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Abstract

Content-aware image retargeting has attracted a lot of
interests recently. The key and most challenging issue for
this task is how to balance the tradeoff between preserving
the important contents and minimizing the visual distortions
on the consistency of the image structure. In this paper we
present a novel filtering-based technique to tackle this is-
sue, called ”importance filtering”. Specifically, we first filter
the image saliency guided by the image itself to achieve a
structure-consistent importance map. We then use the pixel
importance as the key constraint to compute the gradient
map of pixel shifts from the original resolution to the target.
Finally, we integrate the shift gradient across the image us-
ing a weighted filter to construct a smooth shift map and
render the target image. The weight is again controlled by
the pixel importance. The two filtering processes enforce
to maintain the structural consistency and yet preserve the
important contents in the target image. Furthermore, the
simple nature of filter operations allows highly efficient im-
plementation for real-time applications and easy extension
to video retargeting, as the structural constraints from the
original image naturally convey the temporal coherence be-
tween frames. The effectiveness and efficiency of our impor-
tance filtering algorithm are confirmed in extensive experi-
ments.

1. Introduction

Due to the fast growing diversity of display devices, an
image often needs to be displayed across various settings
such as aspect ratios. To maintain desirable visual quality
across all conditions, a proper way of resizing is required.
As a result, content-aware image retargeting has been an
active research topic recently.

An image records the visual information of the covered
scene viewed from a certain angle. When retargeted to
a different setting such as aspect ratio, the original visual
contents will be inevitably altered. To preserve the impor-
tant contents close to the original, the other ”un-important”
pixels have to take more sacrifice. This generally changes

the overall image structure and often leads to visual distor-
tion in the target image. A straight line may become badly
curved in the target image, if different parts of it happen
to have different importance. Such structural distortion of-
ten causes the target image look hardly natural. Therefore
careful and proper treatment is required to minimize such
distortion while preserving the important contents. How to
balance this tradeoff is the key and most challenging issue
for content-aware retargeting.

Many approaches have been successfully developed to
address this problem. A comprehensive introduction of the
recent development in this area is presented in [14], where
the existing methods are categorized into two types. The
first is discrete methods, including seam carving [1, 15] and
shift-maps[13, 8]. This type of methods try to remove or
copy unimportant pixels while keeping the important ones
rigid. The second is continuous methods, including feature-
aware texture mapping [4, 23], scale-and-stretch [22], and
energy-based deformation [10]. These methods try to com-
pute a non-uniform warping function from the original to
the target image, which is designed to retain the important
contents and warp the unimportant regions. To reduce the
distortion on overall image structure, both types of meth-
ods use constraints from the image features to optimize the
retargeting manipulation with local smoothness. Since the
image features are usually computed at individual pixels or
in a local patch, the global image structure can still be dis-
torted in many occasions, as shown in Fig.1. In [16], Rubin-
stein et al. propose a multi-operator approach that optimizes
the combination of several methods and greatly reduces the
visual distortion on image structure, though the essential
problems for its individual components still remain.

To further minimize the visual distortion on image struc-
ture while preserving important contents, we propose to
constrain the retargeting process directly using the original
image itself, such that all the information, global and local,
can be used together to enable the optimal overall quality.
Based on this thinking, we develop the importance filtering
algorithm for content-aware image retargeting. The algo-
rithm consists of three major steps. First, we compute the
image saliency using [12] and construct an importance map
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Stream VideoOriginal Image Multi-OperatorScale-and-Stretch Shift MapImproved Seam Carving Ours

Figure 1. Image retargeting by improved seam carving [15], scale-and-stretch [22], stream video [11], shift map [13], multi-operator [16],
and our method. Note the distorted flags and chairs by [15, 11], unnatural stretch by [22, 11], and cut on humans and misplacement on roof
and chairs by [13]. The results by [16] are close to ours, yet ours tend to better retain prominent areas while minimizing the distortion.

based on it. The image saliency by [12] was developed to
measure visual attractiveness and used for human detection,
but not designed to be consistent with the image structure,
e.g. the pixels from the same object can have very different
saliency. Therefore we define an importance map that rep-
resents the saliency as well as has the consistent structure
with the original image, i.e. the pixels on the same object
should be likely assigned the similar importance. Such a
map is achieved using the guided filters [7, 6], i.e. filtering
the image saliency under the guidance of the original image.

The resulting structure-consistent importance map pro-
vides the key constraint to determine how much a pixel is
allowed to shift from the original to the target image. Ide-
ally we want the neighboring pixels with similar importance
to shift together so that their structure as a group will not
be distorted. Meanwhile the pixels with high importance
should not shift much with respect to the neighboring pixels
with similar importance, such that their shape remains close
to the original. On contrary the pixels with low importance
should be allowed to move more relative to the neighbors.
Note that these constraints are mainly on the relative shift
of neighboring pixels, i.e. the gradient of the pixel shift.
To satisfy these criterions, in the second step we develop
a mapping function to compute the gradient map of pixel
shifts based on the importance map.

The final step of our algorithm integrates the shift gradi-
ents across the image to construct a smooth shift map and
render the target image. Since the shift for retargeting is
usually one-dimensional, horizontal or vertical, the direct
integration can still be inconsistent along the other dimen-
sion. This will again cause visual distortion. We propose an
importance-weighted filtering method to address this issue.
The method forces the integrated pixel shifts to be smooth
along both dimensions and consistent across the image. The
important pixels are weighted more so that the filtering pro-
cess favors more on preserving their associated contents.

The combination of the two filtering processes in our algo-
rithm ensures the consistency of overall image structure and
yet preserves the important contents in the target image.

Our method significantly differs from existing content-
aware retargeting approaches [1, 15, 22, 23, 16, 11, 24].
First and most importantly, we for the first time use the
original image directly to constrain the retargeting manipu-
lation. It is the key for our algorithm to minimize the distor-
tion on the overall image structure. Second, we enforce the
constraints from pixel importance to estimate the shift gra-
dient, unlike the other methods where the saliency is used to
compute the shift directly. Integrating the gradients to con-
struct the pixel shifts avoids the undesired distortion such
as pixel swap along the scan lines, which often occurs to
direct mapping from saliency to pixel shift. Third, both the
filtering operations in our algorithm are simple and allow
highly efficient implementation. Since the original image
frame is directly used as guidance in the filtering processes,
the temporal coherence across frames is naturally conveyed.
Combining with the efficiency advantage, our method can
be easily extended for real-time video retargeting with little
additional effort. We have conducted extensive experiments
and comparisons based on the RetargetMe benchmark [14].
The results confirm the effectiveness and efficiency of our
importance filtering algorithm.

2. Related Work

Numerous algorithms have been proposed for media re-
targeting across various settings such as aspect ratios. Tra-
ditionally this has been achieved by uniformly warping the
contents to the target setting or cropping a single important
region and discarding the rest [17, 18]. Though maintaining
the overall structural consistency, such methods often either
distort or discard partially the prominent image contents. To
better present the important contents, content-aware meth-
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Figure 2. The pipeline of our algorithm.

ods has become the main stream for media retargeting, pio-
neered by the seam carving method [1].

Seam carving [1] resizes an image by reducing or adding
one seam at each iteration. Each seam consists of a con-
tinuous chain of the least important pixel from each row or
column so that the carving operation would not alter the im-
portant contents. This method has been extended for video
retargeting [15, 3] and to allowing discontinuous seams for
improving the quality of the target video [5]. In [16], a
multi-operator approach is proposed to optimize the combi-
nation of seam carving with cropping and uniform scaling
methods. It reduces the visual distortion on image struc-
ture from individual operators and improves the target im-
age quality. Instead of manipulating one seam at a time, the
shift-map method, another smart idea, optimizes the crop-
ping and blending of the important image regions to con-
struct the target image [13]. It thus better preserves the
important image contents, though at the risk of significant
change on the image structure. This method is also extended
for video retargeting in [8].

Another category of methods try to compute a contin-
uous warping function from the original image to the tar-
get [4, 23, 22, 10]. The warping is non-uniform in such a
way that the important contents receive little changes while
the un-important areas, e.g. homogeneous regions, suffer
the most distortion. For this purpose [4] applies similarity
constraint when warping user-specified important regions.
Another nice method in [23] proposes a saliency-weighted
linear system to compute the non-uniform mapping for in-
dividual pixels. The mapping does not enforce constraints
to maintain the image structure and thus can lead to visual
distortion. To reduce the distortion, [20] presents a method
that applies joint bilateral filters on pixel shifts to rectify
the image structure. In [10] a novel energy optimization
scheme is proposed to constrain the distortions. The method
in [22] divides an image into uniform grids and computes
non-uniform warping that is small on important grids and
big on un-important ones. The local warping functions are
iteratively optimized by enforcing smoothness constraints
on neighboring grids. This greatly reduces the distortion on
the overall image structure.

The existing methods normally use image saliency di-
rectly to retain important pixels and local smoothness to re-
strain undesired visual distortion. They have achieved great
success respectively. However, since the image features are

usually computed from individual pixels or a local area, the
global image structure can still be distorted in many occa-
sions, as shown in Fig.1. A more comprehensive review and
comparison is presented in [14]. For further improvement,
we propose to use the original image directly as a global
constraint to guide the retargeting manipulation, which pre-
serves prominent contents as well as minimizes the visual
distortions. We call the method importance filtering.

3. Importance Filtering

Our method resizes an image I of width X and height
Y to a target I ′ of resolution [X ′, Y ′]. Without loss of
generality, our illustration focuses on the example of fix-
ing the height and resizing the width, i.e. X ′ �= X and
Y ′ = Y . Application on the other cases is straightforward.
Fig.2 shows the basic pipeline of our importance filtering
algorithm. We first compute the image saliency S0 from I ,
and filters it under the guidance of I to obtain the pixel im-
portance map S. We then estimate the gradient field G of
pixel shifts from I to I ′, by applying a non-linear mapping
function on S. Finally, we compute the pixel shift-map M
by integrating the gradient G with an importance-weighted
filter and use it to render the target image. Below we explain
the details of these steps.

3.1. Image Saliency and Importance Map

Image saliency is usually computed from local image
features to measure the significance of pixels. Various
saliency measurements have achieved success for image re-
targeting, e.g. gradient magnitudes [1, 23], neighborhood
discontinuity [15], and patch based visual attention [9, 22].
We use the visual attention-based method in [12] together
with the face detector in [19] to compute image saliency.
Fig.3(M) shows the saliency map computed from 3(L). This
saliency map nicely captures the visual attractiveness of lo-
cal regions. However it is not designed to be consistent with
the geometric structure in the original image. As shown in
Fig.3(M), the saliency varies a lot on the same object such
as the legs.

For content-aware retargeting, our goal is to preserve the
important contents as well as minimize the distortions on
image structure. For this purpose the pixels on the same ob-
ject need to shift in nearly the same way. Since the pixel
shift will be later decided by its importance, the desired im-
portance should be close in the same object. The saliency by
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Figure 3. Importance map construction: (L) Original, (M) Visual
attention-based saliency, (R) Importance map by guided filtering.

[12] is thus not good enough for our purpose. To construct
an importance map that matches the image structure, we use
the guided filtering method [7] to enhance the saliency un-
der the guidance of the original image. The guided filter
is an excellent structure-preserving filter recently proposed
[7]. A conceptually similar filter is presented in [6]. The
filter considers the target as a linear transform of the guid-
ance to constrain the smoothing process. The target thus
nicely resembles the structure of the guidance after filtering.
This is exactly what we need for pixel importance. Fig.3(R)
shows the importance map by guided filtering on 3(M) un-
der the guidance of 3(L). Clearly the importance inside the
same object is more consistent and the image structure is
better retained.

3.2. Shift-Map Gradient

In our approach, the retargeting is achieved by shifting
the pixel coordinates and warping their colors from the orig-
inal to the target image. A pixel (x, y) is retargeted to (x′, y)
in the target image with the shift of M(x, y) = x′−x. Such
shifts across the image form the shift-map. Their signs show
the shift direction, shrinking or enlarging, and the absolute
values mean the amount of shifting. Fig.4(b) shows an ex-
ample of the absolute shift-maps using uniform scaling and
our importance filtering method respectively. The resulting
target images are shown in Fig.4(a). We can see that the
absolute shift values generally increase monotonically with
respect to x. The shift-map is also desired to be smooth
along the y dimension to avoid distortion, about which more
details will be discussed in section 3.4.

The importance map in section 3.1 provides the key con-
straint to create the shift-map. Ideally the neighboring pix-
els with similar importance should shift together to maintain
their structure as a group. To retain the prominent object
shapes close to the original, pixels with high importance
should not shift much relative to the neighbors with sim-
ilar importance. On contrary pixels with low importance
should contribute more on the overall shift across the image.
Clearly these constraints are mainly on the relative shift of
neighboring pixels, i.e. the gradient of the shift-map. Con-
stant shift gradients refer to a uniform scaling of the local
neighborhood. Zero gradient means rigid translation of the
associated area and big gradient corresponds to large defor-
mation. For simplicity of illustration, we define the shift
gradient along the width dimension (x),

G(x, y) = ∇xM(x, y) (1)

(a) Warped Result (b) Shift-Map (c) Shift-Map Gradient

Figure 4. Shift-map and gradient by uniform scaling (top-row) and
importance filtering (bottom). Both shift-maps monotonically in-
crease. The shift-map gradient remains constant for uniform scal-
ing, while varying greatly for importance filtering. Here red color
refers to large shifts and blue means small.

Fig.4(c) shows an example of the shift-map gradient fields
using uniform scaling and importance filtering respectively.
As we expected, uniform scaling leads to constant gradi-
ents while importance filtering results in greatly varying
gradients across the image. Comparing the original im-
age in Fig.3(L) and the final target image in Fig.4(a), we
can see that the region of human body has small (blue) and
nearly constant gradient so as to retain the part of image
nearly rigid, while the background region has big (green
and red) and varying gradient to allow more severe defor-
mation. This is exactly our purpose. Below we present how
our importance filtering algorithm constructs this gradient
field based on the importance map.

3.3. Gradient Mapping Function

We propose to estimate the shift gradient based on the
corresponding pixel importance using a non-linear map-
ping function. Let the importance be normalized such that
S(x, y) ∈ [0, 1]. The mapping function is desired to result
in bigger gradient when the importance is closer to 0 and
smaller value for importance closer to 1. The mapping is
non-linear so that the value drops faster when the impor-
tance gets closer to 1. An intuitive choice for such a func-
tion is the zero-mean Gaussian,

G(x, y) = � · e−( S(x,y)
σ )2 (2)

where σ is the variance and � is the normalization term. A
typical value of σ we use is 0.5.

Based on Eqn.(1), the integral of shift gradient in a row
equals the total pixel shift from the original width X to the
target width X ′, i.e. |X ′ − X | =

∑X−1
x=0 G(x, y). Thus �

can be computed as,

� =
|X ′ − X |

∑X−1
x=0 e−( S(x,y)

σ )2
= C · |α − 1| (3)

where

C =
X

∑X−1
x=0 e−( S(x,y)

σ )2
, α = X ′/X (4)
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α is the scaling factor. Apparently using the mapping func-
tion in Eqn.(2) the shift gradient will be uniformly scaled by
|α− 1|. The left column in Fig.5 shows an example of shift
gradient varying with different α (blue line), the top for a
pixel with high importance (1.5σ)and the bottom for a low-
importance one (0.5σ). We can see that, when α = 1, i.e.
copying, both gradients are zeros. When α > 1, i.e. enlarg-
ing, the gradient for the important pixel increases linearly
with α getting bigger. As a result the distortion in promi-
nent areas becomes more noticeable, as shown at the right
top of Fig.5 (α = 1.5). On the other hand, when α < 1,
i.e. shrinking, the gradient for the less-important pixel in-
creases linearly with α getting smaller. Since the shrink-
ing basically squeezes or even removes less-important pix-
els, the up-scaled gradient leads to more severe cut on less-
important areas in the prominent contents, as shown at the
right top of Fig.5 (α = 0.4).

To avoid such distortion, the mapping function should be
designed in such a way that, when α > 1, the gradient for an
important pixel starts to drop quickly with α getting bigger;
when α < 1, the gradient for a less-important pixel grows
more slowly than that by Eqn.(2) with α getting smaller.
This way both the undesired deformation and cut in promi-
nent areas can be reduced. Accordingly we propose three
different designs for the mapping function,

G(x, y, α) = C1 · |α − 1|e−α2α2 ·( S(x,y)
σ )2 (5)

G(x, y, α) = C2 · |α − 1|e−( α·S(x,y)
σ )2 (6)

G(x, y, α) = C3 · |α − 1|e−|α−1|·(S(x,y)
σ )2 (7)

where the normalization terms can be computed similarly.

As shown in Fig.5, these mapping functions satisfy our
need but serve for different cases. When α > 1, the gra-
dients for the important pixel drop to below Eqn.(2) before
α reaches 2. Among them Eqn.(5) drops the fastest and (7)
the slowest. The gradient by Eqn.(2) is always bigger than
both (5) and (6), but smaller than (7) when α < 2. As a
result, Eqn.(5) retains the prominent contents the best, (6)
works better than (2), and (7) allows the most stretching on
prominent objects when α < 2, as shown in Fig.5.

When α < 1, the gradients for less-important pixels by
all the three functions are always lower than that by Eqn.(2).
Among them Eqn.(5) is the highest. Eqn.(6) is higher than
(7) when α > 0.6, but lower with smaller α. As a result,
all three functions achieve less cut in the prominent areas
than that by Eqn.(2). Eqn.(7) leads to the least cut when
α > 0.6 and (6) saves prominent contents the most when
further down-scaling, as shown in Fig.5.

These mapping functions can be easily further combined
into one function with more stable performance. But in
our system we provide all of them and leave it for users to
choose the best one, since they can serve for different pur-
poses, e.g. retaining important image regions or reducing
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Figure 5. Left shows the response of the four gradient mapping
functions with respect to the scaling factor α, top for an important
pixel and bottom for a less-important one. Right shows the result
images using respective functions at three resizing scales.

the cut on them. In the rest of the paper, we use Eqn.(5) as
the mapping function to illustrate our method, since it works
the best to preserve the prominent contents as well as min-
imize the structural distortion. An example of the gradient
field by Eqn.(5) is shown in Fig.4(c), where α = 0.5.

3.4. Gradient Integration by Importance-Weighted
Filtering

Once the shift gradients G are constructed, we can in-
tegrate them to estimate the shift-map M and render the
target image. A straightforward solution to the integral is to
optimize the objective as follows,

Mopt = minM |∇xM − G| (8)

s.t. M(0, y) = 0, M(X, y) = |X ′ − X |
Such an optimization process is often computationally ex-
pensive. Furthermore, since the pixel shift is only one-
dimensional, integration along individual rows may still be
inconsistent with each other. This inconsistency will cause
undesired visual distortion in the target image. A naive so-
lution to this may be direct gradient integration followed by
shift-map smoothing using box filters. However smooth-
ing the shift-map directly has disadvantages. First, it often
leads to artifacts such as blurriness, holes, and pixel swaps,
especially cross the object borders. Second and more im-
portantly, smoothing by box filters can hardly rectify the
shift inconsistency across the image. The inconsistency is
accumulated over the columns during integration and can
be big everywhere in the later part of the image. The box
filters smooth the pixel shifts in small local neighborhood
and thus can unlikely restore the global consistency in the
target image, as shown in Fig.6 (L).

To retain consistency, we propose an efficient algorithm
that incorporates importance-weighted filtering into the in-
tegration process. Specifically, at each step we integrate one
pixel in each row at the present column. The shift integral
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Figure 6. (L) Enlarged image using the shift-map computed by
direct integration followed by box filter smoothing; (R) Enlarged
image using the shift-map by our method.

at this pixel equals its gradient plus an importance-weighted
average of the pixel shifts in a large neighborhood within
the previous column. The formulation is,

M(x, y) =

∑y+r
j=y−r w(x, j)[M(x − 1, j) + G(x, j)]

∑y+r
j=y−r w(x, j)

(9)

It defines a 1D column filter of size (2r + 1). The typi-
cal choice for r is a quarter of the image height. The high
efficiency of 1D filter allows such a large kernel size, and
averaging over a large neighborhood enables the integrated
shift-map to be smooth and consistent in both dimensions.
The weight w is designed in such a way that the averag-
ing filter does not affect the important pixels as much as
the unimportant ones. In another word, in the filtering pro-
cess the shift from the important pixels should contribute
more so that their shape will not be distorted by the nearby
unimportant pixels. Hence we define w based on the pixel
importance as follows,

w(x, y) = eS(x,y) (10)

Fig.4(b) shows the shift-map integrated from the gradient
field in 4(c) using our method, where α = 0.5. As expected,
the pixel shifts are smooth and consistent. The target im-
age can then be easily warped based on the pixel shifts. As
shown in Fig.6(R), the enlarged image preserves the promi-
nent contents, e.g. human, as well as retain the overall struc-
tural consistency, e.g. the relationship among objects.

4. Results and Discussion

We have tested our importance filtering algorithm on var-
ious images in a PC with Duo CPU 2.53GHz. Without code
optimization, it takes less than 80ms for retargeting an im-
age of 1024 × 768, without the need of down-sampling.
Our system is flexible to provide both fully automatic solu-
tion and interactive way for users to select areas to preserve.
Though all the results shown in this paper are achieved by
the automatic solution. Fig.7 shows an example of the en-
tire pipeline of our importance filtering algorithm, where
the important contents are well preserved without distorting
the overall image structure.

We compare our method with the state-of-art methods
on the RetargetMe dataset [14]. Fig.8 shows five exam-
ples. Due to space limit, we only show three methods, im-
proved seam carving [15], shift map [13], and scale-and-

(a) (b) (c) (d) (e)

Figure 7. (a) Original, (b) Saliency, (c) Importance map, (d) Shift
gradient field by Eqn.(5), (e) Retargeted image by our method.

stretch [22] here. Two more comparisons including stream
video [11] and multi-operator [16] are shown in Fig.1. As
expected, our method achieves the best overall balance be-
tween retaining the prominent contents and minimizing the
distortion on image structure. The other methods generally
work well but lead to noticeable artifacts occasionally.

For improved seam carving [15], abrupt distortions occur
on the human bodies in the first row and the house shapes in
the third and fifth rows of Fig.8. Stream video [11] stretches
the images unnaturally and also causes undesired distortion,
e.g. the leg of the man on the right and the white flags on the
pillars in Figure 1. Scale-and-stretch [22] avoids abrupt dis-
tortions and achieves smooth image structure, but the con-
tents such as humans in the first two rows, house shadow in
the third row, and street sidewalk in the fifth row in Fig.8 are
stretched or squeezed unnaturally. Shift map [13] produces
smooth and natural images after resizing, but it results in se-
vere cuts on important contents almost in all the examples.
It can also alter the image contents significantly, e.g. the
roof and chairs in Fig.1 and the shoulder of the girl in the
second row of Fig.8. In many cases the resized images by
these methods, especially scale-and-stretch [22] and shift
map [13], may by themselves look quite realistic. But when
placed together with the original image, significant changes
on image structure or prominent contents can be observed.
Our method tends to minimize such changes.

Among the existing works, the multi-operator method
yields the most similar results with ours, as shown in Fig.1.
The slight difference is that our method favors more on pre-
serving the important contents and allows more deformation
on unimportant background areas. Please refer to the sup-
plementary materials for more results. We can also share
our program for evaluation and comparison.

As shown in Fig.2, one of the critical steps in our method
is image saliency estimation. It is a difficult problem by
itself and none of the saliency measurements can guaran-
tee a perfect estimation. In case the visual attention-based
saliency measurement [12] fails to locate a prominent area,
our method may result in undesired distortion in that area.
For example, in the first row of Fig.8, one leg of the sec-
ond man from the left is given a very low saliency. Our
method thus shrinks it more than the other leg and leads to
an unnatural local area in the resized image. A more reliable
saliency measurement can further improve the performance
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of our method, though it is not our key concern in this paper.
Our method directly warps the image pixels based on

the integrated shift-map to render the final target image.
In case the unimportant areas are squeezed a lot, the di-
rect mapping may result in artifacts like discontinuity in the
resized image. For example, in the second row of Fig.8,
the right top of the image is squeezed significantly and ap-
pears divided by a couple of vertical lines. One solution
may be to warp the color gradient of the resized image and
then integrate the gradient to construct the target image, us-
ing gradient-domain compositing methods such as Poisson
blending. This way a smooth color image can be achieved.
A similar idea is presented in [20].

We straightforwardly extend our method for content-
aware video retargeting, by basically frame-by-frame appli-
cation of our image resizing method. The only difference
is that a motion feature, motion energy image (MEI) [2], is
added to the saliency cues. For each frame, the MEI is com-
puted using a neighborhood of 20 frames and directly added
to its image saliency to construct the combined saliency.
The rest of the process is exactly identical to that for im-
age retargeting. Since the original image frame is used
as guidance in the filtering processes, our method is able
to naturally maintain the temporal coherence in the retar-
geted video without the need of special care. For a video of
640× 256, Our method achieves 15fps with pre-computed
saliency or 6fps including saliency calculation using the
above-mentioned PC. Due to space limit, please refer to the
supplementary materials for out results. Our method does
not consider the global camera motion and thus works on
videos by nearly fixed cameras. Similar to [21], the camera
motion can be compensated by frame registration.

5. Conclusion and Future Work

We have presented the importance filtering algorithm for
content-aware image retargeting. It directly uses the origi-
nal image as the constraint to filter and estimate pixel impor-
tance so that it is consistent with the image structure. This
is the key to minimize the visual distortion and yet preserve
the prominent image contents. The constraint is applied on
the gradient of pixel shift, instead of directly on pixel shift.
This further avoids undesired distortion such as pixel swap
that occurs to many earlier methods. The importance filter-
ing operations are highly efficient and ready for real-time
applications. We also show that easy extension to video re-
targeting is promising.

One potential improvement to the importance filtering
algorithm is to extend the one-dimensional shift gradients
to 2D. Even though the pixels all shift along the same di-
mension, the shift-map on the 2D image has a 2D gradient
field. We are developing methods to estimate such 2D shift
gradients and then optimize their integration to construct
the shift-map by methods such as alternative 1D filtering or

Poisson blending. We believe this will further improve the
2D smoothness and consistency of the resized image.
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Original Image OursScale-and-StretchShift  MapImproved Seam Carving

Figure 8. Comparison with the existing methods: improved seam carving [15], shift map [13], and scale-and-stretch [22]. All images are
retargeted to half width (α = 0.5). Note the distorted human bodies and buildings by [15], the unnatural stretch or squeeze on human
bodies and houses by [22], and the cut and misplacement on fish, buildings, and humans by [13]. Our method tends to minimize such
distortions while preserving prominent contents.
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