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Abstract

Acquiring dynamic 3D fluid surfaces is a challenging
problem in computer vision. Single or stereo camera based
solutions are sensitive to refraction distortions, fast fluid
motions, and calibration errors. In this paper, we present a
multi-view based solution for robustly capturing fast evolv-
ing fluid wavefronts. We first construct a portable, 3x3
camera array system as the main acquisition device. We
elaborately design the system to allow high-resolution and
high-speed capture. To recover fluid surfaces, we place a
known pattern beneath the surface and position the cam-
era array on top to observe the pattern. By tracking the
distorted feature points over time and across cameras, we
obtain spatial-temporal correspondence maps and we use
them for specular carving to reconstruct the time-varying
surface. In case one of the cameras loses track due to dis-
tortions or blurs, we use the rest of the cameras to construct
the surface and then apply multi-perspective warping to lo-
cate the lost-track feature points so that we can continue
using the camera in later frames. Our experiments on syn-
thetic and real data demonstrate that our multi-view frame-
work is robust and reliable.

1. Introduction

In recent years, modeling dynamic 3D fluid surfaces has
attracted much attention from many research fields, ranging
from physical-based modeling [11] to oceanography [12].
While tremendous achievements have been made on devel-
oping numerical simulators [6] to estimate fluid surface evo-
lutions, the problem of capturing real dynamic 3D fluid sur-
faces is still challenging: the acquisition system should be
non-intrusive, high-speed and high-resolution, and the re-
construction method should be robust in presence or strong
distortions and blurs.

In computer vision, a commonly adopted solution for
fluid surface acquisition is image-based modeling. Single
and multi-camera based approaches have sought to take ad-
vantage of fluid optical properties and attempted to extract
the shape of surfaces from the captured images [18, 1, 17].

Figure 1. Dynamic Fluid Surface Acquisition. Left shows our
camera array for acquiring the surfaces. Right shows the refrac-
tion distortion patterns in different cameras.

Recent studies have shown that refraction-based methods
methods produce more accurate reconstructions than the
reflection-based ones [17]. However, many previous ap-
proaches are sensitive to refraction distortions, fast fluid
motions, and calibration errors.

In this paper, we present a complete multi-view based so-
lution for robustly capturing fast evolving fluid wavefronts.
We first construct a portable, 3x3 camera array system as
the main acquisition device. Our system is controlled by a
single workstation and hence is portable. We also address
practical issues such as data streaming and storage and time-
divided multiplexing for high speed acquisition.

To recover fluid surfaces, we place a known pattern be-
neath the surface and position the camera array on top to
observe the pattern. By tracking the distorted feature points
over time and across cameras, we obtain spatial-temporal
correspondence maps and we use them for specular carv-
ing to reconstruct the time-varying surface. In case one of
the cameras loses track due to distortions or blurs, we use
the rest cameras to construct the surface and apply multi-
perspective warping to locate the lost-track feature points
so that we can continue using the camera in later frames.
We apply our system to capture a variety types of fluid mo-
tions. Experiments on synthetic and real data demonstrate
that our framework is robust and reliable.

2. Related Work

Existing image-based solutions for reconstructing real
specular surfaces such as mirrors and fluid surfaces can be
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classified into three categories.
Single-Camera Solutions. Solutions in this category

use only one camera for recovering the surface. These
methods often assume fluid surfaces are piecewise planar
and then solve a generalized Structure-from-Motion (SfM)
problem [10]. General specular surfaces can also be recov-
ered from distortions [1]. Recent work by Ding et al. [9]
first recovers the refraction ray geometry from distorted line
patterns (curves) and then approximates surface differen-
tial attributes such as curvatures from ray geometry. How-
ever, they assume nearly flat surfaces whereas we aim to
acquire fast evolving wavefronts. Further, both SfM and
shape-from-distortion methods rely on accurately tracking
features and are therefore sensitive to image distortions.
Our camera array solution resolves this issue via a multi-
view approach: if one camera loses correspondences, its
near cameras can be used to fill in the gap.

Stereo-Camera Solutions. One can also use a stereo
setup for specular surface reconstruction. Sanderson et
al. [19] proposed a stereo camera configuration for resolv-
ing ambiguities commonly observed in single-camera based
methods. Morris and Kutulakos [17] introduced the no-
tion of refraction disparity and developed new optimization
schemes to simultaneously estimate the height field and the
normal field. However, similar to the single-camera solu-
tions, these methods still suffer from refraction distortions
and motion blurs: once a camera C∗ loses track of the fea-
ture points at a frame, it can no longer track them in its
consecutive frames. Our solution resolves this problem by
using the rest of the cameras to first approximate the surface
and then ray-trace the surface to locate the missing feature
points in C∗ so that we can continue tracking the points.

Multi-View Solutions. Finally, one can use multiple
cameras for acquiring specular surfaces. Blake [7] mea-
sured the variations of specularities from different view-
ing directions to determine the differential properties of
the surface. Bonfort and Sturm [8] used multiple-view ge-
ometry to build a volumetric reconstruction of mirror sur-
faces. Most previous approaches are specifically designed
for static specular surfaces. For instance, one can dynami-
cally adjust the calibration pattern to produce reliable corre-
spondences. However, for capturing dynamic fluid surfaces,
the pattern needs to be fixed in space and robustly tracking
the feature points on the pattern is much more difficult. In
addition, the fluid surface is rapidly evolving. Therefore, it
is crucial to capture and store the imagery data at high speed
to avoid motion blurs.

3. Acquisition Device

We first present a portable camera array system for ac-
quiring the fluid surfaces. In recent year, a number of
camera systems have been developed for specific imaging
tasks. For example, the Stanford light field camera array

Figure 2. (Left) The setup of our fluid surface acquisition sys-
tem. (Right) We divide the camera array into two groups (gray
and black) and interleave the trigger for each group to double the
frame rate.

[21, 22, 20, 15] is a two dimensional grid composed of 128
1.3 megapixel firewire cameras which stream live video to
a stripped disk array. The MIT light field camera array [23]
uses a smaller grid of 64 1.3 megapixel USB webcams for
synthesizing dynamic Depth-of-Field effects. These sys-
tems require using multiple workstations and their system
infrastructure such as the camera grid, interconnects, and
workstations are bulky, making them less suitable for on-
site tasks.

We have constructed a small-scale camera array con-
trolled by a single workstation. Our system uses an array
of 9 Pointgrey Flea2 cameras to capture the dynamic fluid
surface. We mount the camera array on a metal grid at-
tached to two tripods so that we can easily adjust the height
and the orientation of the camera array. The camera array
is connected to a single data server via 5 PCI-E Firewire
adaptors. The use of Firewire bus allows us to synchronize
cameras through the Pointgrey software solution.

Data Streaming. Streaming and storing image data
from 9 cameras to a single workstation is another challenge.
In our system, a camera captures at 8-bit images of reso-
lution 1024x768 at 30fps. This indicates that we need to
stream about 2Gbps data. To store the data, previous solu-
tions either use complex computer farm with fast ethernet
connections or apply compression on the raw imagery data
to reduce the amount of data. For fluid surface acquisition,
the use of compression scheme is highly undesirable as it
may destroy features in the images. We therefore stream
and store uncompressed imagery data. To do so, we use an
external SATA disk array as the data storage device. The
disk array is equipped with 6 Seagate 1TB SATA disks, and
connected to the server through a PCI-E x4 card. We config-
ure RAID 0 for disk array to achieve the maximum perfor-
mance. It is also worth noting that our system is also more
affordable: by eliminating multiple workstations, network
devices and external camera synchronization units, our sys-
tem (including 9 cameras) has a total cost under $10,000.

Time-Divided Multiplexing. Since the Flea2 cameras
can only achieve a maximum frame rate of 30fps, we have
adopted a time divided multiplexing scheme to further im-
prove the frame rate of our system. Our solution is similar
to the Stanford light field high speed imaging scheme [22]



Figure 3. A diagram showing the pipeline of our camera-array
based fluid surface reconstruction algorithm.

that interleaves the exposure time at each camera. Specif-
ically, we divide the camera array into two groups, four in
one group and five in the other. We set the exposure time of
each camera to be 10ms to reduce motion blurs. While all
cameras still capture at 30fps, we trigger the second cam-
era group with a 1/60 second delay from the first one. We
also develop special algorithms for warping the reconstruc-
tion result from the first group to the second (Section 4.2)
so that our system is able to perform at 60fps.

Experiment Setup. We use a off-the-shelf glass water
tank of dimension 30in × 12in × 12in placed firmly on a
metal grid to contain dynamic fluids. We print a black-white
checkerboard pattern on regular paper, laminate it, and then
glue it to a planar plastic plate. We stick this plate onto bot-
tom of the container and use it for both camera calibration
and feature tracking.

Lens Specs. In our experiments, the choice of camera
lenses is also crucial in our acquisition process. For ex-
ample, a camera’s field-of-view should be large enough to
cover the complete fluid surface. In our setup, we choose
Rainbow 4.8mm wide angle lens with a focal distance of
12in. Since all cameras are mounted on a reconfigurable
rig, we can easily adjust the camera baseline to achieve op-
timal reconstructions.

Calibration. A number of options [15, 23] are available
for calibrating the cameras in the array. Since the observ-
able regions of our cameras have large overlaps, we directly
use Zhang’s algorithm [25] for calibration by reusing the
checkerboard pattern mounted at the bottom of the tank.
This approach also has the advantage of automatically cal-
ibrating all cameras under the same coordinate system and
simplifies our feature warping scheme.

4. Fluid Surface Reconstruction

To recover dynamic fluid surfaces using our system, we
place a known pattern beneath the surface so that each in-
dividual camera in the array will observe a distinct time-
varying distortion pattern. We develop a feature tracking
algorithm for robustly tracking checkerboard corners under
both distortions and motion blurs. In particular, if a camera
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Figure 4. Classical Lucas-Kanade (L-K) tracker loses track at re-
gions with strong distortions. Our locally constrained L-K tracker
is able to robustly track in these regions.

C∗ in the array loses track, we use the rest cameras to re-
construct the surface and then apply multi-perspective ray
tracing to locate the feature points in C∗ so that we can still
use the camera in later frames. We call this process feature
warping.

The tracking results provide pixel-point correspondences
in each camera. We then generate a dense (per-pixel-based)
correspondence map and apply specular carving to recon-
struct the normal field of the fluid surface. We then integrate
the normal field to obtain the actual fluid surface. We fur-
ther apply feature warping to processing time-divided mul-
tiplexing image array data to double the frame rate of our
acquisition. Figure 3 illustrates the processing pipeline of
our framework.

4.1. Correspondence Maps

A crucial step in our fluid surface reconstruction algo-
rithm is to establish feature correspondences. Notice, al-
though each single corner may be strongly distorted and
shifted, the local checkerboard structure (e.g., the relative
position of neighboring corners) generally remains stable.
We therefore introduce the local affine constraints on the
square grid. We assume one-to-one correspondence map-
ping and each feature point (square corner) can be expressed
as affine combinations of its neighboring feature points, and
the affine coefficients need to be within a certain range.

Let I0 and I1 be the two consecutive frames in a cam-
era in the array, (V, E) represents the lattice graph of the
square grid where V denotes the checker-board corners and
E denotes the edges connecting the corners. Assume that
pi = [xi, yi]T ∈ V denotes the detected or previously
tracked corners in I0 and m(pi) are their correspondences
in I1. Our goal is to establish correspondences between pi

and m(pi). We compute the matching cost as the combina-
tion of the geometric error and the appearance error:

|V |∑
i=1

{‖I0(Npi) − W (I(Npi))‖+

λ · g(pi,Npi ; m(pi),Nm(pi))
}

(1)
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Figure 5. Our refraction carving framework. (a) Given the incident and the refracted directions, we can solve for the surface normal. (b)
Each voxel will give a different normal estimate. (c) Using an array of cameras, we can find the optimal voxel/normal. (d) Finally, we
apply space carving using the normal consistency criteria.

where W is an affine warping function defined by
the neighboring corner correspondences. ‖I0(Npi) −
W (I(Npi))‖ is the appearance matching cost for the lo-
cal patch around pi. λ is a constant controlling the rela-
tive weight between the appearance cost and the geometric
costs. g(·) is the geometric cost that measures the geometric
dissimilarity between the original checker-board corner set
Npi and the candidate corner set Nm(pi

).
Assume pi as the affine combination of Npi : pi =

A · Npi . A is the affine coefficients, and similarly, Am

represent the affine coefficients for m(pi). We define the
geometric cost as:

g(pi,Npi ; m(pi),Nm(pi)) = ‖A − Am‖ (2)

We incorporate the matching cost in Eqn. (1) and (2)into
the inverse-compositional framework of the Lucas-Kanade
(L-K) tracker [4, 3, 5] and use the modified L-K tracker for
tracking checker-board corners under refraction distortions.

Figure 4 compares the tracking results on one viewing
camera using the classical L-K tracker and our approach.
Our method is able to robustly track the feature points in
presence of strong refraction distortions whereas L-K loses
track at these places.

Recall that the tracked feature correspondences are
rather sparse. Since our goal is to conduct dense multi-view
reconstruction, we further construct dense correspondence
maps. Given a correspondence map in each camera at ev-
ery frame, we first compute a distance map using Chamfer
Distance Transform, then generate a local Delaunay trian-
gulation using the 8-neighbors for every sample, and finally
interpolate per-pixel correspondence (in terms of the hori-
zontal and vertical shifts) using the triangulation.

It is important to note that our tracking algorithm may
still fail in presence of strong distortions. While this is fa-
tal to most previous single-camera or stereo-camera based
approaches [17, 1], our multi-view approach naturally re-
solves this problem. Specifically, we benefit from the anal-
ysis that distortions on specular surfaces are non-generic
[13]. Therefore, if one camera C∗ in the array loses track on
a surface patch due to strong distortions, it is unlikely that

the rest cameras will observe the same level of distortions.
This indicates that can use the rest cameras to construct the
patch. Further, we can apply multi-perspective ray-tracing
to locate the lost-track feature points in C∗ so that we can
continue using C∗ in later frames instead of completely dis-
carding C∗.

4.2. Volumetric Reconstruction

In the previous subsection, we discussed how to track
feature points over time in each viewing camera. At the
beginning of the acquisition, we further use the camera ar-
ray to capture a nearly flat (undisturbed) fluid surface. This
process allows us to establish spatial correspondence across
the views. Combined with the temporal tracking results, we
hence establish spatial-temporal correspondences. There-
fore, we can apply specular surface carving [8] for recon-
structing the surface.

Specifically, given features correspondences between N
views, our goal is to produce a volumetric reconstruction of
the fluid surface. To do so, we first discretize the bounding
volume of the fluid surface into 3D voxels and then measure
the consistency of light paths for each voxel.

Refraction Light Path Consistency. Assume m is the
refractive index of the surface. The incident ray�i, the exit
ray �r, and the normal �n should be coplanar, and the incident
angle φ1 and exit angle φ2 satisfy Snell’s Law, as shown in
Figure 5(a), i.e.,

sin φ1

sin φ2
= m (3)

For every voxel inside the volume, we first project it to
each of the observing cameras to get its corresponding pixel
coordinate. We then look up the correspondence maps to
find its corresponding 3D feature points. As a result, every
voxel defines a set of light paths from each of the viewing
cameras to the pattern plane. Further, we can solve for the
unique normal given by each light path as follows.

Assume the voxel is at Ȯ[ox, oy, oz], the observing cam-
era’s COP is Q̇[qx, qy, qz] and the checker board corner po-
sition Ṗ [px, py, pz], the normalized incident ray direction�i



and refraction ray direction �r hence are:

�i =
Ȯ − Q̇

‖Ȯ − Q̇‖ , �r =
Ṗ − Ȯ

‖Ṗ − Ȯ‖ (4)

Let α denote the angle between �r and�i, we have:

φ2 + α = φ1, cosα =�i · �r (5)

Combining it with Eqn. (3), we have:

m =
sin(α + φ2)

sin φ2
⇒ tan φ2 =

sin α

m − cosα
(6)

We thus can decompose�i to �ri along �r and its orthogonal
direction �h, and compute the orthogonal component as:

�h =�i − �r cosα (7)

Finally, we can compute the normal direction as:

�n = −(�r + �r⊥) = −(�r − tan φ2

�h

‖�h‖
)

=

√
1 − (�i · �r)2
m −�i · �r [�i − (�i · �r)�r] − �r (8)

Once we obtain the normal estimates for each light path,
we can then measure the consistency as:

D =
1
W

∑
1≤i,j≤N,i�=j

‖ �ni − �nj‖ (9)

where cameras i and j observe ”valid” correspondences
at the pixel (we exclude the cameras that lose track due to
distortions) and W is the total number of light path pairs.

Restricted Search. To reduce the computational cost
and improve the robustness, we can use a coarse-to-fine
scheme. Conceptually, we can first discretize the volume
using large voxels (lower resolution) to obtain an initial es-
timation of the surface. Based on the rough estimation, we
can then refine the voxels to improve the resolution of the
reconstruction. Although faster, this simple scheme is also
more sensitive to noise and hence less robust.

Our solution is to effectively use temporal coherence of
the surface. Assume we have finished reconstructing the
fluid surface as a height field zk(x, y) for frame k, where x
and y correspond to the two discretization dimensions. For
every [x, y], we define a search range in z as:

[zk(x, y) + L1mk(x, y) − L2, z(x, y) + L1mk(x, y) + L2]
where mk(x, y) represents the motion vector in z direction
of voxel [x, y, zk(x, y)] in frame k, and L1 and L2 are two
constants to tolerate the motion estimation errors, as shown
in Figure 5(d). This significantly reduces the search range
and improve the robustness of the carving scheme.

Surface Integration. Our specular carving algorithm
outputs both the height map and the normal map of the sur-
face. However, the height map is often much more noisy
than the normal map, as shown in Figure 7. We therefore

C*

Checker Board
Captured Image

Image Warped from the Virtual Checkerboard

P

Figure 6. In case a camera C∗ loses track of a feature point P , we
use the recovered surface from the rest of the cameras and back-
trace P to C∗.

choose to use the normal map and integrate it to recover the
surface. Surface integration from a gradient field has been
well studied and can be formulated as to solve the Poisson
equation. In our implementation, we adopt a similar ap-
proach to [2] for recovering the surface. To reduce noise,
we further smooth the height map to obtain more reliable
boundary conditions. Figure 7 compares our reconstruction
result with the ground truth on synthetic fluid surfaces.

CUDA Implementation. Our volumetric reconstruc-
tion algorithm needs to be applied to a large number of
high-resolution frames. Since the operation conducted at
each voxel is nearly the same (estimating the normal and
measuring the consistency), we have implemented a GPU
version of the algorithm using NVidia’s CUDA. Compared
with the un-optimized CPU solution, our GPU implementa-
tion achieves over 100 times speedup on an Nvidia GeForce
9600 Graphics Card. We also use CUDA to implement the
surface integration algorithm to form a unified processing
pipeline.

Feature Warping. Compared with the single or stereo
camera based solutions, our multi-view approach can use
the rest cameras to recover the surface even if one camera
loses track due to distortions or blurs. Further, our imple-
mentation interleaves the exposure of two camera groups in
order to double the frame rate in our acquisition. In both
case, it is essential to ”recover” the lost-track feature points
in a single or a group of cameras in order to continue the
tracking tasks in later frames.

Specifically, given the reconstructed surface as a triangu-
lar mesh, our goal is to find where the feature points (cor-
ners on the checkerboard) will be located in a viewing cam-
era C∗, where C∗ can be the one that loses track or in a
different camera group. Since refraction is non-linear phe-
nomenon, this is a classical inverse ray tracing problem and
generally does not have a closed-form solution. Our solu-
tion is to apply multi-perspective warping using the recently
proposed General Linear Cameras [24]. We first apply for-
ward tracing: for each triangle Ṗ1,2,3 on the mesh, we for-
ward trace the three rays at the vertices from the camera to



(b) Ground ruth Normal X-Component
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Figure 7. Results on synthetic data. (a-c) show the ground truth
height field and normal field. (d-f) show the corresponding raw
refraction carving results. Notice that the recovered height field is
very noisy but the normal field is highly accurate. (g) We integrate
(e-f) using the boundary from (d) to obtain the final reconstruc-
tion. (h-i) we compare the ray traced refraction distortions on the
ground truth surface (h) and our reconstruction (i).

checkerboard as �r1,2,3, which also defines a local GLC. We
intersect the rays with the checker-board plane at Ṗ 0

1,2,3. We

then find checkerboard corners inside ΔṖ 0
1 Ṗ 0

2 Ṗ 0
3 and using

the local GLC to compute its refraction ray r′ and trace the
ray back to C∗ and find its corresponding pixel coordinate.

5. Results and Discussions

We have validated our framework on both synthetic and
real fluid surfaces. For synthetic surfaces, we use the
PovRay Ray Tracer to render 9 image sequences of fluid
surfaces from a virtual 3x3 camera array. For real surfaces,
we capture an array of video streams of the surface using
our acquisition device.

Synthetic Surfaces. We first conduct experiments us-
ing our method on simulated fluid motions. In Figure 9
column 2, we show sample frames of a ”drop” wave se-
quence, where the initial wavefront is a Gaussian function
z(x, y) = 0.1e−(x−w/2)2−(y−h/2)2 , where w = h = 128.
We assume that the fluid dynamics follows the Navier-
Stokes (NS) equation and propagate the wave via a discrete
NS solver [16]. We use a checkerboard with 23x35 grids
of unit squares and position it at z = 0. We further set the
refraction index of the fluid as 1.33 to emulate water. Using
the PovRay, we render images from a 3x3 camera array po-
sitioned at z = 30. The camera plane is se to be parallel to
the xy plane and the FOV of each camera set to match the
real ones in our camera array.

We start with detecting all feature points (corners) at the
first frame and correlate them with the ones on the checker-

Tracking Frame #100 @ View #7 Tracking Frame #100 @ View #1

Recovered High Map Recovered Surface

Figure 8. Results on real data. Top row shows the feature tracking
results on two views. Bottom row shows the recovered height field.

board. As the wavefront propagates, we apply our modi-
fied L-K algorithm to track these features over time. Since
all frames are rendered without motion blurs or noise, we
found our algorithm highly robust for establishing spatial-
temporal correspondence maps. Next, we combine the
tracking results with the ground truth camera parameters
for volumetric reconstruction. We apply our specular carv-
ing scheme at a resolution of 100x100 in xy dimension.
The volumetric reconstruction provides a height map and
a normal map at each time instance. We observe that, by
using the normal consistency constraint, the recovered nor-
mal maps are much more accurate than the height map, as
shown in Figure 7. Finally, we integrate the normal map,
where the boundary of the surface is extracted from the re-
covered height field. The bottom row of Figure 7(g) shows
the recovered fluid surface at a specific frame.

To illustrate the robustness of our approach over time,
we show the reconstruction results at different time frames
in Fig 9. Compared with the ground truth, our method faith-
fully captures shape deformations of the fluid surface over
time. The complete recovered sequences can be found in the
supplementary materials. We have further computed the ac-
tual reconstruction errors. Specifically, we sample the sur-
face at a 100x100 resolution and compute the error in the
height at each grid. The average error is 1.47×10−4 for the
Gaussian wave sequence and less than 2.63 × 10−4 for the
other sequences.

Real Surfaces. To capture real fluid surfaces, we set
up the camera array system as shown in Figure 2(Left).
We align the cameras so that they lie approximately on the
same plane parallel to the checkerboard plane. We first cali-
brate the cameras in the array using Zhang’s algorithm [25]
with a duplicated checkerboard. We then take an image of
the undisturbed water surface and detect feature correspon-
dences for the 0th frame. Notice that the translation of the
pattern due to refractions provide an initial height of the sur-
face which we will use in our specular carving algorithm.
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Figure 9. Results on a synthetic ”drop” wave. The complete sequences (ground truth and our reconstruction) can be found in the supple-
mentary video.

We separate 9 cameras into two groups, as shown in Figure
2(Right). The capture time is interleaved by 16.67ms.

To generate fluid motions without disturbing the cam-
era setup, we use a hair dryer to blow air onto the surface.
We start with reconstructing the first frame using cameras
in group A. Similar to the synthetic case, we detect feature
correspondences and apply specular carving to recover the
normal field and then the height field. Figure 8 shows the
tracked features from two views and reconstructed surface.
Given the recovered surface, we apply multi-perspective ray
tracing to locate the feature points in cameras in group B.
We then reapply the tracking algorithm on images captured
by group B, with the warped feature points as their previous
frames. Using the correspondence results, we recover the
surface at the second frame. We repeat this process by iter-
atively warping the reconstructed surface between group A
and B to improve the robustness in tracking.

When parts of a camera’s frame lose track due to distor-
tions or blurs, we simply discard the corresponding portion
and use the rest of the cameras for reconstruction. We then
apply multi-perspective ray tracing to locate the actual fea-
ture points in the camera so that we can continue to use the
camera in its later frames. Figure 10 shows four acquired
frames in the central camera in the array and their corre-
sponding reconstruction results. Notice that several patches
on the surface exhibit severe distortions or blurs, our algo-
rithm is still able to reconstruct reasonable surfaces and con-
tinue tracking the missing feature points using the warped
results. We refer the reviewers to the supplementary videos
for completely reconstructed sequences.

6. Conclusion and Future Work

We have presented a new framework for reconstructing
dynamic fluid surfaces by using a camera array. It is the
first multi-view (≥ 3) solution for fluid surface acquisi-
tion. We have addressed many practical issues, ranging
from hardware designs, to data streaming and storage, and

to robust reconstruction. We have validated our approach
on both synthetic and real world specular surfaces. Experi-
ments have demonstrated that our framework is robust and
accurate. In particular, our solution can handle the challeng-
ing problem of losing track of feature points which can be
detrimental or even fatal to single-camera or stereo based
methods. Further, by using time-divided multiplexing, our
method is capable of capturing fast evolving fluid wave-
fronts.

An important future direction is to integrate the fluid
dynamics model with the acquired fluid surfaces. Like
most previous approaches, our framework focuses on re-
constructing individual frames without considering tempo-
ral coherence. On one hand, we plan to explore how to find
the optimal surface that obeys the fluid dynamics and has
the minimal distance to our initial reconstruction. On the
other, we will investigate how to use the recovered dynamic
fluid surfaces to infer or validate existing fluid dynamics
models.

Finally, we plan to apply our system for acquiring wave-
front of more complex geometry such as folding or break-
ing waves. The challenge there is that the refraction path
consistency measure becomes obsolete. Since our camera-
array simultaneously capture the scene from multiple view-
points, a potential solution is to use light-path triangulation
[14]. However, previous solutions rely on varying the light-
ing/viewing directions for capturing static objects and hence
are not directly applicable to acquiring fast evolving fluid
surfaces. In the future, we will investigate combining our
camera-array with coded illuminations or with a projector
array for conducting light-path triangulation at every frame.
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Figure 10. Results on real data. From top to bottom: the captured frames from the central camera, the recovered normal field, and the
recovered height field. The complete sequence can be found in the supplementary video.
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