
Pacific Graphics 2010
P. Alliez, K. Bala, and K. Zhou
(Guest Editors)

Volume 29 (2010), Number 7

Real-time Depth of Field Rendering via Dynamic Light Field
Generation and Filtering

Xuan Yu 1, Rui Wang 2, and Jingyi Yu 1

1 Univ. of Delaware 2 Univ. of Massachusetts Amherst

Abstract
We present a new algorithm for efficient rendering of high-quality depth-of-field (DoF) effects. We start with a
single rasterized view (reference view) of the scene, and sample the light field by warping the reference view to
nearby views. We implement the algorithm using NVIDIA’s CUDA to achieve parallel processing, and exploit the
atomic operations to resolve visibility when multiple pixels warp to the same image location. We then directly syn-
thesize DoF effects from the sampled light field. To reduce aliasing artifacts, we propose an image-space filtering
technique that compensates for spatial undersampling using MIP mapping. The main advantages of our algorithm
are its simplicity and generality. We demonstrate interactive rendering of DoF effects in several complex scenes.
Compared to existing methods, ours does not require ray tracing and hence scales well with scene complexity.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Realistic depth-of-field (DoF) plays an important role in cre-
ating photographic effects in rendered images. With distribu-
tion ray tracing, DoF can be simulated by tracing many ran-
dom rays sampled on the lens [CPC84], and integrating the
radiance of each ray. Such a solution is accurate but takes
a long time to compute. Accumulation buffer [HA90] re-
organizes the rays as multiple pinhole cameras on the lens
and then renders each individual camera using rasterization.
Though fast, this technique requires repeated rendering of
the scene, therefore provides only limited speed.

Approximate solutions perform a spatially varying blur on
a single view image [Rok93,LKC09,EH07], and the amount
of blur is determined by the depth of each pixel. This ap-
proach is very fast but its accuracy is limited as the blurring
can cross depth boundaries. Recent advances exploit paral-
lel computation on the GPU to simulate high-quality DOF
effects in real-time [KS07, KTB09, LES09, LES10]. The re-
sults are impressive, but they require decomposition of the
geometry into discrete depth layers, which may lead to ren-
dering artifacts, especially for complex scenes.

In this paper, we present a new algorithm for efficient ren-
dering of high-quality depth-of-field (DoF) effects. Our al-

gorithm solves DoF rendering from the perspective of light
field rendering. We start with a single rasterization of the
scene, which we call the reference view. Instead of decom-
posing the depth into discrete layers, we aim to sample the
light field of the scene by warping the reference view to
nearby views. This is effectively a scatter-based approach
that approximates how the scene looks like from a different
but closeby view point. Our implementation uses NVIDIA’s
CUDA to achieve parallel processing. We also exploit the
GPU’s atomic operations to resolve visibility when multi-
ple pixels warp to the same image location. We then directly
synthesize DoF effects from the sampled light field. To re-
duce aliasing artifacts, we propose a novel image-space fil-
tering technique that compensates for spatial undersampling
using MIP mapping. The main advantages of our algorithm
are its simplicity and generality. We demonstrate interactive
rendering of DoF effects in several complex scenes. Com-
pared to existing methods, ours does not require ray trac-
ing and hence scales well with scene complexity. Figure 10
shows examples of our rendering computed at about 40 fps.

2. Previous Work.

Depth-of-Field. The equations governing DoF are well-
known in literature work. Assume that a thin lens has focal

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 1: Thin lens model and lens light field. (a) The cause
of defocus blurs. (b) Accumulation buffer reorganizes rays
into cameras. (c) Our lens light field parameterization.

length f , aperture size D (hence the f -number N = f/D),
and the sensor is placed at 1 unit distance away from the
lens. If the focal depth is s, applying the lens equation gives:

1
s
+1 =

1
f

(1)

For an arbitrary scene point p that is d(p) away from the
lens, if p is closer than the focal depth (i.e., d(p) < s), p’s
image will lie behind the image plane. This causes a circle of
confusion with diameter b(p) as shown in Figure 1(a), where

b(p) = α
| d(p)− s |

d(s−β)
(2)

Here α = f 2/N, and β = f . Similar defocus blurs occur for
points that are fathers away than the focal depth.

Post-Filtering Methods. Most real-time DoF methods
rely on post-processing of a single pinhole image. Gather-
based methods [Rok93, Sch04, EH07, LKC09] apply a spa-
tially varying blur at each pixel, and the amount of blur is
determined by the circle of confusion size. This can be easily
implemented on the GPU, leading to real-time performance.
However, an image-space spatial blur often causes intensity
leakage due to the fact that the blur can cross depth discon-
tinuities [Dem04].

Scatter-based methods [PC81] map source pixels onto the
circle of confusion and blend them from far to near. This re-
quires depth sorting, which is costly even on modern GPUs.
Our approach differs from these scatter-based methods in
that we do not project directly to the circle of confusion;
in addition, we exploit the GPU’s atomic operations to effi-
ciently resolve depth visibility.

While single-view methods are simple, they can lead to
artifacts due to incorrect depth visibility. These artifacts
can be effectively reduced using post-processing techniques

Figure 2: A diagram showing the pipeline of our rendering
algorithm.

such as anisotropic diffusion [BFSC04, KB07, KLO06] or
multi-layer fusion [LKC08,KTB09,KS07]. The recent work
by Lee et al. [LKC09] combines a circular filter and
anisotropic mipmapping to produce impressive DoF effects.
Their method is sophisticated, but the goal of our work is to
develop a simple yet effective technique to achieve similar
rendering quality without using sophisticated filtering.

Raytracing and Multiview Methods. Multi-view based
techniques build upon the classical distributed ray trac-
ing [CPC84]. The accumulation buffer technique [HA90]
reorganizes the rays as if they originate from cameras sam-
pled on the lens. It then renders each individual camera and
accumulates the results. However, repeated rendering of the
scene is expensive, therefore this technique is primarily used
for offline applications. Two recent algorithms by Lee et
al. [LES09, LES10] decompose the scene into depth layers
and use image-based ray tracing techniques to rapidly com-
pute DoF. Their method is able to achieve impressive results.
However, the layer-based scene representation may lead to
rendering artifacts, especially for complex scenes.

Some recent work also studied DoF effects in microp-
olygon rendering, notably [FLB∗09] and [HQL∗10]. With
a Reyes style rendering framework, these techniques can
achieve production quality effects. But micropolygon ren-
dering is currently still quite expensive, even by exploiting
the GPU’s parallel processing power.

Light Field Rendering. In this paper, we approach the
problem of real-time DoF from the perspective of light field
rendering. A light field [LH96] stores regularly sampled
views looking at an object on a 2D sampling plane. These
views form a 4D ray database and new views are synthesized
by querying and blending existing rays. Given the light field
of a scene, we can easily simulate DoF effects by integrat-
ing spatial and angular information in the light field. Isaksen
et al. [IMG00] proposed to render DoF by reparameterizing
the rays onto the focal plane and blending them via a wide
aperture filter. Ng et al. [Ng05] proposed a similar technique
in the Fourier space. Soler et al. [SSD∗09] applied Fourier

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 3: (a) shows a synthesized light field view before hole
filling. (b) shows the result after increasing the support size
of each write.

analysis in light transport to analyze adaptive sampling rate
for DoF effects. Our method also builds on the wide aperture
filter, but our focus is to develop real-time DoF algorithm by
sampling the light field on the fly.

3. Dynamic Light Field Generation

Figure 2 shows the pipeline of our algorithm. We start with
rendering a reference view and its depth map using rasteri-
zation. We then generate a light field by warping the refer-
ence view onto an array of virtual light field cameras. Once
we construct the light field, we then apply a wide aperture
filter [IMG00] to synthesize DoF effects. Furthermore, we
develop a simple but effective light field filtering technique
to reduce aliasing artifacts caused by spatial undersampling.

The core of our algorithm is to dynamically synthesize
a light field from a single rasterized view. For the rest of
the paper, we assume that our viewing camera has unit focal
length (i.e., the sensor is at unit distance away from the lens),
the vertical field-of-view (FoV) of the camera is θ, and the
horizontal and vertical resolutions are w and h, respectively.

3.1. Lens Light Field

Light fields provide an image-based representation that uses
a set of rays to describe a scene in place of explicit geom-
etry. A light field captures all the necessary rays within a
certain sub-space so that every possible view within a region
can be synthesized. In practice, a light field is stored as a 2D
array of images. Each pixel in the image can be indexed as
an integer 4-tuple (s, t,u,v), where (s, t) is the image index
in the array and (u,v) is the pixel index in the image. Note
that this camera-pixel representation differs from the clas-
sical two plane parametrization where (s, t,u,v) are defined
under the world coordinate.

In this paper, we construct a lens light field using the
camera-pixel stuv parametrization. We assume that the st
plane is the lens plane, and we put an array of virtual light
field cameras on this plane. The light field cameras have

Figure 4: Light field warping. (a) Directly warping the color
using the depth map leads to visibility problem. (b) We in-
stead warp the depth values and apply the CUDA’s atomic
min operation.

identical parameters (FoV, resolution, focal depth, etc) as the
viewing camera, and we use their pixel index as the uv coor-
dinates of the ray. We further denote the sensor plane as the
xy plane and the optical axis of the lens as the z direction.
We use the central light field camera (i.e., (s, t) = (0,0)) as
the reference camera R00 and use Lout(s, t,u,v) to denote the
lens light field.

Our light field is similar to the in-camera light field in
[Ng05]. The main difference is that we focus on model-
ing rays facing towards the scene whereas [Ng05] captures
the in-camera rays back onto the xy plane. To distinguish
between the two, we use Lin(x,y,s, t) to represent the in-
camera light field. A major advantage of using the camera-
pixel parametrization is that we can easily find all rays that
pass through a 3D point P in terms of its disparity. Assume
P is captured at pixel p(u0,v0) on the reference camera and
has depth z, we can compute the disparity of p using the fol-
lowing similarity relationship:

disp =
h

2tan(θ/2)
· 1

z
(3)

For every light field camera Rst , we can find its pixel (ray)
(u,v) that passes through P as:

(u,v) = (u0,v0)+disparity · (s, t) (4)

We call Equation 4 the light field warping equation. In fol-
lowing section, we will use this equation to generate the light
field. We will further apply the warping equation to synthe-
size DoF effects in Section 4.

3.2. Parallel Light Field Generation

Our goal is to generate a light field from the reference view
R00. To do so, we first render the color and depth images
at R00 using standard rasterization. We then warp the ren-
dering result onto the rest of the light field cameras using
Equation 4. We benefit from the NVIDIA CUDA architec-
ture that allows parallel data scattering to achieve real-time
performance. The DirectX compute shader can support sim-
ilar functionality on DX 11 featured graphics cards.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

To generate the light field, a naive approach is to directly
warp the RGB color of each pixel p(u0,v0) in R00 onto other
light field cameras. Specifically, using p’s depth value, we
can directly compute its target pixel coordinate in camera
Rst using the warping equation 4. Using parallel writes, we
can simultaneously warp all pixels in R00 onto other light
field cameras. This simple approach, however, results in in-
correct visibility: multiple pixels in R00 that have different
depth values may warp to the same pixel q in the light field
camera Rst , as shown in Figure 4.

To resolve the visibility problem, we choose to warp the
disparity value instead of the pixel color, and we use the
atomic min operation to resolve parallel write conflict. Our
algorithm generates a disparity-map light field. To query the
color of a ray (s, t,u,v), we can directly warp (u,v) back
to (u0,v0) in R00 using Equation 4. Although not the focus
of this paper, the use of the depth light field has other ad-
vantages in efficient storage. For example, besides color and
depth values, R00 can store other information such as surface
normals and material properties. The depth light field allows
one to quickly query these data without replicating them at
each light field camera.

Handling Holes. Although our warping algorithm is very
efficient, it introduces holes in the resulting light field. There
are two main causes for the holes. First, the disparity values
that we use for warping are floating point numbers. There-
fore, they introduces rounding errors when computing the
target pixel coordinates. To fill in these holes, a naive ap-
proach is to super-sample the reference image. However, this
requires higher computation cost. Instead, we adopt a simple
scheme: when warping a pixel to its target position, we also
write the pixel to its neighboring pixels, essentially increas-
ing its support size. All write operations go through depth
comparisons to ensure correct visibility. In our experiments,
we find that this simple solution is quite effective at filling
holes, as is shown in Fig.3.

The second type of holes is caused by occlusion. Since
our reference view does not contain information in occluded
regions, we will not be able to accurately fill these holes.
Although these holes can lead to severe artifacts in certain
applications such as light field rendering, they are less prob-
lematic for rendering DoF. This is mainly because the size of
the occlusion hole depends on the baseline between the light
field cameras. If we fix the number of cameras in the lens
light field, we incur more holes when using a wider aperture
as the cameras will scatter more. On the other hand, wider
apertures lead to shallower DoF – in other words, the out-of-
focus regions will appear blurrier. This implies that we can
apply an image-space filtering technique to compensate for
the missing holes. Refer to the discussion in the next section.

4. DoF Synthesis from the Light Field

To synthesize DoF from the light field, we apply the wide
aperture filter introduced in [IMG00].

4.1. In-Camera Light Field

The image’s pixel values are proportional to the irradiance
[SCCZ86] received at the sensor, computed as a weighted
integral of the incoming radiance through the lens:

I(x,y)≈
∫ ∫

Lin(x,y,s, t)cos4
φdsdt (5)

where I(x,y) is the irradiance received at pixel (x, y), and φ

is the angle between a ray Lin(x,y,s, t) and the sensor plane
normal. This integral can be estimated as summations of the
radiance along the sampled rays:

I(x,y)≈ ∑
(s,t)

Lin(x,y,s, t)cos4
φ (6)

Isaksen et al. [IMG00] directly applied Eqn. (6) to render
the DoF effects. From every pixel p(x,y) on the sensor,
one can first trace out a ray through lens center o to find
its intersection Q with the focal plane. Then, Q is back-
projected onto all light field cameras and blended with the
corresponding pixels. Though simple, this approach requires
back-projection that is not desirable for us.

We avoid back-projection by reusing the warping equa-
tion. To do so, it is easy to verify that pixel p(x,y) in Rst to
pixel (u0,v0) = (w− x,h− y) in R00, as shown in Figure 1.
Therefore, if we assume the focal plane is at depth z0, we
can directly compute its corresponding focal disparity f disp
using Eqn (3). Next, we can directly find the pixel index in
camera Rst using Eqn. (4). The irradiance at p can then be
estimated as:

I(x,y) ≈ ∑
(s,t)

Lout(s, t,u0 + s · f disp,v0 + t · f disp) (7)

= ∑
(s,t)

Lout(s, t,w− x+ s · f disp,h− y+ t · f disp)

To estimate the attenuation term cos4
φ, Isaksen et al. used a

Gaussian function to approximate the weight on each ray. In
contrast, we directly compute cos4

φ for each ray (s, t,u,v)
without approximation. Specifically, the direction of each
ray is (s, t,1), thus cos4

φ = 1
(s2+t2+1)2 . Finally we can query

each ray using the depth light field described in Section 3
and blend them to synthesize the DoF effects.

As explained in Section 3, our light field contains holes
near occlusion boundaries. This implies that not every ray
we query will have a valid value. Therefore, we mark the
rays originating from the holes as invalid and discard them
when computing irradiance at each pixel.

4.2. Anti-aliasing

In order to reduce GPU texture memory consumption, we
choose to render a small light field containing 36 to 48 cam-
eras at a 512x512 image resolution. The small spatial resolu-
tion may lead to observable undersampling artifacts, which
we solve by using jittered sampling and filtering.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 5: Synthesizing DoF using the focal plane. (a) Given
a ray (yellow) from the reference camera, we find the rays
(red) in the data cameras using the focal plane. (b) We then
query and blend the rays to synthesize DoF.

Sampling. We use jittered sampling of the light field to
reduce aliasing. Specifically, we generate a Halton sequence
and map it onto the lens light field as the camera posi-
tions [PH04]. The main advantage of using a Halton se-
quence is that it produces randomly distributed camera sam-
ples and is cheap to evaluate. Since our focal disparity model
directly computes the pixel index for each light field camera
Rst , incorporating jittered sampling does not require any ad-
ditional change in our implementation.

Filtering. We also develop a simple pre-filtering tech-
nique similar to the cone tracing method in [LES09]. Our
method is based on the observation that an out-of-focus re-
gion exhibits the most severe aliasing artifacts as they blend
rays corresponding to far away 3D points. This is demon-
strated in Figure 6. On the other hand, out-of-focus regions
generate significant blurs, thus accurately computing each
ray is not necessary for these regions. This indicates that we
can compensate for undersampling by first blurring the out-
of-focus rays and then blending them. A similar concept has
been used in the Fourier slicing photography technique for
generating a band-limited light field [Ng05].

To simulate low-pass filtering in light field rendering, we
first generate a Mipmap from the reference image using a
3x3 Gaussian kernel. Gaussian Mipmaps eliminate the ring-
ing artifacts and produce smoother filtering results than reg-
ular box-filters [LKC09]. We then directly use the Gaussian
Mipmap in our light field ray querying process.

Specifically, assume that the scene is focused at depth d f .
When we query a ray (u,v) in camera Rst , we first obtain
its depth value dr from the depth light field. Applying Equa-
tion 2, we can obtain the correct blur size. We then index it
to the proper Mipmap level l, using

l = log2

(
(c/N) · (dr−d f)

d f
· h/2

tan(θ/2) ·dr

)
(8)

where dr is the depth value of pixel Pr, d f is the focal depth

of the camera, c is the diameter of the aperture. (c/N)·(dr−d f)
d f

Figure 6: Comparing the rendering results with and without
anti-aliasing.

represents the spatial coverage of the ray cone in object
space. h/2

tan(θ/2)·dr
is the pixel count per unit length which

transforms blur size (in object space) to the number of pixels
(in image space).

Figure 6 compares our rendering results with and without
anti-aliasing.

5. Results and Analysis

Our algorithm is tested on a PC with 2.13 Ghz Intel dual
core CPU, 2GB meomry, and an NVIDIA Geforce GTX285
GPU. The light field generation and dynamic DoF render-
ing algorithms are implemented using NVIDIA CUDA 2.2
with compute capability 1.3. Rasterization of the reference
views and anti-aliasing filtering are implemented using Di-
rectX 9.0. All results are rendered by generating a dynamic
light field with pixel resolution 512x512 and a default spatial
resolution of 36. Note that with DirectX 11 and the compute
shaders, it is possible to implement all algorithms without
the resource mapping overheads between CUDA and DX.

Performance: Table 1 summarizes the performance for each
stage of the pipeline, as well as compares the performance
under different spatial resolutions of the light fields. Instead
of showing the overall fps, we use NVIDIA CUDA profiler
to measure the exact running time that each CUDA kernel
takes. Table 1 reveals that the rendering cost is dominated by
the light field generation stage. In particular, the cost comes
mainly from the atomic operation performed when warping
the pixels (to account for correct visibility).

Image Quality: In Figure 10, we compare the ground truth
DoF results, the accumulation buffer results, and our results.
The ground truth images are obtained using distributed ray
tracing with 300 rays per pixel. We render equal number
of views (36) for both the accumulation buffer and our ap-
proach. Both the ground truth and the accumulation buffer
results are generated offline on the CPU. We observe that
with the same number of views, accumulation buffer ex-
hibits obvious aliasing artifacts whereas our approach pro-
duces nearly artifact-free results at interactive speed.

When the number of light field cameras is insufficient, our

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 7: Illustrations of the four types of boundary artifacts. See Section 5 for details.

Figure 8: Comparing results generated by Image Space
Blurring (a,c) and our light field synthesis (b,d). Our ap-
proach can efficiently reduce both the boundary discontinu-
ities and intensity leakage artifacts.

rendering results are subject to intensity leakage and bound-
ary discontinuity artifacts. In the extreme case when only 1
light field camera is used, our method falls back to the naive
image space blurring technique, as shown in Fig 9. Note the
differences in the rendered results, especially near occlusion
boundaries. In our experiments, we found that rendering a
light field with 30 views is often sufficient to eliminate most
visible boundary artifacts. Our Mipmap based image filter-
ing is effective at reducing the undersampling artifacts when
the spatial resolution of the light field is low.

Memory Consumption. The memory consumption of our
algorithm scales linearly with the number of virtual cameras,
as well as each virtual camera’s image resolution. Since each

pixel of the virtual camera stores a disparity value of 4 bytes,
a typical setting of 36 cameras with 512x512 resolution re-
quires 36M GPU memory. We find this quite reasonable with
the current generation of GPU. It is possible to keep only one
virtual camera in video memory and accumulate each view
one at a time, but that would split the computation and re-
duce parallelism, thus slowing down the performance.

Boundary Artifacts: Next, we perform a detailed analysis
on the boundary artifacts, and show how our light field based
technique outperforms single-image filtering methods. We
identify four canonical cases and examine them separately,
although it is possible that a combination of these types of
artifacts can simultaneously occur in rendering.

The first two cases occur when the camera is focused at
the background. Consider a point Pb lying on the background
whose image appears next to the foreground as shown in Fig-
ure 7(a). The ground truth result should properly blend both
the foreground and background points. However, single-
image filtering techniques would consider Pb in focus and
hence directly use its color as the pixel’s color. In this case,
image-space blurring produces boundary discontinuity arti-
facts. In contrast, using our technique, rays originating from
both the foreground and background will be captured by our
synthesized light field, therefore our technique will produce
the correct result.

Next, we consider a point Pf on the foreground as shown
in Figure 7(b). Similar to Pb, the ground truth result should
blend a neighborhood of foreground points with a single
background point (the focal point). Single-image filtering
methods will assign a large blur kernel to Pf and hence
blend a group of points on both the foreground and the back-
ground. This leads to incorrect results, except if the back-
ground points all have similar color. Our method, in contrast,
will attempt to blend rays from both the foreground and the
background. However, due to occlusion, background points
are labeled missing, marked as dashed lines in Figure 7(b).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Views Wrapping (µs) Synthesis (µs) Total (s)
12 4996 1974 0.00697
24 9477 3850 0.013327
36 14238 5731 0.019969
48 19191 7592 0.026783
64 25111 10117 0.035228

Table 1: Performance profiles of CUDA kernels for the light
filed generation step and DoF Synthesis step. We render the
bunny scene with a wide aperture at a 512x512 image reso-
lution, and vary the spatial revolution of the light field.

In this case our method will discard these rays in the blend-
ing process, and hence also produces incorrect results mani-
fested by boundary discontinuities.

Analogous to the first two cases, the other two cases oc-
cur when the camera is focused at the foreground. Consider
again a point Pb lying on the background, as shown in Fig-
ure 7(c). The ground truth result should blend points on the
background, while the single-image filtering techniques will
blend both the foreground and background points, leading to
incorrect results. Our method attempts to blend rays originat-
ing from the background. However, due to occlusion, it can
only access a portion of them. Therefore, if the background
has similar color, it would produce reasonable results.

Finally, consider again a point Pf on the foreground as
shown in Figure 7(d). The ground truth will collect all rays
from Pf and since these rays are all accessible to our light
field, our method is also able to obtain the correct result. The
single-image blurring method will produce correct result as
well, since it will identify the pixel as in-focus and hence
directly use Pf ’s color.

Our analysis illustrates that, of the four cases, our ap-
proach correctly handles two (Figure 7(a,d)), reasonably ap-
proximates one (Figure 7(c)), and incorrectly handles one
(Figure 7(b)). In contrast, single-image filtering techniques
only handles one case correctly, one case reasonably well
(Figure 7(d)), and the remaining two cases incorrectly. Fig-
ure 8 compares the rendering results using our method and
the single-image filtering approach on an elephant scene.
Our technique exhibits fewer visual artifacts compared to the
single-image filtering method. In fact, our technique will not
cause intensity leakage under any circumstance.

6. Conclusions and Future Work

We have presented an efficient framework for realtime sim-
ulation of high-quality depth-of-field (DoF) effects. Our
method approaches the DoF problem from the perspective of
light field rendering. Our technique combines the benefits of
both multi-view accumulation buffer and single-view filter-
ing: by synthesizing and then rendering from a light field, we
resolve the visibility problem in most cases; and by applying
image-space filtering, we are able to effectively reduce the
aliasing artifacts. Our algorithm is also easy to implement:

it directly uses the disparity warping model, and it builds
upon the CUDA framework for general purpose GPU pro-
gramming. By synthesizing as few as 36 light field views,
our technique is able to produce DoF effects with quality
comparable to raytraced reference.

The main limitation of our technique is that it cannot syn-
thesize light field rays near occlusion boundaries. As a result,
our method can lead to boundary artifacts when the camera
focuses at the background, as is shown in Section 5. The
simplest solution is to apply GPU ray tracing for filling the
holes. However, tracing missing rays in a large number of
views may be challenging for interactive rendering. An al-
ternative is to integrate our technique with the recently pro-
posed occlusion camera model [PA06]. An occlusion camera
uses non-pinhole geometry to "see-behind" the occlusions.
Therefore, if we use the occlusion camera as our reference
light field camera, we may be able to fill in many missing
rays to further improve our rendering quality.

We also plan to investigate the use of synthesized light
field to render other challenging effects such as motion
blur and glossy reflections. The recently proposed image-
space gathering [RS09] technique shares similar concepts
with ours and has shown promising results. However, their
method requires a parameter (ray) search stage while we
directly lookup using the light field. In the future, we will
investigate possible combinations of the two techniques for
rendering a broader class of rendering effects.

Acknowledgments We would like to thank the PG anony-
mous reviewers for their valuable comments and sugges-
tions. The Fairy and toasters models are courtesy of Ingo
Wald. Xuan Yu and Jingyi Yu are supported in part by NSF
grants MSPAMCS-0625931 and IIS-CAREER-0845268;
Rui Wang is supported in part by NSF grant CCF-0746577.

References
[BFSC04] BERTALMIO M., FORT P., SANCHEZ-CRESPO D.:

Real-time, accurate depth of field using anisotropic diffusion and
programmable graphics cards. In Proc. of 3DPVT ’04 (2004),
pp. 767–773. 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. Proc. of SIGGRAPH ’84 18, 3 (1984), 137–145. 1, 2

[Dem04] DEMERS J.: Depth of field: A survey of techniques.
GPU Gems 23 (2004), 375–390. 2

[EH07] EARL HAMMON J.: Practical post-process depth of field.
GPU Gems 3 28 (2007), 583–606. 1, 2

[FLB∗09] FATAHALIAN K., LUONG E., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: Data-parallel rasterization of
micropolygons with defocus and motion blur. In Proc. of HPG
’09 (2009), pp. 59–68. 2

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
hardware support for high-quality rendering. In Proc. of SIG-
GRAPH ’90 (1990), pp. 309–318. 1, 2

[HQL∗10] HOU Q., QIN H., LI W., GUO B., ZHOU K.: Microp-
olygon ray tracing with defocus and motion blur. ACM Trans.
Graph. 29, 3 (2010), to appear. 2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 9: Comparing our results using a different number of light field cameras.

[IMG00] ISAKSEN A., MCMILLAN L., GORTLER S. J.: Dy-
namically reparameterized light fields. In Proc. of SIGGRAPH
’00 (2000), pp. 297–306. 2, 3, 4

[KB07] KOSLOFF T. J., BARSKY B. A.: An Algorithm for Ren-
dering Generalized Depth of Field Effects Based on Simulated
Heat Diffusion. Tech. Rep. UCB/EECS-2007-19, UC Berkeley,
2007. 2

[KLO06] KASS M., LEFOHN A., OWENS J.: Interactive depth of
field using simulated diffusion on a GPU. Tech. rep., UC Davis,
2006. 2

[KS07] KRAUS M., STRENGERT M.: Depth-of-field rendering
by pyramidal image processing. In Proc. of Eurographics 2007
(2007). 1, 2

[KTB09] KOSLOFF T. J., TAO M. W., BARSKY B. A.: Depth
of field postprocessing for layered scenes using constant-time
rectangle spreading. In Proc. of Graphics Interface ’09 (2009),
pp. 39–46. 1, 2

[LES09] LEE S., EISEMANN E., SEIDEL H.-P.: Depth-of-field
rendering with multiview synthesis. ACM Trans. Graph. 28, 5
(2009), 1–6. 1, 2, 5

[LES10] LEE S., EISEMANN E., SEIDEL H.-P.: Real-time lens
blur effects and focus control. ACM Trans. Graph. 29, 3 (2010),
to appear. 1, 2

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
Proc. of SIGGRAPH ’96 (1996), pp. 31–42. 2

[LKC08] LEE S., KIM G. J., CHOI S.: Real-Time Depth-of-
Field Rendering Using Splatting on Per-Pixel Layers. Computer
Graphics Forum (Proc. Pacific Graphics’08) 27, 7 (2008), 1955–
1962. 2

[LKC09] LEE S., KIM G. J., CHOI S.: Real-time depth-of-
field rendering using anisotropically filtered mipmap interpola-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 15, 3 (2009), 453–464. 1, 2, 5

[Ng05] NG R.: Fourier slice photography. ACM Trans. Graph.
24, 3 (2005), 735–744. 2, 3, 5

[PA06] POPESCU V., ALIAGA D.: The depth discontinuity oc-
clusion camera. In Proc. of I3D ’06 (2006), pp. 139–143. 7

[PC81] POTMESIL M., CHAKRAVARTY I.: A lens and aperture
camera model for synthetic image generation. In Proc. of SIG-
GRAPH ’81 (1981), pp. 297–305. 2

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004. 5

[Rok93] ROKITA P.: Fast generation of depth of field effects in
computer graphics. Computers & Graphics 17, 5 (1993), 593–
595. 1, 2

[RS09] ROBISON A., SHIRLEY P.: Image space gathering. In
Proc. of HPG ’09 (2009), pp. 91–98. 7

[SCCZ86] STROEBEL L., COMPTON J., CURRENT I., ZAKIA
R.: Photographic Materials and Processes. Focal Press, 1986. 4

[Sch04] SCHEUERMANN T.: Advanced depth of field. GDC
(2004). 2

[SSD∗09] SOLER C., SUBR K., DURAND F., HOLZSCHUCH N.,
SILLION F.: Fourier depth of field. ACM Trans. Graph. 28, 2
(2009), 1–12. 2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

X. Yu & R. Wang & J. Yu / Real-time Depth of Field Rendering via Dynamic Light Field Generation and Filtering

Figure 10: Comparing results generated with (a) distributed ray tracing (reference), (b) accumulation buffer with 36 views, and
(c) our dynamic light field synthesis with 36 views. Our algorithm produces nearly artifact-free renderings in all three examples.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

