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Abstract

In this paper, we propose an online interactive matting
algorithm, which we call FuzzyMatte. Our framework is
based on computing the fuzzy connectedness (FC) [20] from
each unknown pixel to the known foreground and back-
ground. FC effectively captures the adjacency and simi-
larity between image elements and can be efficiently com-
puted using the strongest connected path searching algo-
rithm. The final alpha value at each pixel can then be cal-
culated from its FC. While many previous methods need to
completely recompute the matte when new inputs are pro-
vided, FuzzyMatte effectively integrates these new inputs
with the previously estimated matte by efficiently recomput-
ing the FC value for a small subset of pixels. Thus, the
computational overhead between each iteration of the re-
finement is significantly reduced. We demonstrate Fuzzy-
Matte on a wide range of images. We show that FuzzyMatte
updates the matte in an online interactive setting and gen-
erates high quality matte for complex images.

1. Introduction

Image matting refers to the process of decomposing an
observed image I into a foreground object image F , a back-
ground image B, and an alpha matte α as

I = αF + (1 − α)B. (1)

The resulting foreground and the alpha matte can then be
used to composite a new image with a different background.

It is well understood that estimating the matte from a sin-
gle image is inherently under-constrained: there are more
unknowns

(
F , B and α

)
than the constraints (Eqn 1). Ad-

ditional constraints have been proposed to resolve the am-
biguity problem, including the ones based on user inputs
like scribbles[22] or trimaps [3] and the ones using multiple
images or video [2, 15, 10, 18].

Recent image matting methods [22, 9, 8, 1] have focused
on improving the user interactivity and reducing the algo-
rithm running time. For example, these methods prefer us-
ing scribbles rather than specifying a complete trimap. The

original composite

4.3 sec 1.4 sec 3.1 sec 0.9 sec 0.4 sec
Figure 1. Interactive matting process and run time with Fuzzy-
Matte method. The images in the last row represent alpha values.

user can also incrementally add more scribbles to improve
the quality of the matte. However, the time between each
iteration of the interactive loop can be very long, as shown
in Figure 5. This is because many previous methods do not
make use of the matting result from prior iterations. Instead,
they recompute the matte from the scratch even if the user
refinement is minimal (e.g., adding a single stroke or change
the bounding box) [22, 8, 9, 1, 13]. A notable exception is
the soft scissor [21], which estimates the matte and fore-
ground color in a local region covered by the stroke. How-
ever, the soft scissor algorithm relies on accurately tracing
the foreground edge to produce high-quality mattes.

In this paper, we propose a scribble-based online matting
algorithm, which we call FuzzyMatte. FuzzyMatte signifi-
cantly reduces the time between each iteration of the inter-
active loop by effectively integrating the new input with the
estimated matte from the previous iteration. FuzzyMatte is
inspired by modern techniques in fuzzy medical segmenta-
tion [20] that are used to determine the partial volume from
multiple tissues in a single image. Given an image and
the initial user input (scribbles or a trimap), we first com-
pute, for each pixel p with an unknown alpha, its fuzzy con-
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nectedness (FC) to the known foreground and background.
FC is a concept that effectively captures fuzzy “connected-
ness” (adjacency and similarity) between image elements
[20]. We show that the FC at each pixel can be computed
by searching for its strongest connected path to the known
foreground and background. The alpha value of the pixel
can then be calculated from FCs.

When additional inputs become available, FuzzyMatte
does not require recomputing all pixels’ FC by searching
again for the strongest connected path. Instead, it partitions
the pixels into three subsets based on their old FC values
and only a small number of pixels in one of the three subsets
require searching for the strongest connectedness path. All
other pixels simply reuse the previously estimated FC. This
significantly reduces the computational overhead between
each iteration of the refinement. In addition, for pixels that
need recomputing of the FC by searching the strongest path,
we develop an efficient algorithm by confining the search
space for the strongest path. This further reduces the com-
putational cost for re-estimating the matte. We have demon-
strated FuzzyMatte on a wide range of images and experi-
ments have shown that FuzzyMatte updates the matte in an
online interactive setting and generates high-quality mattes
for complex images.

2. Previous Work

Single Image vs. Multiple Images The problem of al-
pha matting has been studied for over 40 years. Single im-
age based matting methods rely on image statistics [3, 22]
or the image gradient [16] to resolve the ambiguity prob-
lem. They are often assisted with user inputs in form of
trimaps or scribbles. Multi-image based matting methods
can also remove the ambiguity. Smith and Blinn [15] used
two different backgrounds to make the matting problem
over-determined. Defocus video matting [10] used a special
imaging system to capture multiple images of the scene with
different focus. It then automatically segments the image
into foreground, background, and an unknown region by an-
alyzing the defocus. Flash matting [17] uses a flash/no-flash
pair to extract the foreground layers by assuming the fore-
ground is significantly bright. However, many multi-image
based methods are sensitive to calibration errors, camera
shake, and foreground motions.

Trimap vs. Scribbles We can also categorize the exist-
ing matting methods by the form of user inputs. Trimaps
and scribbles are the two most commonly used inputs for
identifying foreground, background, and the unknown re-
gion.

Bayesian matting and Poisson matting [16] are two
important matting techniques using trimaps as the in-
put. Bayesian matting [3] builds a probabilistic model
of foreground and background from the trimap and then
uses a maximum-likelihood criterion to estimate the matte.

Bayesian matting can also be extended to videos by prop-
agating the trimap using optical flow [2]. Poisson matting
[16] assumes the matte gradient is proportional to the im-
age gradient and solves the Poisson equation in the region
specified by the trimap. To generate a high-quality matte,
the trimap often needs to be manually and carefully speci-
fied. Thus, it is usually impractical to use the trimap-based
methods for online interactive processing.

Recently, many interactive image matting methods pro-
posed have been using scribbles or a bounding box [13] as
the input. The random walk [6] algorithm assigns a label
to each pixel with maximal probability that it will reach the
scribbles through a random walk. Wang&Cohen [22] pro-
posed to use a Markov Random Field (MRF) to simulta-
neously segment foreground and background and compute
the matte. Bai and Sapiro [1] proposed to use the geodesic
distance from the scribbles to an arbitrary pixel to assign
the likelihood that a pixel belongs to foreground or back-
ground and then uses this likelihood to compute its alpha
value. Spectral matting [8] computes a set of soft mattes
by solving the eigenvectors of the matting Laplacian matrix
[9]. The user can then use scribbles to refine the soft matte.

The major advantage of using scribbles is that the user
can easily refine the inputs to improve the quality of the
matte. However, the wait time between each iteration of
refining the scribbles can be very long for most of these
methods since they recompute the matte from the scratch
without using the previously estimated result even if the
refinement is minimal. The recently proposed soft scissor
method [21] allows the user to roughly track the boundary
with a self-adjustable brush. By estimating the matte only in
local regions, soft scissor achieves real-time performance.
However, its result heavily depends on the accuracy of the
specified boundary.

We propose a scribble-based online matting algorithm
called FuzzyMatte based on the notion of fuzzy connect-
edness (FC) introduced by Rosenfeld [12]. FC captures
fuzzy “togetherness” (adjacency and similarity) of image
elements [20]. FC has been used in medical image segmen-
tation and tissue density quantification [20, 11], as well as
in color image or video segmentation [7]. Dijkstra’s algo-
rithm [4] can be used to efficiently compute the FC. Nyul
et al. [11] further accelerated this computation using a Fi-
bonacci heap. In this paper, we use the method in [11] for
computing the FC and we show that with this acceleration,
FuzzyMatte provides an interactive tool for online estima-
tion of alpha mattes.

3. Modeling Alpha Matting Using Fuzzy Con-
nectedness

In this section, we show how to use the fuzzy connect-
edness (FC) to model the alpha matting problem. The FC



between two pixels models the “hanging togetherness” in
terms of their intensity similarity, spatial distance, and color
consistency [20]. In this paper, we model the image as a
graph with four-connectivity relationships between neigh-
boring pixels. We first define the similarity metric (which
we refer to as affinity A [20] in this paper) between any
two neighboring pixels (Section 3.1). We then compute the
fuzzy connectedness FC(p, q) between two pixels p and q
using the strongest connected path between p and q (Section
3.2). For image matting, we also define the FC between a
pixel and the known scribbles and we show that the alpha
value at each pixel can be estimated from its FCs to the fore-
ground scribbles and to the background scribbles (Section
3.3).

3.1. Affinity

We start by defining the affinity A between two adjacent
pixels p1 and p2. We adopt a notion of A similar to [14] as:

Ao(p1, p2) = λμo
ψ(p1, p2) + (1 − λ)μo

φ(p1, p2),
o ∈ {f, b} (2)

where superscript o distinguishes the foreground (o = f )
and the background (o = b) affinity. μψ measures the color
similarity between the two pixels, which we call pixel-pixel
similarity. μo

φ measures the color similarity between p1 and
p2 and the color of scribbles in o and takes high value when
p1 and p2 are both close to the scribbles’ color, which we
call pixels-scribble similarity. Finally, λ balances the two
similarity measures and is between [0 1].

We first fit a Gaussian Mixture Model (GMM) to both
the foreground scribble colors and the background scribble
colors. In this paper, we use the CIE LUV color represen-
tation. We can then compute the pixel-pixel similarity μo

ψ

as

μo
ψ(p1, p2) =
exp

(− 1
2 [I(p1) − I(p2)]T (Σo

max)−1[I(p1) − I(p2)]
)
.

o ∈ {f, b}
(3)

For each Gaussian in the GMM, we average the variance of
all three channels and Σmax corresponds to the covariance
matrix of the Gaussian that has the largest average variance.
We choose to use the largest variance to improve the robust-
ness of FC computation in highly textured regions [14].

We define the similarity metric Sf (p) between a pixel
p’s color to the foreground scribble color as

Sf(p) = max
i

exp
(
−1

2
[I(p) − mf

i ]T (Σf
i )−1[I(p) − mf

i ]
)

where i is the index of the Gaussian in the GMM of the
foreground color, and mf

i , Σf
i are the mean vector and

covariance matrix of the corresponding Gaussian. Sb(p)
can be similarly computed with the background scribbles’

color. We compute the pixels-stroke similarity μf
φ (fore-

ground strokes) as

μf
φ(p1, p2) =⎧⎪⎨

⎪⎩
1 if p1 = p2

W f
min(p1,p2)

W f
min(p1,p2)+W f

max(p1,p2)
if W f

min(p1, p2) �= 0

0 otherwise
(4)

where

W f
min(p1, p2) = min

[
Sf (p1), Sf (p2)

]

and
W f

max(p1, p2) = max
[
Sb(p1), Sb(p2)

]
.

We can compute the other pixels-stroke similarity μb
φ

(background strokes) in a similar way to μf
φ.

Finally, we can combine μφ and μψ for computing affin-
ity A with equation (2).

Notice, the affinity A is reflective (i.e. A(p, p) = 1)
and symmetric (i.e. A(p1, p2) = A(p2, p1)). In Section 4,
we will use these two properties to develop highly efficient
algorithms for computing the fuzzy connectedness between
pixels.

Our affinity measure A(p1, p2) is similar to the ones de-
scribed in [14]. However, we extend the definitions to color
images, and extend the known pixels to scribbles. In addi-
tion, we preprocess the image with Bilateral Filtering [19]
with a small spatial support (in our examples, σd = 2 and
σr = 5) to reduce the noise when computing affinity.

3.2. Fuzzy Connectedness

To define the fuzzy connectedness (FC) between two
pixels p1 and p2, we represent a path γ between p1 and p2

in image Ω as a sequence of nγ pixels
{
q1, q2, · · · , qnγ

}
where q1 = p1 and qnγ = p2 and pk and pk+1 are the two
neighboring pixels in Ω, as shown in Figure 3. The strength
of path γ is defined as:

stro (γ(p1 → p2)) = min
j=2··· ,nγ

Ao(qj−1, qj), for o ∈ {f, b}.
(5)

Then, the FC between p1 and p2 is defined as

FCo(p1, p2) = max
all γ

stro(γ), for o ∈ {f, b} (6)

where FCf and FCb represent the FC with respect to the
foreground and background scribbles.

Notice that the min/max metric in Eqn (5) and Eqn (6)
guarantees that the FC between two pixels inside the same
region of the same object is large. More importantly, even
if the pixel intensities are different due to the graded com-
position of the heterogeneous material of the object, their



Original image FC value
Figure 2. Fuzzy connected values to the circle region highlighted
with light green color.

fuzzy connectedness can still be large as there exists a path
along which the color changes smoothly.

Udupa et al. [20] have proved that the FC between two
pixels FC(p1, p2) (Eqn 6) is a similitude relation. It is re-
flective (i.e. FC(p, p) = 1), symmetric (i.e. FC(p1, p2) =
FC(p2, p1)), and transitive (i.e. FC(p1, p2) =
maxp∈Ω,p�=p1,p�=p2min(FC(p1, p),FC(p, p2))).

We can further define the FC between a pixel p and the
foreground scribbles FCf (p) and the background scribbles
FCb(p) as

FCo(p) = FC(Ωo, p) = max
p′∈Ωo

FCo(p′, p), o ∈ {f, b} (7)

where Ωf and Ωb represent the foreground and the back-
ground scribbles, respectively. In Fig. 2, we represent the
FC for all pixels with respect to a circular scribble.

Finally, we can also define the FC between two sets of
pixels P and Q using pixel-pixel FCs (Eqn 6) as:

FC(P, Q) = max
p∈P

max
q∈Q

FC(p, q). (8)

We can prove that the FC relations defined in Eqn 7 and
Eqn 8 are also a similitude relation. We provide the proof
in the supplementary material on our webpage.

3.3. Estimating Matting Using Fuzzy Connected-
ness

The fuzzy connectedness (FC) between pixels are
closely related to the matting problem. A pixel with larger
alpha values should be more closely connected to the fore-
ground scribbles, and hence, have a larger FC value to the
foreground than to the background. Similarly, a pixel with
smaller alpha values should have a larger FC value to the
background. Therefore, we can derive every pixel p’s α
value by using its foreground and background FC as

α(p) =

⎧⎪⎨
⎪⎩

1 (FCf (p)>ν1)&(FCb(p)<ν2)
0 (FCb(p)>ν1)&(FCf (p)<ν2)

FCf (p)
FCf (p)+FCb(p)

otherwise

(9)
where thresholds ν1 = 0.95 and ν2 = 0.05 are used to
determine if p is foreground, background, or transparent.

Once we estimate the alpha matte using FC, we can com-
pute the foreground and background colors using a simi-
lar method to [22]. Specifically, we fit a Gaussian Mixture

Figure 3. Demonstration of the definition of fuzzy connectedness.
To compute the fuzzy connectedness value between two pixels p1

(red filled circle) and p2 (green filled circle), we need to find the
strongest path among all the possible paths between them. The
blue-color lines and yellow-color lines show two variant paths, in
which larger line width represents larger affinity value. For the
path in blue color, the strength is defined as the weakest affinity
value between the two pixels qi3 and qi4.

Model (GMM) to represent both the foreground and back-
ground colors of the pixels whose FC exceeds the thresh-
olds. We then find the optimal pair of foreground and back-
ground colors that minimize the fitting error in Eqn 9.

4. Estimating Fuzzy Connectedness

In this section, we develop efficient algorithms to com-
pute, for pixels with unknown alpha, their fuzzy connected-
ness (FC) to the foreground and the background scribbles.
The computed FC can then directly be used to evaluate the
matte with Eqn (9).

Computing FC between two pixels is, in essence, the
single-source shortest path problem. The only difference
is that the cost of each path is the sum of the edge weights
in traditional problems, whereas it is the minimal affinity
between all neighboring pixels in FC computation. Nev-
ertheless, the classical Dijkstra’s algorithm [4] can still be
used to compute FC [11] and its running time can be fur-
ther improved using a Fibonacci heap [5, 11]. In addition,
since the Dijkstra’s algorithm computes the shortest path
from a single node to all nodes, we can easily compute the
FC from each pixel to the scribbles. In Appendix, we show
the pseudo code for the Dijkstra FC estimation algorithm, as
a Dijkstra-FC-T algorithm. Note that we add a template T
in the algorithm to indicate, which pixel can be inserted in
the heap, hence confining the search space for the strongest
path.

Recall that our goal is to reduce the computational over-
head when new scribbles are added. Notice that if the new
scribbles introduce new colors in GMM, we will change i)
the affinity between the neighboring pixels, and ii) the FC
value that is based on the strongest path from the pixel to
the foreground and background scribbles. For affinity, the
key computational cost is to calculate the pixel-pixel sim-
ilarity (Eqn 3) and pixels-scribble similarity (Eqn 4). To



minimize this cost, one can draw the scribbles to cover most
of the main colors of foreground or background in the first
iteration so that the cost for updating affinity will be kept
minimal when new scribbles are added. To recompute the
FC, we prove that we can partition the pixels into three sub-
sets and only one subset of pixels needs re-estimating the
FC by searching for the strongest path within a smaller do-
main and the other two subsets can directly update their FC
values based on the previously computed FC.

4.1. First Iteration

At the first iteration of user interaction, we set the FC of
known foreground or background pixels to be 1. We then
directly use the Dijkstra-FC-T algorithm to compute the FC
values to foreground or background by setting the template
T to be 1 for all pixels. Counter-intuitively, larger strokes
will usually result in lower computation cost. This is be-
cause the manually specified pixels in the strokes will never
fit the condition in the 5th step of the Dijkstra-FC-T algo-
rithm, therefore, will be put in the queue only once at the
first step. In contrast, other pixels will be put in the queue
possibly more than once.

Our initial FC computation also works for the trimap.
In fact, the computational cost for FC using a trimap can
be much lower than using scribbles as there are fewer pix-
els with unknown FC. Furthermore, we can constrain the
strongest path to only pass the foreground regions and the
unknown regions to compute the FC to foreground and im-
pose a similar constraint to compute the FC to the back-
ground to further reduce the search space. In practice, we
set the T values as 0 for pixels in Ωb and other pixels as 1
when computing FC to foreground, and set the T values as
0 for pixels in Ωf and other pixels as 1 when computing FC
to background (in the Dijkstra-FC-T algorithm).

4.2. Efficient Fuzzy Connectedness Updates

At each iteration, when new scribbles are added, Fuzzy-
Matte attempts to avoid recomputing all pixels’ FC using
the strongest path search algorithm. Instead, it tries to reuse
the computed FC from the last iteration. To do so, we
present two propositions and then develop an efficient al-
gorithm based on the propositions that only requires recom-
puting the strongest path for a much smaller set of pixels.
We provide a complete proof to all two propositions in the
supplementary material on our webpage. Similar theoreti-
cal results first appeared in [23].

Proposition 1. Assume that the FC values to a pixel p
have been computed to all the pixels in Ω, given a different
pixel p′, Ω can be partitioned into three subsets Ω1

pp′ , Ω2
pp′ ,

and Ω3
pp′ , such that, ∀q ∈ Ω1

pp′ , FC(p, q) > FC(p, p′);
∀q ∈ Ω2

pp′ , FC(p, q) = FC(p, p′); and ∀q ∈ Ω3
pp′ ,

FC(p, q) < FC(p, p′). To compute the FC values to

Figure 4. Illustration for the proposition 1, in which the black dots
denote pixels, and thicker lines connecting two pixels mean larger
values of fuzzy connectedness between them.

p′, ∀q ∈ Ω1
pp′ , we always have FC(p′, q) = FC(p, p′);

∀q ∈ Ω3
pp′ , we always have FC(p′, q) = FC(p, q); and

∀q ∈ Ω2
pp′ , we always have FC(p′, q) ≥ FC(p, p′), and

when FC(p′, q) > FC(p, p′), the strongest path between q
and p′ are included in Ω2

pp′ .
Proposition 1 implies that once we obtain the FC value

from each pixel to one pixel p, to compute its FC value
of all pixels to a new pixel p′, only pixels in Ω2

pp′ (blue
region in Figure 4) need to recompute their FC using the
strongest path search algorithm. The remaining pixels in
Ω1

pp′ and Ω3
pp′ (the green and red regions in Figure 4) can

simply reuse their previously computed FC. Furthermore,
the FC for a pixel in q ∈ Ω2

pp′ is either equal to FC(p, p′) or
the strongest path for computing FC is in the domain Ω2

pp′ .
Thus, we can simply initialize the FC values of pixels in
domain Ω2

pp′ as FC(p, p′), and then use the Dijkstra-FC-T
algorithm to search for the strongest path within the con-
strained domain of Ω2

pp′ instead of the whole image. This
can significantly reduce the computation cost.

Proposition 1 aims to simplify the computation of pixel-
pixel FC. We now extend it to pixel-stroke FC.

Proposition 2. Assume the FC values to some strokes
have been computed for all the pixels in Ω. Denote the set
of pixels covered by the scribbles as P . Given some new
strokes that cover a new set of pixels P ′, we can partition Ω
into three subsets: Ω1

PP ′ , Ω2
PP ′ and Ω3

PP ′ , such that, ∀q ∈
Ω1

PP ′ , FC(P, q) > FC(P, P ′); ∀q ∈ Ω2
PP ′ , FC(P, q) =

FC(P, P ′); and ∀q ∈ Ω3
PP ′ , FC(P, q) < FC(P, P ′). To

compute the FC values to P ′, ∀q ∈ Ω1
PP ′ , we always

have FC(P ′, q) = FC(P, P ′); ∀q ∈ Ω3
PP ′ , we always

have FC(P ′, q) = FC(P, q); and ∀q ∈ Ω2
PP ′ , we always

have FC(P ′, q) ≥ FC(P, P ′), and when FC(P ′, q) >
FC(P, P ′), all of the pixels on the strongest path between q
and P ′ are included in Ω2

PP ′ .
Similar to proposition 1, Proposition 2 reveals that given

the FC values of all pixels to some stroke pixels P , to com-
pute the FC values of all pixels to the newly added stroke
pixels P ′, we do not need to recompute the strongest path
for pixels in Ω1

PP ′ and Ω3
PP ′ . Instead, we can directly com-

pute their FC from their previously computed FC to P . For
the remaining pixels in Ω2

PP ′ that require recomputing the
strongest path, the search domain is within Ω2

PP ′ . To com-
pute the FC values for pixels in Ω2

PP ′ to the newly added



scribbles, we initialize the FC values of pixels in the new
scribbles to be 1, and set the template T values in Ω2

PP ′ as
1 and others as 0. We then use the Dijkstra-FC-T algorithm
to do the computation.

Finally, after we update the FC values of all pixels to the
newly added strokes P ′, the FC value for each pixel q to all
strokes P ∪ P ′ is simply the maximum of the FC values of
q to P and q to P ′.

5. Results and Discussions

FuzzyMatte updates the matte in an online interactive
setting and generates high-quality mattes for complex im-
ages. The images in Figure 1 show one example of using
FuzzyMatte. As new scribbles are gradually added, the re-
sulting matte gets further improved. The run time between
each iteration also significantly decreases. The only ex-
ception is at the third iteration where the computation time
increases. This is because the newly added strokes at the
third iteration have introduced new foreground colors and
the affinity values need to be recomputed and the fuzzy con-
nectedness (FC) values need to be recomputed from scratch,
as is discussed in Section 4.

In Figure 5, we compare FuzzyMatte with other state-
of-art approaches: interactive BP [22] and Spectral Mat-
ting [8]. Spectral Matting [8] was implemented in Matlab
while interactive BP [22] in C++. For Spectral Matting, we
treat the computation of the spectral components as a pre-
processing and do not count it towards the final processing
time at each iteration. FuzzyMatte is implemented in C++
and for all examples in this paper, except for the peacock
image (Figure 6), we set λ = 0.7 in Eqn. (2). All algo-
rithms are run on a 2.39 GHz PC.

In Figure 5, we compare the run time for each itera-
tion. Although it is difficult to fairly compare these algo-
rithms (some implemented in MatLab and some in C++), it
is still easy to see that the run time of FuzzyMatte is sig-
nificantly reduced at each iteration of scribble refinement,
whereas it remains the same when using other methods.
FuzzyMatte best compares with interactive BP [22] (both
implemented in C++). The processing time of the first it-
eration is approximately the same. However, at subsequent
iterations, when more and more user scribbles are added,
FuzzyMatte re-estimates the matte much faster than inter-
active BP [22]. We only need to recompute the FC values
for a very small subset of the pixels. For example, the last
iteration of FuzzyMatte in Figure 5 only requires updating
9.6% of all pixels. This makes FuzzyMatte a highly useful
tool for interactive matting, particularly at the later stage of
interactive refinements, when a lot of small strokes need to
be added to recover the fine details.

We also find that all three methods produce high-quality
mattes with sufficient scribbles, however, they improve the
matte in different ways at each iteration of refinement. For

Interactively drawn scribbles

2.6 sec 2.6 sec 2.6 sec
Interactive BP matting [22]

13 sec 13 sec 13 sec
Spectral Matting [8]

3.5 sec 0.8 sec 0.4 sec
FuzzyMatte method

Figure 5. Comparison of different matting schemes and their
speeds with interactive scribbles.

example, spectral matting generates high-quality mattes for
pixels near the foregroundwith only two simple strokes (top
row of Figure 5). However, the errors in background do
not reduce much with additional scribbles, whereas Fuzzy-
Matte, and interactive BP significantly improve the quality
of the matte near the background with more scribbles. Fur-
thermore, interactive BP and Spectral Matting both generate
large errors for pixels in the foreground that have similar
colors to the background (e.g., the black regions near the
“forehead” of the matte images in Figure 5). FuzzyMatte,
on the other hand, does not. In FuzzyMatte, if a pixel’s sur-
rounding neighbors all have a high FC to the scribbles, the
pixel itself has a good chance to have a high FC because of
the usual high pixel-pixel similarity (Eqn 3). The only ex-
ception is when the color difference between the pixel and
the strokes is large, i.e., the pixels-scribble similarity is low
(Eqn 4). FuzzyMatte balances the two terms by setting an
appropriate λ when computing the affinity in (2).

In Figure 6, we show FuzzyMatte results for highly com-
plex images. For the peacock image, we use about 3 strokes
at the first iteration, one on the foreground and two on the
background. We set λ = 0.5 in the equation (2) for com-



(a) (b) (c)
Figure 6. Results with the FuzzyMatte. (a). Original images with foreground and background strokes. (b). Extracted mattes with Fuzzy-
Matte. (c). Composite images.

puting affinity and it takes about 4 seconds for the initial
matte. Notice that the peacock has a lot of fine details at
its tail. Thus, we gradually add a total of around 7 addi-
tional strokes near the tail and the feet over about 3 itera-
tions. The computational cost at each iteration is about 0.5
second, much faster than most previous matting methods.
The flame image usually requires a lot of gradual refine-
ment using small strokes [22, 9] to generate a satisfactory
matte. Since FuzzyMatte is particularly efficient with grad-
ual refinement, it is highly suitable to process these kinds of
images. In Figure 6, we composite the extracted foreground
into a new background using the estimated matte created
with FuzzyMatte.

We have also conducted a quantitative evaluation of our
method using the ground truth dataset provided in [8]. In
Figure 7, we compare our method with the interactive BP
matting [22] and Spectral Matting [8]. We plot the aver-
age SSD errors proposed by [8]. Our evaluation shows that
FuzzyMatte generates accurate matting results comparable
to Spectral Matting. It is also possible to further refine our
matting results by first thresholding the computed FC values
to create a trimap and then applying more accurate matting
estimation algorithms [22, 16] using the trimap.

6. Conclusion and Future Work

An ideal scribble-based image matting method should
interactively update the estimated matte when additional
scribbles are added. In this paper, we have presented an al-
most real-time interactive matting tool called FuzzyMatte.
FuzzyMatte significantly reduces the wait time between
each iteration of the interactive loop by effectively inte-
grating the new inputs with the previously estimated matte.
FuzzyMatte is based on the notion of fuzzy connectedness
originally proposed in fuzzy medical segmentation [20].
Given an image and the initial user inputs (scribbles or a
trimap), FuzzyMatte first computes, for each pixel p with an

Trimap Scribbles

Figure 7. Comparisons of the errors in mattes computed by trimaps
and scribbles, with the public ground truth matting data [8].

unknown alpha, its fuzzy connectedness (FC) to the known
foreground and background by searching for the strongest
connected path. The alpha value of p can be computed from
FC.

When additional inputs become available, FuzzyMatte
does not require recomputing of all pixels’ FC by search-
ing again for the strongest connected path. Instead, it par-
titions the pixels into three subsets based on their old FC
values and only a small number of pixels in one of the three
subsets requires searching for the strongest connectedness
path. All other pixels simply reuse the previously estimated
FC. This significantly reduces the computational overhead
between each iteration of the interactive refinement. In ad-
dition, for pixels that need recomputing the FC using the
strongest path, we present an efficient algorithm by con-
fining the search space for the strongest path. This further
reduces the computational cost for re-estimating the matte.
We have demonstrated FuzzyMatte on a wide range of im-
ages and experiments have shown that FuzzyMatte updates
the matte in an online interactive setting and generates high-
quality mattes for complex images.

The major limitation of FuzzyMatte is when a user wants
to arbitrarily remove a scribble, the FC of all pixels need
to be recomputed using the strongest connected path al-
gorithm. Thus it will eliminate the key advantage of our



approach on efficiently reusing the previously estimated
matte. Although most existing matting methods also require
completely recomputing the matte from scratch in these sit-
uations, we believe efficiently updating the matte instead of
recomputing it is a desirable feature in an interactive mat-
ting system. In the future, we intend to explore novel al-
gorithms to handle these cases using a similar technique
for adding the scribbles as described in Section 4.2. Fur-
thermore, we plan to extend FuzzyMatte to processing 3D
stacks of images and videos.

APPENDIX
Algorithm Name: Dijkstra-FC-T
Symbols:
Ω: the set of pixels in the image
Ωo: the set of pixels in the strokes for foreground when o = f or
background when o = b
FCo(p): fuzzy connectedness of pixel p to Ωo

Ao(p1, p2): affinity between pixels p1 and p2

p, p′: pixels
∅: empty set
Q: priority queue managed by a Fibonacci heap, in which the
fuzzy connectedness value is treated as the priority
max(Q): element with largest priority in Q
T : template for determining if a pixel can be inserted in the queue,
where 1 means “yes” and 0 mean “no”.
EXTRACT, INSERT: operations for Q, to extract or insert one
element, respectively.
begin
Set fuzzy connectedness of the pixels in {Ω−Ωo} as 0, and in Ωo

as 1
1: INSERT(Q,Ωo)
2: while (Q �= ∅)
3: p := EXTRACT-max(Q)
4: for each p′ such that Ao(p, p′) > 0 & T (p) = 1
5: if (min(FCo(p),Ao(p, p′)) > FCo(p′))
6: FCo(p′) := min(FCo(p),Ao(p, p′))
7: if p′ ∈ Q
8: update p′ in Q
9: else
10: INSERT(Q,p′)
11: end if
12: end if
13: end for
14:end while
end
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