
This space is reserved for the Procedia header, do not use it

Performance Tuning of MapReduce Jobs Using

Surrogate-Based Modeling

Travis Johnston1, Mohammad Alsulmi1, Pietro Cicotti2, and Michela Taufer1

1 University of Delaware, Newark, DE
travisj@udel.edu, malsulmi@udel.edu, taufer@udel.edu

2 San Diego Supercomputer Center, San Diego, CA
pcicotti@sdsc.edu

Abstract
Modeling workflow performance is crucial for finding optimal configuration parameters and
optimizing execution times. We apply the method of surrogate-based modeling to performance
tuning of MapReduce jobs. We build a surrogate model defined by a multivariate polynomial
containing a variable for each parameter to be tuned. For illustrative purposes, we focus on
just two parameters: the number of parallel mappers and the number of parallel reducers.
We demonstrate that an accurate performance model can be built sampling a small set of the
parameter space. We compare the accuracy and cost of building the model when using different
sampling methods as well as when using different modeling approaches. We conclude that the
surrogate-based approach we describe is both less expensive in terms of sampling time and more
accurate than other well-known tuning methods.

Keywords: polynomial surface, k-fold cross validation, parameter tuning, sampling methods

1 Introduction

This paper presents a general method to tune the parameters in MapReduce (MR) frameworks.
The method we propose is based on surrogate modeling and we demonstrate how it can be
employed to pursue efficient data analytics across applications and their datasets at runtime.
MR is a popular programming model, proposed by Google [1], to process large datasets in
parallel. The model has become a dominant methodology for processing large (distributed)
datasets for a variety of reasons including: simplicity of programming, automatic load balancing,
automatic failure recovery, and ease of scaling. Another feature of MR is its ability to work
locally on a dataset by sending map (and reduce) tasks to the data instead of sending data to
the tasks. This can substantially reduce the amount of data that must be broadcast across a
network. A MapReduce job consists of three stages: map, shuffle (or sort), and finally reduce.
A MapReduce job processes a dataset in the following way. First, each element of data begins
as a Key-Value (KV) pair. The user defined map function is applied to each KV pair exactly

1

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

once. The map function produces a list of new KV pairs. The shuffling/sorting task (not
implemented by the user) assigns keys (output by the map tasks) to reduce tasks and routes
all KV pairs to their assigned reduce task. The user defined reduce function accumulates and
combines all the KV pairs into a final value or list of values.

There are several frameworks that implement the MR model, for example MapReduce-
MPI [2], Hadoop, and Spark. Every framework includes a number of configuration parameters
which individual users may modify in an attempt to maximize performance. Examples of these
parameters include the number of parallel map tasks, number of parallel reduce tasks, or the
amount of memory given to each map/reduce task (and many others). Every framework also
includes default parameter configurations. Default configurations are rarely, if ever, optimal.
If a MR job is to be run only a single time then the user may choose to apply any number
of rules of thumb defined by experts to optimize performance. For example, experts at IBM
suggest that each map/reduce task should be allocated at least 2GB of memory and the total
number of parallel map/reduce tasks should be at most the number of CPUs. Experts at AMD
suggest that each map/reduce task should be allocated at least 1GB of memory and the total
number of parallel map/reduce tasks should be at most three times the number of CPUs. These
rules do not define a single set of parameters and we observe that the rules do not always find
optimal configurations even across a simple benchmark. Figure 1 shows performance of two
Hadoop benchmarks: Wordcount (a single MR job) and PageRank (a chain of MR jobs). The
figure illustrates the complexity of finding an optimal set of parameters as well as the significant
impact that the parameters may have on performance. Note that in this case, set 1 is optimal
for Wordcount but performs the worst for PageRank.

(12,2) (8,8) (6,4)
0

200

400

600

800

1000

1200

1400

Ti
m

e
(s

ec
)

Configuration (# map, # reduce)

Word Count

Page Rank

Figure 1: Walltime for two benchmarks, Wordcount and PageRank, with three distinct config-
urations. The computations were done on a machine with 16 cores.

If a user has a job to run multiple times over similar datasets (or datasets that evolve
over time) then s/he can greatly improve performance by discarding the rules of thumb and
employing a parameter tuning method. Users may employ their observations of performance
to make better informed choices regarding these settings. Several tuning algorithms have been
proposed and used including a brute force search (over a subset of parameters) [3], an approach
using the Grid Hill algorithm on a pruned search space [4], and an application of simulated
annealing [5]. All these methods require the user to make many observations or samples of the
parameter space. Sampling points is expensive since each sample requires users to run a job as
similar to their production job as possible. They are also limited in the sense that they never
predict that an optimal setting may be a previously unobserved one.

In this paper, we approach the problem by applying surrogate-based modeling. Surrogate

2

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

based modeling was originally introduced to reduce the cost of computation in aerodynamic
design problems [6] and recently used to model I/O performance [7]. The surrogate-based model
that we build models the performance of the entire parameter space by sampling a relatively
small portion of it. The more points we sample, the more accurate the model can be. However,
the additional accuracy comes with additional sampling time. The goal is to build as accurate
a model as possible sampling as few points as possible. We demonstrate that an accurate
model can be built using significantly fewer suboptimal observations than previous methods.
In addition, we show that the sampling method can also have a significant impact on the cost
of building an accurate model.

2 Process to Build a Model

The key steps in building a surrogate model are: sampling a portion of the parameter space,
choosing a function to fit the data, and locating an optimal point on the model surface. In the
process of building the model, both cost and accuracy should be assessed.

2.1 Sampling the Parameter Space

To build an accurate performance model of a parameter space, a meaningful sample of the space
needs to be obtained [8]. We collect multiple performance samples of the parameter space by
varying the considered parameters and observing the resulting performance. We consider three
different sampling methods incrementally increasing the randomness of the sampled points:
an exhaustive sampling applicable only at a small parameter scale and used exclusively for
validation purposes in this paper, a grid based sampling, and a random sampling. Exhaustive
sampling requires us to sample every configuration in the parameter space. The model we can
build from this information is the most accurate based on the observations collected but, at the
same time, it is also the most expensive. At the large scale, when the number of parameters and
their range of values are very large, exhaustive sampling is not feasible. Grid based sampling
chooses points which lie in a grid. The goal of grid-based sampling is to ensure that points are
sampled relatively uniformly from all over the parameter space avoiding any local concentration
of samples. To effectuate the sampling, we begin by choosing a corner sample (x0, y0) and a step
size ∆. We sample all points (in a bounded region containing feasible parameters) of the form
(x0 + a∆, y0 + b∆) where a and b are non-negative integers. The step size and starting point
determine the number of rows and columns of the grid. Random sampling is an alternative
approach to the highly structured approach of grid based sampling. This sampling method
selects n points from the parameter space at random (without replacement). With this method
there is no guarantee that all areas of the parameter space are evenly sampled and there may
be occasional clusters of samples. Contrary to what we expected, the unstructured nature of
random sampling is actually an advantage.

2.2 Building a Model Surface

When building a surrogate model we must decide what type of function we want to apply to fit
the data. We chose to fit our data to a polynomial surface built using least squares regression.
Polynomial models are advantageous because they are simple to describe and can describe very
complex surfaces (especially as the degree of the polynomial increases). Here we present the
general process of building the model and the specific adaptations to fit a polynomial surface.

3

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

A surrogate model can be built to fit any m-dimensional space of parameters. The vector
~x = (x1, x2, ..., xm) denotes a specific configuration in this space and n will always represent
the number of points we have sampled from the space. Assume, for the moment, that we have
collected n samples and decided on what function to employ to fit the data. The general surface
we build has the form: z(~x) = β1f1(~x) + β2f2(~x) + ... + βDfD(~x). When z(~x) is a polynomial
each fi(~x) is a monomial of the form xk1

1 x
k2
2 · · ·xkm

m where k1 +k2 + · · ·+km = di (the degree of
the monomial) and di ∈ {0, 1, · · · , d}. The surface thus built is a degree d polynomial surface.
The number of monomials D depends on the number of parameters, m, and the degree of the
polynomial d. Equation 1 gives the number of monomials contained in the polynomial.

D =

d∑
i=0

(
m+ i− 1

i

)
=

(
m+ d

d

)
(1)

We let ~xi represent the configurations for the i’th observation, and zi is the observed runtime
with that configuration. The sum-of-squares error (SSE) is defined as

∑
(zi − z(~xi))2. Inde-

pendent of both the number of parameters m, and the number of observations n, the values
of βi are chosen in such a way to minimize the SSE. Equation 2 defines the matrices used to
determine the coefficients β.

X =

f1(~x1) f2(~x1) f3(~x1) ... fD(~x1)
...

...
...

...
...

f1(~xn) f2(~xn) f3(~xn) ... fD(~xn)

 , Z =

z1
z2
...
zn

 , and β =

β1
β2
...
βn

 . (2)

We compute the coefficient matrix β by using β = (XTX)−1XTZ.
Both accuracy and cost of our surrogate model depend on the number of samples n and

the polynomial degree. The minimum number of samples needed to build a surrogate model
is the number of functions used in the fitting, D. Equation 1 gives this minimum number for
our polynomial surface. Note, however, that merely sampling the minimum number of samples
may not be sufficient to actually build the model. Specifically, if XTX is not invertible, then
there is not a unique best fit surface. For XTX to be invertible, X must contain D linearly
independent columns. If X has full column rank then n ≥ D. In addition, we need to sample a
diverse enough set of points so that there are not any hidden dependencies among the samples.
In general it is hard to say exactly when one has sampled a diverse enough set of points. For the
case study in Section 3 of a polynomial with two variables (x and y), we can give a few examples
of what is sufficient, and what is not. First, if there exists a set of d lines which contain all of the
sampled data points, then the matrix X corresponding to a degree d polynomial will not have
full column rank. If no set of d + 1 lines contains all the data points, then the matrix X will
have full column rank. The latter condition is sufficient, but not necessary, to guarantee full
column rank. Second, if, from among our sampled points, we can choose d+ 1 unique x-values,
{x0, x1, ..., xd} and d+ 1 distinct y-values, {y0, y1, ..., yd} with the property that we sampled at
least D = (d+ 1)(d+ 2)/2 points from the grid {x0, x1, ..., xd}× {y0, y1, ..., yd} then the matrix
X will have full column rank. When sampling points we keep in mind that we must sample at
least D points (with enough diversity) and the more points we sample the more accurate our
model should become.

Determining the optimal degree of the polynomial surface is critical because if the degree is
too low, the polynomial surface may not have enough freedom to reflect what the space actually
looks like. Polynomials of larger degree give more flexibility to the model and provide for the

4

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

opportunity for greater accuracy but if the degree is too large, we are in serious danger of over
fitting the data. To search for the polynomial order that is optimal given the observations we
have made, we apply k-fold cross validation on surfaces with increasing polynomial orders. The
cross validation process proceeds as follows:

Step 1: The data points are partitioned randomly into k equally sized sets; in the event that
k does not evenly divide the number of data points we have, we make the sets as evenly
sized as possible.

Step 2: We select one set of data points to be the testing set; the remaining k−1 sets comprise
the learning set.

Step 3: Using the learning set, we construct a best fit polynomial surface of degree d for each
reasonable value of d, i.e. d ∈ {1, 2, ...,M} where M is small enough that the matrix
XTX is invertible.

Step 4: We use the polynomial surface to predict the runtimes of points in the testing set and
compute the SSE of the testing set.

Step 5: We repeat the process from Step 2 until every set has been the testing set exactly one
time. We record the average SSE from this partition of the dataset on a plot.

Step 6: We repeat the process from Step 1 several times. In our case, we run this process
a total of 10 times. In general, this process is repeated until the user is confident of a
representative mean SSE.

The k-fold cross validation process yields an average SSE for each polynomial degree considered.
The degree with the least average SSE is the ideal polynomial degree. Keep in mind that as
the number of samples we have collected grows, the ideal polynomial degree may change.

2.3 Locating a Minimal Point

Having built the model, we search for the minimal point on the surface. Some areas on the
surface are very uncertain because we have not sampled nearby. To strengthen our model, and
avoid predictions that are highly uncertain, we apply a 99% confidence interval to the model.
At each point z in the model, we can with 99% accuracy say that the expected runtime is in
z±εz. We replace each z on the surface with z+εz. Areas that we’ve sampled more thoroughly
will have a much smaller εz. To locate a minimum value on the model we apply a limited
memory quasi-Newton [9] optimization algorithm. The location of the minimum corresponds
to a predicted set of optimal parameters and their expected walltime. The optimal point on the
surface may or may not have been sampled directly.

2.4 Validating the Model

There are two components to validating a model that need to be assessed: the accuracy of the
predicted walltime and the additional cost associated to running the MR jobs with parame-
ter values that are suboptimal. The goal of any model is to obtain sufficient accuracy while
minimizing the additional cost.

To assess the accuracy we use A(~x) to denote the actual walltime of the MR jobs with
parameter settings ~x. An optimal set of parameters is denoted by ~x0. M(~x) denotes modeled
walltime using parameters ~x and ~x1 minimizes M . In order to validate the model on our small

5

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

sample space, we first performed an exhaustive sampling. With these measurements in hand,
we define the error of the model M to be |A(~x1)−A(~x0)| and report this value as a percentage
of A(~x0). This represents how close (in runtime) our predicted configuration is to the optimal
one. This method of measuring error requires us to know the optimal running time. In practice
researchers do not know this ahead of time. In that case, they may prefer to compare A(~x1) to
a runtime with a default parameter setting and measure the speed-up they obtain.

When building a model there is a cost for each sample. If we sample several points in the
space, inevitably many of them will be suboptimal and we incur additional cost for which we
pay the price. However, after we have made our samples, if our performance is significantly
improved we can recoup the cost with future savings. In other words, we amortize the cost of
building the model with future performance gains. We refer to the total number of samples
needed to recoup the entire additional cost of sampling as a break even point. Note that a
break even point is never reached if the end result one uses is worse than the default setting.

3 From Theory to Practice: The PageRank Case Study

As a case study, we show how to apply the surrogate-based approach for tuning the number of
parallel map and reduce tasks in a workflow consisting of PageRank computations. We chose
to use the Hadoop framework and PageRank from the HiBench benchmark suite. Hadoop is
an open source, Java-based framework sponsored by Apache, and is used for processing large
scale datasets in a distributed computing environment. We chose to use Hadoop because it has
been widely used and is easy to configure. Hadoop is flexible and can run on a small cluster
containing only a few individual machines or in a large cluster containing thousands of nodes.
The HiBench benchmarking suite is a comprehensive suite of MapReduce applications stemming
from multiple application domains. PageRank is an ideal choice because it is the type of job
that is run repeatedly on an evolving dataset. In our study, we chose a representative data size
of 5M pages (i.e., 1GB) because it is sufficiently large that varying the parameters will yield
discernable results and is sufficiently small that we are able to make an exhaustive search for
validating our models. We performed all of our testing on the Stampede supercomputer housed
at the Texas Advanced Computing Center (TACC). We use a single large memory compute
node containing 32 cores.

3.1 Predictions with Exhaustive Sampling

The two parameters we tune are the number of parallel map tasks (number of mappers, x) and
the number of parallel reduce tasks (number of reducers, y). In order to be able to validate the
models we build, we begin by exhaustively sampling the parameter space considering all integer
points with 2 ≤ x, y ≤ 32, a total of 961 points. We apply a k-fold fitting to the complete data
set and determine that a degree 9 polynomial is the most appropriate, see Figure 2(a). We use
this surface as the benchmark for accuracy when building models from much smaller data set;
borrowing notation from Section 2.4 we refer to this model as A(x, y).

3.2 Building an Accurate Model from a Sparse Sampling

Exhaustive sampling and a relatively high polynomial degree generate the most accurate surro-
gate model, this model also comes with a higher cost. While the small parameter space in our
case study allows us to build this model, this is not the case for larger parameter space. Sur-

6

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

0 2 4 6 8 10 12

Degree of polynomial surface

4

5

6

7

8

9

10

11

12

13

lo
g 1

0(
S
S
E

)

SSE of a single K-fold fit

Average SSE of K-fold fitting

(a) Average SSE by degree of surface (b) The full model surface

Figure 2: K-fold fitting applied to the full data set. We observe that a polynomial of degree 9
is the best fit for our sample data (a). The associated surface is in (b).

0 50 100 150 200
Number of sampled points

0

5

10

15

20

E
rr

o
r

(%
)

Poly. surface of degree 2

Poly. surface of degree 9

(a) Accuracy evaluation of random sampling

0 50 100 150 200
Number of sampled points

0

5

10

15

20

E
rr

o
r

(%
)

Poly. surface of degree 2

Poly. surface of degree 9

(b) Accuracy evaluation of grid sampling

Figure 3: Comparison of the accuracy of models built from random sampling and grid sampling.

rogate based modeling produces similar results even though we only sample a limited number
of points and use a lower polynomial degree.

As described in Section 2.2, to build a surrogate model we require a certain number of
points depending on the number of parameters and the polynomial degree. In our case study
we consider two variables (the number of map and reduce tasks) and thus to build a degree
d surface we must sample at least

(
d+2
2

)
points. We refer to this number as MINd and recall

that simply sampling this many points does not guarantee that XTX is invertible, and if it
is invertible, does not guarantee that our model is accurate. In our experiments, we start out
by sampling MINd points and build the degree d model with d ranging from 2 to 9. In an
effort to emulate the generation of the model in a real scenario, we add sample points to our set
of previously sampled points and rebuild the model after each additional sampling. Note that
when building the model the expensive operation is sampling a new point, rebuilding the surface
is significantly cheaper. At each step we record the accuracy of the model by comparing to
A(x, y). For each polynomial degree, we build 100 different surfaces, starting from 100 different
sets of MINd points and stop when the individual datasets have size MINd + 150 points.

Figure 3 shows the average accuracy of these models for both random sampling, Figure 3(a),

7

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

and grid-based sampling, Figure 3(b), for polynomial degrees equal to 2 and 9 (the reasonable
extremes observed in Figure 2(a)). We observe in Figure 3(a) that by sampling MINd + 50
points randomly the degree d models appear to have converged. While additional sampling
yields severely diminishing returns in terms of improved accuracy, the standard deviation of
the error does decrease. One might achieve better accuracy by using the larger collection of
samples to build a higher degree surface, but this is not necessarily the case. Contrary to
what we expected, the grid based sampling method exhibits several undesirable traits. First,
particularly in the degree 2 model, we observe that sampling more points does not give us,
on average, a more accurate model. For example we see local minima near 16 samples and
64 samples. This behavior is particularly disturbing for the reason that one is led to believe
that the model is mistakenly accurate when relatively few samples are taken. Second, the
degree 9 model converges to zero as expected, but requires at least 50 more samples to achieve
comparable accuracy with the random method and exhibits a higher degree of variation. Finally,
grid sampling poses a problem for actually fitting a surface. Specifically, all the data can be
covered by relatively few lines, limiting the degree of the surface one can build without sampling
many points. We conclude that the random sampling method outperforms the grid sampling
method and focus our attention on the former for the remainder of this paper.

From Figure 3 we select three sample sizes, 10, 60, and 120, to analyze in detail. Key
statistics from these points are recorded in Table 1. We record the average error of a surface
built from 10, 60, or 120 points, the standard deviation of the error, and the number of jobs
required to amortize the cost of building the model. The number of samples required to break
even is calculated assuming a fixed sampling strategy (or default) with 16 Mappers and 16
Reducers. This is a reasonable first approximation with 15% error.

Degree of Samples Avg. Error Std. Dev Break Avg. Error Std. Dev Break
Model (#) Random (%) Random Even Grid (%) Grid Even

2 10 5.27 3.82 38 4.63 2.82 36
2 60 3.35 1.13 192 3.17 0.93 188
9 60 14.10 17.32 2211 42.05 76.57 –
9 120 0.36 0.65 311 4.26 4.23 415

Table 1: Summary of statistics related to surrogate-based model construction and accuracy.

Observe that, simply having enough points to build a model does not guarantee that the
higher degree model will be more accurate than a lower degree model. In particular, building
a degree 2 model from 60 points has an average error of only 3.35% with a standard deviation
of 1.13; whereas a degree 9 model on the same number of points has an average error over 14%
and a standard deviation of more than 17. The average error represents a typical error one
might expect. The standard deviation, in a sense, measures how far off one’s expectations might
be. Specifically, we can be certain that 80% of the surfaces we build will have error at most
the average plus two standard deviations, 90% of them have error less than the average plus
three standard deviations. As we sample more and more points, the standard deviation of the
error tends to decrease, however, it typically does not decrease fast enough to yield a smaller
break even point. Figure 4 depicts several representative surfaces built in our computations
for Figure 3(a) and Table 1. While the degree 2 surfaces do not look like the real surface in
Figure 2(b) they do predict parameters with near optimal runtime. Note that the first degree
9 surface, Figure 4(c), is erratic. This is largely due to the fact that we have barely sampled
enough points to even build the surface. Once we have sampled more points, Figure 4(d), the
model no longer contains significant differences from the full model, Figure 2(b). For further

8

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

Number of m
appers

051015202530

Number of reducers

0 5 1015202530

5 10 15 20 25 30
Number of mappers

5

10

15

20

25

30

N
u

m
b

e
r

o
f

re
d

u
c
e
rs

Optimal

Predicted200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Degree 2 surface with 10 points

Number of m
appers

051015202530

Number of reducers

0 5 1015202530

5 10 15 20 25 30
Number of mappers

5

10

15

20

25

30

N
u

m
b

e
r

o
f

re
d

u
c
e
rs

Optimal

Predicted200

400

600

800

1000

1200

1400

1600

1800

2000

(b) Degree 2 surface with 60 points

Number of m
appers

051015202530

Number of reducers

0 5 1015202530

5 10 15 20 25 30
Number of mappers

5

10

15

20

25

30

N
u

m
b

e
r

o
f

re
d

u
c
e
rs

Optimal

Predicted200

400

600

800

1000

1200

1400

1600

1800

2000

(c) Degree 9 surface with 60 points

Number of m
appers

051015202530

Number of reducers

0 5 1015202530

5 10 15 20 25 30
Number of mappers

5

10

15

20

25

30

N
u

m
b

e
r

o
f

re
d

u
c
e
rs

Optimal

Predicted200

400

600

800

1000

1200

1400

1600

1800

2000

(d) Degree 9 surface with 120 points

Figure 4: Example of surfaces built from a growing set of sample points.

illustration, we have shown the sampled points and shaded the regions corresponding to < 3.5%
error (darker shade) and error ≤ 7% (lighter shade).

3.3 Comparison to Grid Hill Search

Grid Hill searching is a commonly used optimization method and has been employed for pa-
rameter tuning [4]. The method works by partitioning the search space into a grid, the fineness
of the grid is chosen by the user. A random starting point is chosen in each grid; each of
these becomes a current point. Neighboring points are sampled around each current point.
As neighbors with better runtimes are found, the current position of each point is updated
to the better configuration. The process of sampling neighbors continues until each current
point is a local minimum. Among all the local minima found the one with shortest runtime is
selected–predicted to be the optimal.

We experiment with grid hill searching and compare the results with those of our surrogate-
based modeling. The results are recorded in Table 2. For each grid size, we ran the grid hill
algorithm 100 times. One challenge with grid hill sampling is that the user has little control
over how long the process takes to converge. We record the average number of samples required
to converge (along with the standard deviation). Note that the simplest case, a single grid,
requires on average 25 iterations (samples) to converge, but (because the standard deviation is
almost 16) it is not uncommon to require 41 or more samples to converge. If the user interrupts
the sampling, the may finish with a significantly higher degree of error. We also note that
the average error and standard deviation from grid hill is higher than that of the surrogate
modeling. Because we don’t have control over precisely how many grid hill samples we take it
is hard to make a one-to-one comparison. But, note that sampling 90 times (grid hill) yields an

9

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

average error of 3.17% with standard deviation 2.18, whereas sampling 2/3 that many points,
building a degree 2 surface, gives us a comparable (3.35%) error rate with a lower standard
deviation. Keep in mind that the grid hill method it is not uncommon to sample 112 points
still with about 3% error. One other major drawback with grid hill is that it will not suggest
a parameter set that has not been sampled; the surrogate model will make such a prediction.

Size of Samples Std. Dev Error Std. Dev Break even
Grid (Avg. #) (Samples) (%) (Error) (#)

1× 1 25 15.8 10.96 8.33 225
2× 2 90 22.1 3.17 2.18 283
3× 3 190 22.2 1.70 1.15 531
4× 4 289 25.3 1.15 0.69 777

Table 2: Summary of performance statistics related to grid-hill sampling.

4 Conclusion

We proposed a surrogate based model to accurately predict optimal MR configurations. We
demonstrated that such a model can be easily built sampling a relatively small portion of the
parameter space. Specifically, we achieved an average error rate of 3.35% by building a degree
2 surface from 60 sample points (selected at random from a space of 961). Building a model
in this way is particularly useful when running the same job (i.e., PageRank) on similar or
evolving datasets. The strength of the modeling is that we can build an accurate model from
only a few samples whose cost can be quickly amortized–with as little as 38 total jobs.

One major question we will address in future work is to determine the number of samples
needed (beyond MINd) to build an accurate model. We observed that 50 points was sufficient
in our case study. However, it is unclear how that number scales. Is it a constant 50? Probably
not. Is it bounded by a constant multiple of MINd, e.g. ≤ 10MINd? Perhaps. Or, is 5%
of the total space? Possible. If we could bound this number by cMINd (for some constant
c) then the method would decisively dominate other methods (including grid hill searching) in
terms of scalability. Finally, we plan to explore hybrid sampling methods. For example, begin
by sampling a sparse grid in such a way to guarantee that XTX is invertible, then attempt to
improve accuracy by sampling randomly.

Acknowledgments

The authors are supported by NSF grants CCF-1318445/1318417. They gratefully acknowledge the
use of XSEDE resources supported by NSF grant ACI-1053575. Code samples and timing data are
available on github: https://github.com/TauferLab.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Commun.
ACM, vol. 51, pp. 107–113, January 2008.

[2] S. Plimpton and K. Devine, “MapReduce in MPI for Large-scale Graph Algorithms,” Parallel
Comput., vol. 37, pp. 610–632, September 2011.

10

Performance Tuning of MapReduce Jobs Johnston, Alsulmi, Cicotti, Taufer

[3] P. K. Lakkimsetti, “A Framework for Automatic Optimization of MapReduce Programs Based on
Job Parameter Configurations,” Master’s thesis, Kansas State University, August 2011.

[4] K. Wang, X. Lin, and W. Tang, “Predator- An Experience Guided Configuration Optimizer for
Hadoop MapReduce,” in Proc. of 2012 IEEE 4th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 419–426, December 2012.

[5] D. Wu, “A Profiling and Performance Analysis based Self-tuning System for Optimization of Hadoop
MapReduce Cluster Configuration,” Master’s thesis, Vanderbilt University, May 2013.

[6] Y. Jin, “Surrogate-assisted Evolutionary Computation: Recent Advances and Future Challenges,”
Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 61 – 70, 2011.

[7] M. Matheny, S. Herbein, N. Podhorszki, S. Klasky, and M. Taufer, “Using Surrogate-based Modeling
to Predict Optimal I/O Parameters of Applications at the Extreme Scale,” in Proceedings of the
20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), December
2014.

[8] S. Koziel, D. Ciaurri, and L. Leifsson, “Surrogate-Based Methods,” in Computational Optimization,
Methods and Algorithms, vol. 356 of Studies in Computational Intelligence, pp. 33–59, 2011.

[9] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A Limited Memory Algorithm for Bound Constrained
Optimization,” SIAM J. Sci. Comput., vol. 16, pp. 1190–1208, September 1995.

11

	Introduction
	Process to Build a Model
	Sampling the Parameter Space
	Building a Model Surface
	Locating a Minimal Point
	Validating the Model

	From Theory to Practice: The PageRank Case Study
	Predictions with Exhaustive Sampling
	Building an Accurate Model from a Sparse Sampling
	Comparison to Grid Hill Search

	Conclusion

