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Abstract

Stereo matching and volumetric reconstruction are the
most explored 3D scene recovery techniques in computer
vision. Many existing approaches assume perspective in-
put images and use the epipolar constraint to reduce the
search space and improve the accuracy. In this paper
we present a novel framework that uses multi-perspective
cameras for stereo matching and volumetric reconstruc-
tion. Our approach first decomposes a multi-perspective
camera into piecewise primitive General Linear Cameras
or GLCs [32]. A pair of GLCs in general do not satisfy
the epipolar constraint. However, they still form a nearly
stereo pair. We develop a new Graph-Cut-based algorithm
to account for the slight vertical parallax using the GLC
ray geometry. We show that the recovered pseudo disparity
map conveys important depth cues analogous to perspec-
tive stereo matching. To more accurately reconstruct a 3D
scene, we develop a new multi-perspective volumetric re-
construction method. We discretize the scene into voxels
and apply the GLC back-projections to map the voxel onto
each input multi-perspective camera. Finally, we apply the
graph-cut algorithm to optimize the 3D embedded voxel
graph. We demonstrate our algorithms on both synthetic
and real multi-perspective cameras. Experimental results
show that our methods are robust and reliable.

1. Introduction

Stereo matching is probably the most studied 3D scene
reconstruction method in computer vision. Most existing
approaches assume that the input cameras are perspective
and tremendous efforts have been focused on handling is-
sues unrelated to camera models such as textures, noise,
specularity, and occlusion boundaries. Graph-cut based al-
gorithms [4, 15, 16] and Belief Propagation (BP) methods
[9, 30] can produce high accuracy and stable reconstruc-
tions. A common assumption in these methods is the ex-

istence of epipolar geometry [28]: the two images can be
rectified to have a pure horizontal parallax. The epipolar ge-
ometry significantly reduces the search space and improves
accuracy.

In this paper, we explore how to extend stereo matching
to multi-perspective cameras. Recent developments have
suggested that special types of multi-perspective cameras
may also form valid stereo pairs. Seitz [28] and Pajdla
[22] have independently classified all possible stereo pairs
in terms of their epipolar geometry. They have shown that
the epipolar geometry, if it exists, has to be a double ruled
surface. Thus, very few varieties of multi-perspective stereo
pairs exist. In general, a pair of multi-perspective cameras
would not satisfy the epipolar constraint.

An alternative approach to stereo matching is volumetric
reconstruction. Methods such as space carving [18] first dis-
cretize the scene into voxels and then prune the voxels based
on their visibility and consistency with the input images.
Level sets [7, 29] and graph-cut [3, 23] algorithms have
been developed to simultaneously maintain reconstruction
coherence and smoothness. An important step in volumetric
reconstruction is back-projecting the voxels onto the input
images. For multi-perspective cameras such as reflections
on curved mirrors, this back-projection is highly non-linear
and, in general, does not have a closed-form solution except
for the most trivial cases.

We present a novel framework that uses multi-
perspective cameras for stereo matching and volumetric re-
construction. Our method first decomposes each multi-
perspective camera into piecewise primitive General Lin-
ear Cameras or GLCs [32]. GLCs uniformly model many
existing multi-perspective cameras such as pushbroom and
cross-slit cameras as 2D affine subspaces of rays. In this
paper, we use GLCs as a tool for first-order approximation
of arbitrary multi-perspective cameras.

Although a pair of GLCs generally do not satisfy the
epipolar constraint, they still form a nearly stereo pair,
i.e., the vertical parallax is nearly zero [6]. In this paper,
we develop a new Graph-cut based algorithm to account



for the slight vertical parallax using the GLC ray geome-
try. The recovered pseudo disparity map conveys impor-
tant depth cues analogous to perspective stereo matching.
To more accurately recover 3D scene geometry, we de-
velop a novel multi-perspective volumetric reconstruction
algorithm. We discretize the scene into voxels and apply
GLC back-projections to map each voxel onto the input
multi-perspective cameras. Finally, we apply the graph-
cut algorithm to optimize the 3D embedded voxel graph.
We demonstrate our algorithms on both synthetic and real
multi-perspective cameras and show that our methods are
reliable and robust.

2. Previous Work
Reconstructing 3D scenes from multiple views is prob-

ably one of the most explored problem in computer vision.
Classical stereo matching algorithms use a pair of pinhole
cameras to infer depth. The simple pinhole geometry al-
lows any oblique pair of perspective images to be warped
to have a purely horizontal parallax via projective transfor-
mations (homography) [11]. Efficient algorithms have also
been developed for finding this transformation if the cam-
era parameters are unknown [25]. We refer the readers to
the stereo matching survey [26] for more details on existing
methods.

Our goal is to apply stereo matching to cameras that do
not follow pinhole geometry, i.e., they capture rays origi-
nating from different viewpoints in space. These cameras
are often referred to as the multi-perspective cameras. Clas-
sical multiperspective cameras include pushbroom cameras
[10], which collect rays along parallel planes from points
swept along a linear trajectory, two-slit cameras [34], which
collect all rays passing through two lines, and oblique cam-
eras [22], in which each pair of rays are oblique. Despite
their incongruity of view, some multiperspective cameras
[24, 8, 22] can still form valid stereo pairs.

Seitz [28] classified all possible stereo pairs in terms of
their epipolar geometry. Pajdla [22] independently obtained
a similar result. Their results show that only three vari-
eties of epipolar geometry exist: planes, hyperboloids, and
hyperbolic-paraboloids, all corresponding to double ruled
surfaces. Therefore, a pair of arbitrary multi-perspective
cameras generally do not have valid epipolar geometry and
hence classical stereo matching algorithms are not directly
applicable to these cameras.

Another class of widely used 3D reconstruction algo-
rithms are volumetric reconstruction [5, 27, 20, 2, 17]. Most
existing algorithms in this category can be considered vari-
ations of the Space Carving framework by Kutulakos and
Seitz [18]. Under this framework, an initial bounding vol-
ume is divided into a regular 3D voxel grid. Inconsis-
tent voxels are then removed until the remaining voxels
are photo-consistent with a set of input images. Similar to

Figure 1. A General Linear Camera (GLC) collects rays that are
affine combinations of three rays from pixel [0, 0], [0, 1], and [1,
0], respectively. A 3D point Ṗ can be uniquely mapped to a pixel
in the GLC with closed-form solutions.

stereo matching, the input cameras are assumed to be per-
spective. This enables efficient voxel-pixel mapping when
computing the voxel consistencies. For multi-perspective,
computing this mapping is a challenging problem as closed-
form solutions generally do not exist.

Our work is also related to catadioptric cameras and
omni-directional vision. Catadioptric imaging systems
place a pinhole camera at the focus of a hyperbolic or
parabolic surface to synthesize a virtual pinhole camera
with a wider field of view [21, 1]. This setup requires ac-
curate alignment of the viewing camera [14, 31]. When the
camera moves off the focus, the rays quickly diverge from a
single perspective. Traditional catadioptric cameras, hence,
have been restricted to mirrors with simple shapes whereas
our framework applies to arbitrarily curved mirrors.

3. Multi-perspective Stereo Matching
A stereo pair consists of two images with a pure hori-

zontal parallax, i.e., for every 3D point P, its images [u1, v1]
and [u2, v2] in the two cameras must satisfy v1 = v2. Seitz
[28] referred to this constraint as the stereo constraint and
classified all possible (perspective and multi-perspective)
stereo pairs in terms of their epipolar geometry. Concep-
tually, all rays in row v1 of the first camera should inter-
sect all rays in row v2 in the second. Therefore, the epipo-
lar surface should be double ruled. However, rays from a
pair of multi-perspective cameras generally do not form a
valid epipolar geometry. Therefore, we first introduce a new
stereo model called the epsilon stereo constraint for multi-
perspective cameras.

3.1. Epsilon Stereo Constraint

An epsilon stereo constraint allows slight vertical paral-
lax between two cameras. We say that two views V and V ′

form an epsilon stereo pair if the following property holds:
The rays V (u, v) and V ′(u′, v′) intersect only if |v −

v′| ≤ ε.
The classical stereo constraint is a special case of the



epsilon stereo model when ε = 0. Any two such views are
referred to as an ε-pair. Physically, an ε-pair represents two
views with a mostly horizontal parallax and with a slight
(ε) vertical parallax. In an ε-pair, all pixels on a row in one
image correspond to pixels lying inside the ε band around
the same row in the second, as shown in Figure 2. We also
make the same assumption as [28] that all views are u- and
v-continuous and only consider scene geometry visible in
both views.

3.2. General Linear Cameras

We focus on applying the epsilon stereo analysis on a
special class of multi-perspective cameras called the Gen-
eral Linear Cameras or GLCs [32]. In the GLC framework,
each pixel corresponds to a ray and a GLC collects a 2D
planar (affine) subspace of rays. Specifically, one can pick
three generator rays and the GLC collects affine combina-
tions of the three rays, as shown in Figure 1. The st − uv
light field parametrization are commonly used to parame-
terize the rays in GLCs.

In this paper, we simplify the GLC model by assum-
ing the image plane (or the uv plane) coincides with the
z = 0 plane. We then pick rays from pixels [0, 0],
[1, 0], and [0, 1] as the generator rays of the GLC. Assume
the three rays have directions [σ1, τ1, 1], [σ2, τ2, 1], and
[σ3, τ3, 1] respectively, we can then describe the direction
[σ(u, v), τ(u, v), 1] of any ray at pixel [u, v] as:

σ(u, v)=(1− u− v) · σ1 + u · σ2 + v · σ3

τ(u, v)=(1− u− v) · τ1 + u · τ2 + v · τ3 (1)

GLCs provide a unified description to most well-known
multiperspective cameras, such as push-broom, cross-slit,
and linear oblique cameras. Furthermore, since GLCs rep-
resent 2D planar ray manifolds, they provide a first order ap-
proximation of any multiperspective camera. We refer the
readers to [32] for more detailed discussions on the GLC
model.

Projection of a Point: The GLC has a closed-form pro-
jection from a 3D point P [x, y, z] to pixel [u, v] [33] as:

u =

∣∣∣∣∣∣
zσ1 zτ1 1

x y 1
zσ3 1 + zτ3 1

∣∣∣∣∣∣
Az2 + Bz + C

, v =

∣∣∣∣∣∣
zσ1 zτ1 1

1 + zσ2 zτ2 1
x y 1

∣∣∣∣∣∣
Az2 + Bz + C

(2)

where

A =

∣∣∣∣∣∣
σ1 τ1 1
σ2 τ2 1
σ3 τ3 1

∣∣∣∣∣∣
, B =

∣∣∣∣∣∣
σ1 v1 1
σ2 v2 1
σ3 v3 1

∣∣∣∣∣∣
−

∣∣∣∣∣∣
τ1 u1 1
τ2 u2 1
τ3 u3 1

∣∣∣∣∣∣
, C =

∣∣∣∣∣∣
u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣

Projection of a Line (Ray): GLC also provides a
closed-form projection for a 3D line (ray) l. Assume l is
not parallel to the uv plane, l will then intersect the uv plane

Figure 2. An epsilon stereo pair consists of two images with a
mostly horizontal parallax and a slight (ε) vertical parallax.

at [u0, v0, 0] and have direction [σ0, τ0, 1]. All rays passing
through l satisfy:

[u, v, 0] + λ1[σ, τ, 1] = [u0, v0, 0] + λ2[σ0, τ0, 1]

Eliminating λ1 and λ2, we have:
(u− u0)(τ − τ0)− (v − v0)(σ − σ0) = 0

We then replace σ, τ with u, v using Equation(1) as:
(u−u0)((1− u− v)τ1 + uτ2 + vτ3 − τ0)
−(v − v0)((1− u− v)σ1 + uσ2 + vσ3 − σ0) = 0 (3)

Thus l projects to a conic in the GLC.

3.3. Epsilon Stereo Analysis on GLCs

By Seitz’s analysis, a pair of GLCs generally do not sat-
isfy the epipolar constraint even if they are of the same type.
For example, Feldman et al. proved that a pair of cross-slit
cameras can have valid epipolar geometry only if they share
a slit or the slits intersect in four pairwise distinct points [8].

However, a GLC pair will satisfy the epsilon stereo con-
straint. For example, consider the projection of a point
Ṗ (x, y, z) in two GLCs of identical types but translated by
[−tx,−ty, 0]. The image of Ṗ in the first GLC can be com-
puted using Equation (2). To project P to the second GLC,
we simply translate Ṗ by [tx, ty, 0]. The vertical and the
horizontal parallax of Ṗ can be computed as:

Δv = v − v′ = −

∣∣∣∣∣∣
zσ1 zτ1 1

1 + zσ2 zτ2 1
tx ty 0

∣∣∣∣∣∣
Az2 + Bz + C

=
z(ty(σ1 − σ2) + tx(τ2 − τ1))− ty

Az2 + Bz + C
(4)

Δu = u− u′ = −

∣∣∣∣∣∣
zσ1 zτ1 1
tx ty 0
zσ3 1 + zτ3 1

∣∣∣∣∣∣
Az2 + Bz + C

=
z(ty(σ3 − σ1) + tx(τ1 − τ3))− tx

Az2 + Bz + C
(5)



Figure 3. Epsilon Stereo Matching on Two Cross-slit Cameras. (a)
shows one of the two cross-slit images. (b) is the ground truth
depth map. (c) shows the recovered disparity map by treating the
two images as a stereo pair and applying the graph-cut algorithm.
(d) shows the horizontal disparity map recovered by our epsilon
stereo mapping algorithm.

where A, B, and C can be computed by Equation (3).
Notice that the vertical parallax Δv is simply a quadratic

rational function of z. In [6], it is shown that Δv is bounded
and, hence, the two GLCs form an epsilon stereo pair. A
similar analysis applies to any pair of GLCs [6].

3.4. Epsilon Stereo Graph Cut

A brute-force approach to use the epsilon stereo con-
straint is to modify classical stereo matching such as Graph-
Cut or Belief Propagation by extending the disparity label
set to two dimensions. Recall that all pixels in a row in one
camera map to an±ε band around the same row in the other
camera, where ε is bounded and usually very small. There-
fore, we can simply use a 2D search space in standard stereo
matching. The downside, however, is that the correspond-
ing rays under such a labeling can be arbitrarily oblique and
do not map to a 3D point.

To enforce coherent epipolar geometry, we add an ad-
ditional penalty term to measure the ”closeness” between
two rays. Specifically, for each pixel p[uL, vL] in the refer-
ence camera GLCL, we first compute its corresponding ray
rp = [σL, τL, uL, vL] from p, where σL, τL can be com-
puted using Equation (1). We then project ray rp in the sec-
ond camera GLCR. Recall that the image of rp in GLCR

is a conic curve Cp as shown in Equation (3). Therefore,
to measure how well a pixel q[uR, vR] in GLCR matches

p[uL, vL], we measure both the color consistency between
p and q and the distance from q to Cp. Notice that if the cor-
responding rays from p and q intersect in 3D space, q should
lie on Cp and the distance should be zero. In our implemen-
tation, we compute the distance by finding the closest point
on Cp to q and we call it reprojection distance Dreproj(p, q).

Finally, we formulate the epsilon stereo matching prob-
lem as a 2D disparity labeling problem. The search domain
for each pixel p in GLCL is defined as a window of height
2ε and width dx

max in GLCR, where dx
max is the maximum

horizontal disparity and ε is computed from the GLCs pa-
rameters. We define the energy function for a specific label-
ing f as:

E(f) = Ed(f) + Eocc(f) + Es(f) + Ereproj(f) (6)

The first three terms are commonly used in classical stereo
matching: a data term Ed to measure color consistency, a
occlusion term Eocc, and a smoothness term Es [15]. The
last term measures the reprojection error term Ereproj , i.e.,

Ereproj(dx, dy) =
∑

u

∑
v

Dreproj(p, p + [dx, dy]) (7)

It is also important to note that although the final dispar-
ity map cannot be directly translated to a depth map of the
scene, this pseudo disparity map provides useful depth cues
analogous to perspective stereo matching. In Figure 3(d),
we plot the recovered horizontal disparity and compare it
with the ground truth depth map Figure 3(b).

4. Multi-perspective Volumetric Reconstruc-
tion

Next, we show how to use multi-perspective cameras for
volumetric reconstruction. Most existing algorithms in this
category can be considered variations of the foundational
framework by Kutulakos and Seitz [18], in which a set of
N perspective input images are used to determine 3D vol-
umetric scene geometry. These methods, however, are not
directly applicable to multi-perspective cameras due to non-
uniform sampling and non-central projections.

4.1. Problem Definition

Given a set of N multi-perspective views to the scene,
we want to reconstruct a volumetric representation of the
scene. A typical scenario is to position multiple curved mir-
rors in the scene and then capture an image of these mirrors
reflecting towards the scene, as shown in Figure 4.

In classical volumetric reconstruction, the scene is first
discretized into voxels of size coherent with the input im-
age resolution. For multi-perspective cameras, non-uniform
sampling and multi-perspective distortions may lead to un-
even discretization. Therefore, we first position a virtual



Figure 4. Our multi-perspective volumetric reconstruction recov-
ers 3D scene geometry from multiple multi-perspective camera
images.

pinhole camera Kv between the multi-perspective cameras
and then uniformly discretize its viewing frustum volume
in the projective space as shown in Figure 6. One can then
prune the voxels based on their consistency with the input
images and visibility.

To measure the color-consistency, we need to first de-
termine the corresponding image of the voxel in each input
camera. For perspective cameras, we can simply project
the voxel into the camera. For multi-perspective cameras
such as reflection on curved mirrors, computing this back-
projection is a typical inverse ray-tracing problem and, in
general, does not have closed-form solutions.

4.2. Multi-perspective Back-Projection

To resolve the back-projection problem, we first decom-
pose each multi-perspective camera into piecewise GLCs.
To do so, we tessellate a multi-perspective image into trian-
gles and then find the associated ray at each vertex. Finally,
we treat the ray triplet from each triangle as a GLC and use
the triangle plane is the default uv plane.

The advantage of using this approximation is that GLCs
provide closed-form projections. Most 3D points have
unique projections in a GLC (except for the singularity
points [33]) whereas other multi-perspective decomposi-
tions [13] have multiple projections from a 3D point.

The simplest approach to use the GLC decomposition
for back-projecting a voxel is to go through every GLC in
the tessellation and compute the image of the voxel using
Equation (2). The search stops when the projected voxel
lies inside the GLC triangle. However, controlling the GLC
tessellation level can be challenging: a fine tessellation pro-
duces more accurate approximation but also requires more
computations.

We therefore develop a dynamic tessellation scheme
similar to the level-of-detail (LOD) technique in computer
graphics. We first tessellate the multi-perspective camera
using a coarse set of GLCs and then perform standard 1-
to-4 subdivision and store the subdivision in a quad tree as

Figure 5. Multi-perspective Decomposition Using the GLCs. We
can decompose an arbitrary multi-perspective camera (e.g., reflec-
tions on a curved mirror) using piecewise GLCs. We create a
multi-resolution decomposition using subdivision and store it in
a quad-tree.

shown in Figure 5. To back-project a 3D point Ṗ to the
camera, we start with the top level GLCs and compute the
image of Ṗ ’s projection. We determine which GLC con-
tains the final projection and repeat our search on its chil-
dren GLCs. The search stops until we reach the leave nodes.
In our experiment, 4 ∼ 5 subdivision levels are usually suf-
ficient to accurately back-project a voxel on complex multi-
perspective cameras. The detailed back-projection steps are
shown in Algorithm 4.1.

Algorithm 4.1: MIRROR GLCBACKPROJECTION(glc, Ṗ )

procedure GETRAY(const GLC &glc, const Point3D &Ṗ )
p[u, v]← glc.Project(Ṗ );
if p[u, v] /∈ glc.triangle

then
{

return (false)
if isLeaf(glc)

then
{

return (p[u, v])

else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bNotF ind← true;
while bNotF ind

do

⎧⎪⎪⎨
⎪⎪⎩

x← glc.subGLCs.getNext();
q[u1, v1]← x.Project(Ṗ );
if q[u1, v1] ∈ x.triangle

then
{
bNotF ind← false;

return (GetRay(x, Ṗ ))

4.3. Graph-cut Optimization

Finally we apply volumetric reconstruction by first ini-
tializing a sweeping planes parallel to the image plane of
the virtual perspective camera. We sweep the planes from
distance dmin from the COP of the camera at interval di

until we reach a pre-defined distance dmax.
At every distance value di, we find the voxel Ṗi(x, y)that

corresponds to pixel [x, y] in the virtual perspective cam-
era Kv . We then back-project the voxel to every multi-



Figure 6. We construct the voxel space as the viewing frustum of a
virtual perspective camera. We then back-project the voxels to all
multi-perspective viewing cameras.

perspective camera Kj , (j = 1, · · · , N) using the GLC-
based back-projection algorithm. Assume the correspond-
ing pixel of Ṗi(x, y) in camera j has color [rij , gij , bij ],
j = 1, · · · , N , we then measure the color consistency of
these pixels in terms of their variance m(x, y, di).

To reconstruct the volume, we can apply any existing
volumetric reconstruction method such as space carving to
compute the optimal volumetric 3D scene model. In our im-
plementation, we have adopted a simplified version of [23].
We assume the 3D scene is a Monge function z = f(x, y)
with respect to the virtual perspective camera and we model
the problem of finding the optimal z as a labeling problem
and solve it using the graph-cut algorithm. Specifically, we
assign the depth labels f to all pixel. Notice that a good
labeling scheme should not only be consistent with the ob-
served images but also smooth. Therefore, we set out to find
the optimal labeling that minimizes the energy function:

M(f) =
nx∑
i=1

ny∑
j=1

m(xi, yj , f(xi, yj))ΔxΔy (8)

S(f) =
nx−1∑
i=1

ny∑
j=1

|f(xi+1, yj)− f(xi, yj)|Δy

+
nx∑
i=1

ny−1∑
j=1

|f(xi, yj+1)− f(xi, yj)|Δx (9)

where M(f) encodes the consistency measure and S(f)
encodes the smoothness measure. Finally, we find the opti-
mal labeling via the standard graph-cut algorithm.

5. Experimental Results
We have validated our framework on both synthetic and

real data. All experiments are conducted on a PC with 2.4
GHz intel Q6600 CPU and 3.0GB memory. For synthetic

data, we use the POV-Ray Ray Tracer to render two cross-
slit panoramas of resolution 1200x300 of the city scene.
The two cameras we choose do not share a common slit
or satisfy the stereo condition by Feldman et al. [8]. Fig-
ure 3 shows the ground truth depth map with respect to the
image plane. Next, we directly apply a graph-cut stereo
algorithm as if the two cameras were perspective. The re-
sulting disparity map is highly noisy due to the violation of
the epipolar constraint, as shown in Figure 3(c). Finally,
we show our epsilon stereo matching result using the multi-
perspective stereo matching algorithm. To minimize com-
putational overhead, we pre-compute the conic curve image
of each ray from the reference camera. We rasterize these
curves and store the pixels covered by each curve for easy
query. We compute the epsilon value of 12 pixels from the
epsilon stereo analysis. In Figure 3(d), we plot the recov-
ered horizontal epsilon disparity map. It takes 40 seconds
for our algorithm to complete the estimation. Notice that
although this map is not equivalent to the actual depth map,
it is highly coherent with the actual depth map and reveals
useful depth cues.

For volumetric reconstruction, we first use POV-Ray to
render a perspective image viewing two spherical mirrors of
radius 1 at a resolution of 1024x1024 (Figure 7(a)). We then
position multiple objects at different depths within range 5
and 20 from the mirrors. We use a virtual perspective cam-
era between the two mirrors reconstructing the 3D volume.
We discretize the volume into 800x800x60 voxels, where
the z depth is sampled between dmin = 3 to dmax = 33
at 0.5 interval. We use the GLCs to decompose each mir-
ror into 6 triangles in the first level and apply standard
1-to-4 subdivision 4 times. Finally, we apply our multi-
perspective volumetric reconstruction algorithm to recover
scene depth. In Figure 8, we show our algorithm is able
to accurately recover the contour of multiple scene objects
(e.g., the ”ICCV” sign) at different depths. Notice that the
recovered depth is also horizontally flipped from the mirror
image due to reflections.

For real data, we have constructed a spherical mirror ar-
ray and experimented our volumetric reconstruction algo-
rithm on a small subset of mirrors. Our array contains 19
identical mirrors of radius 89.3mm. We tightly pack the
mirrors on a flat panel and apply similar processes in [19]
to calibrate the relative positions between mirrors. We place
a Canon SX100 digital camera approximately 90cm away
from the mirror to capture the image of 7 mirrors at a reso-
lution of 3456x2592. We pre-calibrate the viewing camera
and use the red-dot pattern printed on the mirror panel to
determine the camera pose. In Figure 8, we slightly tilt the
camera to avoid self-occlusions in the reflection. We po-
sition the virtual perspective camera at the central mirror
with a field-of-view of 80 degrees (approximately the same
as central mirror) The scene objects lie at about 70cm away



Figure 7. Recovering Synthetic Scenes. We use PovRay to render
reflections on two spherical mirror in a synthetic scene. (a) shows
the two mirror images. (b) shows the ground truth depth map and
(c) shows our recovered depth map.

from the mirror array, we discretize the volume by 400x400
voxels in xy dimension and 90 voxels in z direction between
dmin = 10cm and dmax = 100cm. Columns (a) and (b) in
Figure 8 illustrate the images observed on the central mirror
and the upper mirror and Column (d) shows the recovered
depth (from the volume) of the scene. To illustrating the
quality of the recovered depth map, we use forward map-
ping to warp all reflection rays from the central mirror to a
plane in 3D space to approximate a virtual perspective view
as shown in column (c).

In Figure 9, we apply our framework for recovering a
more complex scene. The viewing camera captures an im-
age of itself as shown in Figure 9(a). We reconstruct the
viewing frustum volume of a virtual perspective camera po-
sitioned near the center mirror, with similar field-of-view,
range, and resolution as in the previous example. Despite
the complexity of the scene, our method is still able to re-
cover a reasonable depth map as shown in Figure 9(c). In
our experiments, we also find that if the camera’s view-
ing direction is perpendicular to the mirror array, the par-
allax between the neighboring mirror images becomes less
discernable, i.e., the depth difference between neighboring
layers would be difficult to detect. For example, the Canon
camera is positioned close to the background checkerboard
and our method is not able to recover its correct depth.

6. Conclusions and Future Work
We have presented a unified framework for multi-

perspective stereo matching and volumetric reconstruction
using the General Linear Cameras (GLCs). For stereo
matching, we have introduced an epsilon stereo model to
model a pair of GLCs that do not satisfy the stereo con-
straint. We have then developed a new graph-cut algorithm
for finding the optimal epsilon disparity map. We have

Figure 8. Recovering Real Scenes. Column (a) and (b) show two
of the seven mirror image. Column (c) shows the warped virtual
perspective image. Column (d) shows the recovered scene geom-
etry using the depth maps.

Figure 9. We orient the viewing camera nearly perpendicular to the
array. (a) shows captured mirror images. Notice the self-reflection
of the camera. (b) warps the central mirror image to a plane to
reduce distortions. (c) show the recovered depth map using our
volumetric reconstruction.

also developed a multi-perspective volumetric reconstruc-
tion algorithm to more accurately recover the 3D scene. Our
method constructs the frustum volume with respect to a vir-
tual pinhole camera by first discretizing the scene geome-
try into voxels and then applying GLC back-projections and
graph-cut for carving the voxels. We have demonstrated our
framework on both synthetic and real scenes. Experimental
results have shown that our methods are reliable and robust.

One limitation of epsilon stereo matching is that the
pseudo disparity map cannot be directly translated to a
depth map, because the corresponding rays are not guar-
anteed to intersect in 3D space. In the future, it would be
useful to develop new distance metrics to better interpret
the resulting two-dimensional disparity map. This problem
also draws analogy to the triangulation method [12] for pin-
hole cameras, where Gaussian noise was used as the usual
and reasonable model to achieve projective invariance. In
the future, we plan to investigate what noise models should



be used to characterize the multi-perspective espilon stereo
model.

Our multi-perspective space carving algorithm may also
lead to new designs of catadioptric mirrors. For exam-
ple, one can stitch multiple curved mirrors and capture
their reflections of the scene in a single image. Our
multi-perspective volumetric reconstruction algorithm can
be used to recover dense volumetric 3D scene geometry.
The main advantage of our algorithm over existing omni-
directional reconstruction methods is that we do not require
delicate calibration between the mirror and the camera to
maintain single viewpoint ray geometry. Instead, we can
decompose the mirror into piecewise GLCs and apply our
algorithm on individual GLCs. Our framework may also
lead to new catadioptric calibration algorithms based on the
GLC decomposition.
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