generated by Our Framework. (a): The reference view used for reconstruction. (b) The recovered topology
tree. (c) and (d): Two views of our final reconstructed 3D root architecture model. Each model is reconstructed using only 4
input images.


