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Abstract

In this paper, we propose a method for determining the
vignetting function given only a single image. Our method
is designed to handle both textured and untextured regions
in order to maximize the use of available information. To
extract vignetting information from an image, we present
adaptations of segmentation techniques that locate image
regions with reliable data for vignetting estimation. Within
each image region, our method capitalizes on frequency
characteristics and physical properties of vignetting to dis-
tinguish it from other sources of intensity variation. The
vignetting data acquired from regions are weighted accord-
ing to a presented reliability measure to promote robustness
in estimation. Comprehensive experiments demonstrate the
effectiveness of this technique on a broad range of images.

1. Introduction

Vignetting refers to the phenomenon of brightness atten-
uation away from the image center, and is an artifact that
is prevalent in photography. Although not objectionable to
the average viewer at low levels, it can significantly impair
computer vision algorithms that rely on precise intensity
data to analyze a scene. Applications in which vignetting
distortions can be particularly damaging include photomet-
ric methods such as shape from shading, appearance-based
techniques such as object recognition, and image mosaic-
ing.

Several mechanisms may be responsible for vignetting
effects. Some arise from the optical properties of camera
lenses, the most prominent of which is off-axis illumina-
tion falloff or the cos4 law. This contribution to vignetting
results from foreshortening of the lens when viewed from
increasing angles from the optical axis [7]. Other sources
of vignetting are geometric in nature. For example, light ar-
riving at oblique angles to the optical axis may be partially
obstructed by the field stop or lens rim.
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To determine the vignetting effects in an image, the
most straightforward approach involves capturing an image
completely spanned by a uniform scene region, such that
brightness variations can solely be attributed to vignetting
[12, 1, 6, 14]. In such a calibration image, ratios of inten-
sity with respect to the pixel on the optical axis describe the
vignetting function. Suitable imaging conditions for this ap-
proach, however, can be challenging to produce due to un-
even illumination and camera tilt, and the vignetting mea-
surements are valid only for images captured by the camera
under the same camera settings. Moreover, a calibration
image can be recorded only if the camera is at hand; con-
sequently, this approach cannot be used to correct images
captured by unknown cameras, such as images downloaded
from the web.

A vignetting function can alternatively be computed
from image sequences with overlapping views of an arbi-
trary static scene [5, 9, 4]. In this approach, point corre-
spondences are first determined in the overlapping image
regions. Since a given scene point has a different position
in each image, its brightness may be differently attenuated
by vignetting. From the aggregate attenuation information
from all correspondences, the vignetting function can be ac-
curately recovered without assumptions on the scene.

These previous approaches require either a collection
of overlapping images or an image of a calibration scene.
However, often in practice only a single image of an arbi-
trary scene is available. The previous techniques gain in-
formation for vignetting correction from pixels with equal
scene radiance but differing attenuations of brightness. For
a single arbitrary input image, this information becomes
challenging to obtain, since it is difficult to identify pixels
having the same scene radiance while differing appreciably
in vignetting attenuation.

In this paper, we show that it is possible to correct or
reduce vignetting given just a single image. To maximize
the use of available information in the image, our tech-
nique extracts vignetting information from both textured
and untextured regions. Large image regions appropriate
for vignetting function estimation are identified by pro-
posed adaptations to segmentation methods. To counter the
adverse effects of vignetting on segmentation, our method



Figure 1. Tilt angles τ and χ in the Kang-Weiss vignetting model.

iteratively re-segments the image with respect to progres-
sively refined estimates of the vignetting function. Addi-
tionally, spatial variations in segmentation scale are used
in a manner that enhances collection of reliable vignetting
data.

In extracting vignetting information from a given region,
we take advantage of physical vignetting characteristics to
diminish the influence of textures and other sources of in-
tensity variation. With the joint information of disparate
image regions, we describe a method for computing the vi-
gnetting function. The effectiveness of this vignetting cor-
rection method is supported by experiments on a wide vari-
ety of images.

2. Vignetting model

Most methods for vignetting correction use a paramet-
ric vignetting model to simplify estimation and minimize
the influence of image noise. Typically used are empirical
models such as polynomial functions [4, 12] and hyperbolic
cosine functions [14]. Models based on physical consider-
ations include that of Asada et al. [1], which accounts for
off-axis illumination and light path obstruction, and that of
Kang and Weiss [6] which additionally incorporates scene-
based tilt effects. Tilt describes intensity variations within a
scene region that are caused by differences in distance from
the camera, i.e., closer points appear brighter due to the in-
verse square law of illumination. Although not intrinsic to
the imaging system, the intensity attenuation effects caused
by tilt must be accounted for in single-image vignetting es-
timation.

Besides having physically meaningful parameters, an
important property of physical models is that their highly
structured and constrained form facilitates estimation in
cases where data is sparse and/or noisy. In this work, we use
an extension of the Kang-Weiss model, originally designed
for a single planar surface of constant albedo, to multiple
surfaces of possibly different color. Additionally, we gen-
eralize its linear model of geometric vignetting to a polyno-
mial form.

2.1. Kang-Weiss model

We consider an image with zero skew, an aspect ratio of
1, and principal point at the image center with image coor-
dinates (u, v)=(0, 0). In the Kang-Weiss vignetting model
[6], brightness ratios are described in terms of an off-axis
illumination factor A, a geometric factor G, and a tilt factor
T . For a pixel i at (ui, vi) with distance ri from the image
center, the vignetting function ϕ is expressed as

ϕi = AiGiTi = ϑri
Ti for i = 1 · · ·N, (1)

where

Ai =
1

(1 + (ri/f)2)2
,

Gi = (1 − α1ri),

ϑri
= AiGi,

Ti = cos τ

(
1 +

tan τ

f
(ui sin χ − vi cos χ)

)3

. (2)

N is the number of pixels in the image, f is the effective
focal length of the camera, and α1 represents a coefficient
in the geometric vignetting factor. The tilt parameters χ, τ
respectively describe the rotation angle of a planar scene
surface around an axis parallel to the optical axis, and the
rotation angle around the x-axis of this rotated plane, as
illustrated in Fig. 1.

The model ϕ in Eq. (1) can be decomposed into the
global vignetting function ϑ of the camera and the natural
attenuation caused by local tilt effects T in the scene. Note
that ϑ is rotationally symmetric; thus, it can be specified as a
1D function of the radial distance ri from the image center.

2.2. Extended vignetting model

In an arbitrary input image, numerous regions with dif-
ferent local tilt factors may exist. To account for multiple
surfaces in an image, we present an extension of the Kang-
Weiss model in which different image regions can have dif-
ferent tilt angles. The tilt factor of Eq. (2) is modified to

Ti = cos τsi

(
1 +

tan τsi

f
(ui sin χsi

− vi cos χsi
)
)3

, (3)

where si indexes the region containing pixel i.
We also extend the linear geometric factor to a more gen-

eral polynomial form:

Gi = (1 − α1ri − · · · − αpr
p
i ), (4)

where p represents a polynomial order that can be arbitrarily
set according to a desired precision. This generalized rep-
resentation provides a closer fit to the geometric vignetting
effects that we have observed in practice. In contrast to us-
ing a polynomial as the overall vignetting model, represent-
ing only the geometric component by a polynomial allows
the overall model to explicitly account for local tilt effects
and global off-axis illumination.



Figure 3. Overview of vignetting function estimation.

Figure 2. Vignetting over multiple regions. Top row: without and
with vignetting for a single uniform region. Bottom row: without
and with vignetting for multiple regions.

2.3. Vignetting energy function

Let the scene radiance Is of a region s be expressed by
its ratio λs to the scene radiance I0 of the center pixel, i.e.,
Is = λsI0. Given an image with M regions of different
scene radiance, we formulate the vignetting solution as the
minimization of the following energy function:

E =
M∑

s=1

Ns∑
i=1

wi(λsI0Tiϑri
− zi)2, (5)

where i indexes the Ns pixels in region s, zi is the pixel
value in the vignetted image, and wi is a weight assigned to
pixel i. In color images, z represents an RGB vector. For
ease of explanation, we express z in this paper as a single
color channel, and overall energies are averaged from sepa-
rate color components.

In this energy function, the parameters to be estimated
are the focal length f in the off-axis component, the α coef-
ficients of the geometric factor, the tilt angles τs and χs, the
scene radiance of the center pixel I0, and the radiance ra-
tio λs of each region. In processing multiple image regions
as illustrated in Fig. 2, minimization of this energy func-
tion can intuitively be viewed as simultaneously solving for
local region parameters Is, τs and χs that give a smooth
alignment of vignetting attenuations between regions, while

optimizing the underlying global vignetting parameters f ,
α1, · · · , αp.

With the estimated parameters, the vignetting corrected
image is then given by zi/ϑri

. We note that the estimated
local tilt factors may contain other effects that can appear
similar to tilt, such as non-uniform illumination or shad-
ing. In the vignetting corrected image, these tilt and tilt-like
factors are all retained so as not to produce an unnatural-
looking result. Only the attenuation attributed to the imag-
ing system itself (off-axis illumination and geometric fac-
tors) is corrected.

In this formulation, the scene is assumed to contain some
piecewise planar Lambertian surfaces that are uniformly il-
luminated and occupy significant portions of the image. Al-
though typical scenes are considerably more complex than
uniform planar surfaces, we will later describe how vi-
gnetting data in an image can be separated from other in-
tensity variations such as texture, and how the weights w
are set to enable robust use of this energy function.

3. Algorithm overview

The high-level flow of our algorithm is illustrated in
Fig. 3. In each iteration through the procedure, the image is
first segmented at a coarse scale, and for each region a relia-
bility measure of the region data for vignetting estimation is
computed. For regions that exhibit greater consistency with
physical vignetting characteristics and with other regions, a
higher reliability weight is assigned. Low weights may indi-
cate regions with multiple distinct surfaces, so these regions
are recursively segmented at incrementally finer scales un-
til weights of the smaller regions exceed a threshold or re-
gions becomes negligible in size. With this segmentation
approach, the segmentation scale varies spatially in a man-
ner that facilitates collection of vignetting data.

After spatially adaptive segmentation, regions with high
reliability weights are used to estimate the vignetting model
parameters. Since the preceding segmentations may be cor-
rupted by the presence of vignetting, the subsequent itera-
tion of the procedure re-computes segmentation boundaries
from an image corrected using the currently estimated vi-
gnetting model. Better segmentation results lead to im-



proved vignetting estimates, and these iterations are re-
peated until the estimates converge.

The major components of this algorithm are described in
the following sections.

4. Vignetting-based image segmentation

To obtain information for vignetting estimation, pixels
having the same scene radiance need to be identified in the
input image. Our method addresses this problem with pro-
posed adaptations to existing segmentation methods. To fa-
cilitate the location of reliable vignetting data, segmentation
scales are spatially varied over the image, and the adverse
effects of vignetting on segmentation are progressively re-
duced as the vignetting function estimate is refined.

4.1. Spatial variations in scale

Sets of pixels with the same scene radiance provide more
valuable information if they span a broader range of vi-
gnetting attenuations. In the context of segmentation, larger
regions are therefore preferable. While relatively large re-
gions can be obtained with a coarse segmentation scale,
many of these regions may be unreliable for vignetting esti-
mation since they may contain multiple surfaces or include
areas with non-uniform illumination. In an effort to gain
useful data from an unreliable region, our method recur-
sively segments it into smaller regions that potentially con-
sist of better data for vignetting estimation. This recursive
segmentation proceeds until regions have a high reliability
weight or become of negligible size according to a thresh-
old of 225 pixels used in our implementation. Regions of
very small size generally contain insignificant changes in
vignetting attenuation, and the inclusion of such regions
would bias the optimization process.

In the recursive segmentation procedure, incrementally
finer scales of segmentation are used. For methods such as
mean shift [3] and region competition [13], segmentation
scale is essentially controlled by a parameter on variation
within each feature class, where a feature may simply be
pixel intensity or color. With such approaches, a finer parti-
tioning of a low-weight region can be obtained by segment-
ing the region with a decreased parameter value. In other
techniques such as graph cuts [15] and Blobworld [2], the
degree of segmentation is set according to a given number
of feature classes in an image. There exist various ways to
set the number of classes, including user specification, data
clustering, and minimum description length criteria [11].
For recursive segmentation, since each region belongs to
a certain class, a finer partitioning of the region can be ob-
tained by segmenting it with the number of feature classes
specified as two.

With this general adaptation, segmentation scale varies
over an image in a manner designed to maximize the qual-

ity of vignetting data. In our implementation, we employ
graph cut segmentation [15] with per-pixel feature vectors
composed of six color/texture attributes. The color compo-
nents are the RGB values, and the local texture descriptors
are the polarity, anisotropy and normalized texture contrast
described in [2].

4.2. Accounting for vignetting

Two pixels of the same scene radiance may exhibit sig-
nificantly different image intensities due to variations in vi-
gnetting attenuation. In segmentation, a consequence of this
vignetting is that a homogeneous scene area may be divided
into separate image regions. Vignetting may also result in
heterogeneous image areas being segmented together due
to lower contrasts at greater radial distances. For better sta-
bility in vignetting estimation, the effects of vignetting on
segmentation should be minimized.

To address vignetting effects in segmentation, after each
iteration through the procedure in Fig. 3, the estimated vi-
gnetting function is accounted for in segmentations during
the subsequent iteration. Specifically, the vignetting cor-
rected image computed with the currently estimated param-
eters is used in place of the original input image in deter-
mining segmentation boundaries. The corrected image is
used only for segmentation purposes, and the colors in the
original image are still used for vignetting estimation.

As the segmentations improve from reduced vignetting
effects, the estimated vignetting function also is progres-
sively refined. This process is repeated until the difference
between vignetting functions in consecutive iterations falls
below a prescribed threshold, where the difference is mea-
sured as

∆ϑ =
1
k

∑
r

||ϑr(t) − ϑr(t − 1)||. (6)

ϑ(t) represents the global vignetting function at iteration t,
and radial distances r are sampled at k uniform intervals,
where k = 100 in our implementation.

5. Region weighting

To guide the vignetting-based segmentation process and
promote robust vignetting estimation, the reliability of data
in each image region is evaluated and used as a region
weight. A region is considered to be reliable if it ex-
hibits consistency with physical vignetting characteristics
and conforms to vignetting observed elsewhere in the im-
age.

Initially, no vignetting estimates are known, so reliability
is measured in the first iteration of the algorithm according
to how closely the region data can be represented by our
physically-based vignetting model. For a given region, an
estimate ϑ′ of the vignetting function is computed similarly



(a) (b) (c) (d) (e)
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Figure 4. Effects of vignetting compensation in segmentation. (a) Original image; (b) Vignetting correction with segmentation that does
not account for vignetting; (c) Segmentation without accounting for vignetting; (d) Vignetting correction with segmentation that accounts
for vignetting; (e) Segmentation that accounts for vignetting; (f) Estimated vignetting functions after each iteration in comparison to the
ground truth; (g) Intensity profile before (red) and after (blue) correction, shown for the image row that passes through the image center.

to the technique described in Section 6, and the weight for
region s is computed as

ws =
1

Ns
exp

{
−

Ns∑
i=1

||ϑ′
ri
− zi

λsI0Ti
||
}

. (7)

Each pixel is assigned the weight of its region.
The presence of texture in a region does not preclude it

from having a high weight. In contrast to textures which
typically exhibit high frequency variations, vignetting is a
low frequency phenomenon with a wavelength on the order
of the image width. This difference in frequency charac-
teristics allows vignetting effects to be discerned in many
textured regions.

At the end of each iteration, an estimate of the vignetting
function is determined and used as ϑ′ in the following itera-
tion. As the vignetting parameters are progressively refined,
computed weights will more closely reflect the quality of
region data. In cases where the texture or shading in a re-
gion coincidentally approximates the characteristics of vi-
gnetting, it will be assigned a low weight if it is inconsistent
with the vignetting observed in other parts of the image.

6. Vignetting estimation

For a collection of segmented regions, the many un-
known parameters create a complicated solution space. To
simplify optimization, we use a stepwise method for param-
eter initialization prior to estimating the vignetting function.

In the first step, initial values of relative scene radiances
λs are determined for each region without consideration of
vignetting and tilt parameters. For pixels i and j at the same
radius r but from different regions, their vignetting attenua-
tion should be equal, so their image values zi and zj should
differ only in scene radiance. Based on this property, rela-
tive scene radiance values are initialized by minimizing the
function

E1 =
∑

r

∑
ri,rj=r;si �=sj

wiwj

(
zi

λsi

− zj

λsj

)2

.

The λs values are solved in the least squares sense by sin-
gular value decomposition (SVD) on a system of equations√

wiwj( zi

λsi
− zj

λsj
) = 0 where 1

λsi
and 1

λsj
are unknowns.

To expedite minimization of this function, a set of pixels at a
given radius and within the same region may be represented
by a single pixel with the average color of the set.

With the initial values of λs, the second step initializes
the parameters f , I0, and α1, ..., αp, where p is the polyno-
mial order used in the geometric factor of Eq. 4. Ignoring
local tilt factors, this is computed with the energy function

E2 =
M∑

s=1

Ns∑
i=1

wi(λsI0ϑri
− zi)2. (8)

This function is iteratively solved by incrementally increas-
ing the polynomial order from k = 1 to k = p, and using the
previously computed polynomial coefficients α1, ..., αk−1
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Figure 5. Recursive segmentation on low-weight regions. (a)
Original image; (b) Regions prior to recursive segmentation; (c)
Regions after recursive segmentation of one region; (d) Region
weights of (b), where higher intensity indicates a higher weight;
(e) Region weights of (c); (f) Vignetting correction result using
region information of (b); (g) Vignetting correction result using
region information of (c).

as initializations. In our implementation, we use a polyno-
mial order of p = 4.

In the third step, the local tilt parameters τs, χs are esti-
mated by optimizing the energy function in Eq. 5 with the
other parameters fixed to their initialization values. After
this initialization stage, all the parameters are jointly opti-
mized in Eq. 5 to finally estimate the vignetting function.
The optimizations of Eq. 5 and Eq. 8 are computed using
the Levenberg-Marquardt algorithm [10].

7. Results

Our algorithm was evaluated on images captured with a
Canon G3, Canon EOS 20D, and a Nikon E775. To ob-
tain a linear camera response, the single-image radiometric
calibration method of [8] can be applied as a preprocessing
step to our algorithm. Ground truth vignetting functions of
the cameras at different focal lengths were computed from
multiple images of a distant white surface under approxi-

(a) (b)

(c) (d)

Figure 6. Tilt effects in vignetting estimation. (a) Original image
with vignetting and tilt; (b) Image corrected for only vignetting
using the proposed method; (c) Tilt image, where brighter areas
indicate more distant points on a surface; (d) Estimated attenuation
function with both vignetting and tilt.

Image (a) (b) (c) (d) (e) (f)
Error 1.373 2.988 1.812 2.327 2.592 0.973

Image (g) (h) (i) (j) (k) (l)
Error 2.368 3.176 0.823 2.782 2.501 1.473

Table 1. Error
(
×10−3

)
in estimated vignetting function for im-

ages in Fig. 7.

mately uniform illumination. A distant surface was used to
minimize tilt effects, but generally a distant surface does not
fully cover the image plane. We captured multiple images
with camera translation such that each image pixel views
the surface in at least one view. The image fragments of the
white surface were joined and blended to obtain an accurate
calibration image.

We first examine the effects of the proposed segmenta-
tion adaptations. Accounting for vignetting in segmenta-
tion leads to progressive improvements in the estimated vi-
gnetting function as exemplified in Fig. 4. The correction
and segmentation results in (b) and (c) without vignetting
compensation are equivalent to those after a single pass
through the overall procedure shown in Fig. 3. With ad-
ditional iterations, the enhanced segmentations lead to vi-
gnetting estimates that trend towards the ground truth.

The effect of recursive segmentation on a given region is
illustrated in Fig. 5. Further segmentation of a low-weight
region can produce sub-regions of higher weight. With this
improvement in data quality, a more accurate vignetting
function can be estimated.

While the goal of this work is to estimate and correct
for the global vignetting function of the camera, tilt ef-
fects computed in vignetting estimation as shown in Fig. 6
could potentially provide some geometric information of



the scene. It should be noted though that estimated tilt val-
ues are only accurate for reliable regions with high weights.

Some vignetting correction results of our technique are
presented in Fig. 7, along with the vignetting-based seg-
mentation regions and their weights. Errors computed sim-
ilarly to Eq. 6 between the estimated vignetting functions
and the ground truth functions are listed in Table 1. While
some slight vignetting artifacts may be visible under close
examination, the correction quality is reasonable especially
considering that only a single arbitrary input image is pro-
cessed. For some indoor images, the amount of reliable
data can possibly be low due to greater illumination non-
uniformity. Images with poor data quality could potentially
be identified within our method by examination of region
weights, and indicated to the user.

In Fig. 8, we show the application of our method to im-
age mosaicing. Even though vignetting correction was per-
formed independently on each image of the sequence, a rea-
sonable mosaicing result was still obtained. In cases where
overlapping images are available, joint consideration of the
vignetting data among all images in the sequence would
likely lead to better results. In contrast to previous works
on image mosaicing [5, 9, 4], our proposed method can also
jointly process data from images containing completely dif-
ferent content if they are captured by the same camera under
the same camera setting.

8. Conclusion

In this paper, we introduced a method for vignetting cor-
rection using only the information available in a single ar-
bitrary image. Adaptations to general segmentation tech-
niques are presented for locating regions with reliable vi-
gnetting data. Within an image region, the proposed method
takes advantage of frequency characteristics and physical
properties of vignetting to distinguish it from other sources
of intensity variation. Experimental results demonstrate ef-
fective vignetting correction on a broad range of images.

Accurate correction results are generally obtained de-
spite many regions having non-planar geometry and non-
uniform illumination. The detrimental effects of non-planar
geometry are reduced when distance variations of surface
points from the camera are small in comparison to the dis-
tance of the surface itself, since variations in scene radi-
ances become negligible. In many instances, the effects
of non-uniform illumination appear similar to tilt, such
that its effects on image intensity are incorporated into
the estimated tilt factor. Low frequency vignetting effects
also remain distinct when geometry and illumination ex-
hibit texture-like high-frequency variations, such as among
leaves on a tree. As a result, reliable vignetting data often
exists even in image areas with significant geometry and il-
lumination variation.

Directions for future work include joint estimation of

Figure 8. The image mosaic on top exhibits obvious vignetting
effects. Below, the same sequence after vignetting is corrected
separately in each image using our method. No image blending
has been applied.

camera parameters such as principal point, aspect ratio, and
skew, in addition to the vignetting function. In our cur-
rent method, these camera parameters are assumed to be
known from prior geometric calibration, but could poten-
tially be recovered from vignetting information. Another
interesting topic for future investigation is the examination
of data in the RGB channels for region weighting, since
vignetting should attenuate RGB values in a similar way,
while other causes of region variation may not affect the
channels equally.
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