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Question:
How many parameters are there to configure

before running a MapReduce job?
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Hadoop’s configuration file has more than 220 parameters.
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A Sampling of Hadoop Configuration Parameters

mapreduce.job.maps
mapreduce.job.reduces
mapreduce.map.memory.mb
mapreduce.map.cpu.vcores
mapreduce.reduce.memory.mb
mapreduce.reduce.cpu.vcores
mapreduce.job.userhistorylocation
mapreduce.task.io.sort.factor
mapreduce.task.io.sort.mb
mapreduce.map.sort.spill.percent
mapreduce.jobtracker.address
mapreduce.jobtracker.http.address
mapreduce.jobtracker.handler.count
mapreduce.tasktracker.report.address
mapreduce.cluster.local.dir
mapreduce.jobtracker.system.dir
mapreduce.jobtracker.staging.root.dir
mapreduce.cluster.temp.dir
mapreduce.tasktracker.instrumentation
mapreduce.jobtracker.restart.recover
mapreduce.jobtracker.taskscheduler
mapreduce.job.running.map.limit
mapreduce.job.running.reduce.limit
mapreduce.job.max.split.locations
mapreduce.job.split.metainfo.maxsize
mapreduce.map.maxattempts
mapreduce.reduce.maxattempts
mapreduce.reduce.shuffle.read.timeout
mapreduce.task.timeout
mapreduce.jobtracker.instrumentation
mapred.child.java.opts
mapreduce.map.java.opts
mapreduce.reduce.java.opts
mapred.child.env
mapreduce.map.env
mapreduce.reduce.env

mapreduce.admin.user.env
mapreduce.map.log.level
mapreduce.reduce.log.level
mapreduce.reduce.merge.inmem.threshold
mapreduce.reduce.shuffle.merge.percent
mapreduce.reduce.input.buffer.percent
mapreduce.shuffle.ssl.enabled
mapreduce.shuffle.ssl.file.buffer.size
mapreduce.shuffle.max.connections
mapreduce.shuffle.max.threads
mapreduce.shuffle.transferTo.allowed
mapreduce.shuffle.transfer.buffer.size
mapreduce.map.speculative
mapreduce.reduce.speculative
mapreduce.job.jvm.numtasks
mapreduce.job.ubertask.enable
mapreduce.job.ubertask.maxmaps
mapreduce.job.ubertask.maxreduces
mapreduce.job.ubertask.maxbytes
mapreduce.job.emit-timeline-data
mapreduce.jobtracker.maxtasks.perjob
mapreduce.tasktracker.dns.interface
mapreduce.tasktracker.dns.nameserver
mapreduce.tasktracker.http.threads
mapreduce.tasktracker.http.address
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
map.sort.class
mapreduce.task.userlog.limit.kb
yarn.app.mapreduce.shuffle.log.backups
mapreduce.job.userlog.retain.hours
mapreduce.jobtracker.hosts.filename
mapreduce.client.output.filter
mapreduce.task.profile
mapreduce.task.profile.maps
mapreduce.task.profile.reduces

mapreduce.task.profile.params
mapreduce.task.profile.map.params
mapreduce.task.profile.reduce.params
mapreduce.task.skip.start.attempts
mapreduce.map.skip.proc.count.autoincr
mapreduce.job.skip.outdir
mapreduce.map.skip.maxrecords
mapreduce.reduce.skip.maxgroups
mapreduce.ifile.readahead
mapreduce.ifile.readahead.bytes
mapreduce.jobtracker.taskcache.levels
mapreduce.job.queuename
mapreduce.job.tags
mapreduce.cluster.acls.enabled
mapreduce.job.acl-modify-job
mapreduce.job.acl-view-job
mapreduce.tasktracker.indexcache.mb
mapreduce.job.token.tracking.ids
mapreduce.task.merge.progress.records
mapreduce.tasktracker.taskcontroller
mapreduce.tasktracker.group
mapreduce.shuffle.port
mapreduce.job.counters.limit
mapreduce.framework.name
yarn.app.mapreduce.am.staging-dir
mapreduce.am.max-attempts
mapreduce.job.end-notification.url
mapreduce.job.log4j-properties-file
yarn.app.mapreduce.am.env
yarn.app.mapreduce.am.admin.user.env
yarn.app.mapreduce.am.command-opts
yarn.app.mapreduce.client.max-retries
yarn.app.mapreduce.am.resource.mb
mapreduce.application.classpath
mapreduce.application.framework.path
mapreduce.job.classloader

mapreduce.jobhistory.address
mapreduce.jobhistory.webapp.address
mapreduce.jobhistory.keytab
mapreduce.jobhistory.principal
mapreduce.jobhistory.done-dir
mapreduce.jobhistory.cleaner.enable
mapreduce.jobhistory.max-age-ms
mapreduce.jobhistory.move.interval-ms
mapreduce.jobhistory.move.thread-count
mapreduce.jobhistory.store.class
mapreduce.jobhistory.admin.address
mapreduce.jobhistory.admin.acl
mapreduce.jobhistory.recovery.enable
mapreduce.jobhistory.http.policy
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How Much Does the Configuration Matter?
Two benchmarks: Word Count and PageRank
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Question:

How do we select the best configuration?

Challenges:

Every framework has 100’s of parameters that affect performance.

Sampling sets of parameters quickly becomes expensive.

Opportunities:

We can learn from frequently run jobs at production level.

PageRank, (Google) run frequently to keep website ranking up-to-date.
Word Count, (Facebook/Twitter) run frequently to see what’s trending.

Amortize the cost of sampling with future gains in performance.
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Amortizing the Cost of Sampling
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Question:

How do we focus the learning phase to maximize the
return on our investment?
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Exhaustive Searching [1]
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[1] P. K. Lakkimsetti, A Framework for Automatic Optimization of MapReduce Programs Based on Job Parameter
Configurations, M. Thesis, Kansas State University, 2011.
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Local Searching Algorithms
Grid Hill [2] and Simulated Annealing [3]

Number of Mappers

N
u

m
b

er
o

f
R

ed
u

ce
rs

Step 1:
Reduce to finite search space

Num
ber of core

s

2x
co

re
s

Step 2:
Randomly choose starting point
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Starting PointLocal Minimum Step 3:
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with new starting point(s)
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[2] K. Wang, X. Lin, W. Tang, Predator-An Experience Guided Configuration Optimizer..., IEEE CloudCom 2012.
[3] D. Wu, A Profiling and Performance Analysis Based Self-tuning System for Optimization..., M. Thesis, Vanderbilt, 2013.
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Overcoming Pitfalls Using Surrogate-Based Modeling

Exhaustive sampling is too expensive.

Local search algorithms (LSAs) sample fewer points but are

unpredictable.

Surrogate-based modeling can achieve near optimal
results sampling 67% fewer points than LSAs!

We can explicitly determine the number of points
required to build a surrogate model!

The surrogate model may predict optimal
configurations that were never sampled in the
learning phase!
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Overview of Surrogate-Based Modeling

Step 1: Sample parameter space Step 2: Build candidate surfaces
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Overview of Surrogate-Based Modeling

Step 3: Select the best surface Step 4: Apply confidence interval
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Case Study: Optimizing PageRank
Experimental Setup

Use Hadoop and PageRank from the HiBench benchmarking suite

Select two parameters to tune:

the number of mappers, x , and
the number of reducers, y .

Input file is 1GB in size consisting of 5M inter-linked web pages.

Computations are done on a single large memory node of Stampede
with

32 CPU cores, and
1 TB memory.

To enable validation of our method, we initially sample all points
2 ≤ x , y ≤ 32: 961 total points.
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Surrogate-Based Modeling
Step 1: Sampling the parameter space (N = 64 samples)
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Surrogate-Based Modeling
Step 2: Building candidate surfaces

What kind of surfaces do we build?
We represent our surface by a multivariate polynomial.
The candidate surfaces become:

z1(x , y) = β1 + β2x + β3y Degree 1

z2(x , y) = β1 + β2x + β3y + β4x
2 + β5xy + β6y

2 Degree 2

z3(x , y) = z2(x , y) + β7x
3 + β8x

2y + β9xy
2 + β10y

3 Degree 3

And so forth ...

Why build a polynomial surface?

Polynomials are easy to describe and represent in memory.

Although the description is simple, polynomials can generate quite
complex surfaces.

Polynomials easily generalize to any number of variables.
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Surrogate-Based Modeling
Step 2: Building candidate surfaces

How many points do we need to sample?

Theoretical Minimum Number of Points

To build the surface, we solve the matrix equation:

XTXβ = XTZ

to determine the coefficients β.

If XTX is not invertible, then there is not a unique solution for β.

If the number of samples taken is smaller than the number of terms in
our polynomial, then XTX is not invertible.

To build a surface of degree d with v variables we need at least
(d+v

v

)
samples.
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Surrogate-Based Modeling
Step 2: Building candidate surfaces

Degree 1 Degree 2 Degree 3 Degree 4

Degree 5 Degree 6 Degree 7 Degree 8

Which Model is Best?
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Surrogate-Based Modeling
Step 3: Selecting the best surface using k-fold cross validation

Partition the samples into k sets of (nearly) equal size.
One set is reserved for testing; k − 1 sets are used for learning.

Number of Mappers
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Degree 4 Surface
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Degree 4 Surface
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B
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Surrogate-Based Modeling
Step 4: Applying a confidence interval

The Model
Width of

Confidence Interval

+

Model

Confidence Interval
The Model

Width of

Confidence Interval

+

Model

Confidence Interval
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Case Study: Optimizing PageRank
Random sampling: 10 points, degree 1 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 20 points, degree 2 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 30 points, degree 4 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 40 points, degree 4 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction

Johnston, Alsulmi, Cicotti, Taufer Performance Tuning Using Surrogate-Based Modeling 24



Case Study: Optimizing PageRank
Random sampling: 50 points, degree 4 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 60 points, degree 5 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 70 points, degree 6 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 80 points, degree 6 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 90 points, degree 5 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Random sampling: 100 points, degree 6 surface

Constructed Model

+

Model

Conf. Interval

and

Sampling

Prediction
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Case Study: Optimizing PageRank
Accuracy by random sampling

6 55
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Case Study: Optimizing PageRank
Accuracy by grid sampling

6 55
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Conclusion

The surrogate model predicted configurations within 1% of optimal
sampling only 90 configurations.

90% reduction in sampling from exhuastive search
67% reduction in (expected) sampling compared to grid hill

The reduction in sampling makes it feasible to

tune more parameters
explore a wider range of possible parameter values
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