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Abstract—The inherent nondeterminism present in reduction
operations on an exascale system, coupled with the nonasso-
ciativity of floating-point arithmetic, makes achieving repro-
ducible results difficult or impossible. Work investigating the
irreproducibility phenomenon has generally proceeded along
one of two veins: (1) development of algorithms that produce
reproducible numerical results irrespective of nondeterminism
in the reduction tree and (2) study of the system-level factors
that induce nondeterminism.

Our work builds on the latter and unveils the power of
mathematical methods to mitigate error propagation at the exas-
cale. We focus on floating-point error accumulation over global
summations where enforcing any reduction order is expensive or
impossible. We model parallel summations with reduction trees
and identify those parameters that can be used to estimate the
reduction’s sensitivity to variability in the reduction tree. We
assess the impact of these parameters on the ability of different
reduction methods to successfully mitigate errors. Our results
illustrate the pressing need for intelligent runtime selection of
reduction operators that ensure a given degree of reproducible
accuracy.

Index Terms—Prerounded summation; Kahan’s compensated
summation; composite precision summation; reduction tree.

I. INTRODUCTION

Scientific simulations are increasingly being migrated to
extreme-scale platforms consisting of hundreds (or thousands)
of multicore servers equipped with many-core accelerators.
Because floating-point numbers have finite precision, no sim-
ulation can be completely free of error. As hardware resources
grow, the scientific computation taking advantage of that
hardware has become increasingly complex. A consequence
of the scale of computation is that even small errors at the
beginning of the simulation may eventually compound into
significant accuracy problems, which may call into question
the validity of hours and hours of computation.

Multithreading complicates matters by introducing non-
determinism. Not only do errors accumulate throughout a
computation, but a scientist may run the same computation
several times with differing results. According to a recent
report from the Department of Energy [1], by the end of

this decade the level of concurrency of the supercomputing
platforms on which simulations are executed is expected to
increase by a factor of at least 4000. The question that must
be answered is: Can the scientific community trust simulations
executed on next-generation exascale architectures?

In this paper, we assess the effectiveness of several math-
ematical techniques to pursue reproducible accuracy on ex-
ascale platforms with multithreading hardware consisting of
multicore processors coupled with many-core accelerators. We
refer to reproducibility as “closeness of agreement among
repeated simulation results under the same initial conditions”
and accuracy as “conformity of a resulting value to an
accepted standard, or scientific laws” (from Van Nostrands
Scientific Encyclopedia). Rather than focusing on bitwise
reproducibility, we study methodologies to minimize the prop-
agation of errors and, thereby, limit their impact on the
results of a simulation, increasing both the reproducibility
of the simulation and the meaningfulness of the results. The
contributions of this paper are as follows:

• We evaluate and compare the reproducibility of four
summation techniques applied to a simulated exascale
environment.

• We demonstrate that commonly accepted practices for
predicting and mitigating errors offer incomplete charac-
terizations of the reproducibility of numerical algorithms
when applied in isolation.

• We demonstrate the need for data-aware software to
intelligently choose reduction algorithms to guarantee re-
producibility without an unnecessary loss in performance.

The rest of this paper is structured as follows. Section II
summarizes both well-known and emerging sources of numer-
ical inaccuracy; Section III describes techniques for supporting
reproducible accuracy; Section IV proves the inadequacy of
conventional wisdom when dealing with this problem; Sec-
tion V provides strong evidence of the need for intelligent
reduction operations at the extreme scale; and Section VI
concludes this paper.



II. SOURCES OF NUMERICAL INACCURACY

Achieving reproducible numerical accuracy at exas-
cale faces two fundamental roadblocks: nonassociativity of
floating-point arithmetic and nondeterminism in the order by
which operands are reduced. In this section, we provide an
overview of the challenges that arise when nonassociativity
collides with nondeterministic reduction. To that end, we
discuss the primary mechanisms by which floating-point error
arises and propagates. We also summarize the existing body
of work addressing issues of nondeterminism at exascale.

A. Nonassociativity: A Consequence of Finite Precision

Floating-point computations suffer loss of accuracy, com-
pared with the same expression’s evaluation in exact arith-
metic, through two primary mechanisms: alignment error and
subtractive cancellation. Alignment error, by far the most
common error modality, results from summation of values
whose exponents differ. Alignment error is possible whenever
two floating-point numbers that differ in magnitude by at least
a factor of 2 are added [2]. The amount of information about
the smaller operand lost due to alignment error is related to
the disparity between the operands’ magnitudes. The other
mechanism is subtractive cancellation, which occurs when
very small values are obtained from the addition of two
values with similar magnitude and opposite sign. Subtractive
cancellation, in contrast to alignment error, is not a source of
error per se, but a means by which inaccuracy in low-order
mantissa bits of operands is transferred to high-order mantissa
bits of their sum.

A consequence of these inaccuracies is the well-known fact
that floating-point arithmetic operations are nonassociative, so
the order in which floating-point numbers are reduced via an
operator (e.g., +, -, *, /) influences the result. For example, let
a = 109, b = −109, and c = 10−9. In infinite precision, the
summation orders (a+(b+c)) and ((a+b)+c) are equivalent,
but even in double-precision floating-point arithmetic, the two
distinct summation orders yield different values.

((a+ b) + c) = ((109 − 109) + 10−9) = 10−9

(a+ (b+ c)) = (109 + (−109 + 10−9)) = 0

For a small example such as this one, the flaw is clear, namely,
that the small-magnitude value c is “absorbed” by the much
larger value b.

B. High Concurrency: A Consequence of Extreme Scale

Contemporary petascale platforms consist of up to millions
of processor cores that must act in concert to effect large
simulations. Even at these scales, the cost of achieving not
only accuracy in floating-point reductions but reproducible
accuracy is felt. The scientific community at large has set its
sights on deployment of an exascale computing platform, and
in response the HPC community has identified a canonical
set of challenges to implementing an exascale machine [1].
Although emerging developments in low-power hardware, ad-
vanced systems software, and algorithm design show promise,
it has become increasingly evident that achieving reproducible

numerical accuracy at exascale cannot rely on deterministic
reduction. Exascale computations will simply have to weather
perturbations in their reduction trees through algorithmic
means. In this section, we summarize key results demon-
strating how variability in reduction trees induces variability
in sums of floating-point numbers. Additionally, we present
a set of findings, commentary, and expert recommendations
supporting our claim that deterministic reduction trees at
exascale will be unfeasible.

Throughout this section and the remainder of the paper, we
adopt the view of a concurrent sum of floating-point numbers
at the extreme scale as a reduction tree, which we define as
a full binary tree whose N leaf nodes correspond to floating-
point operands and whose internal nodes correspond to the
partial reductions formed in the process of computing the
final result–the root node. Reduction trees can vary in two
ways: shape and assignment of operands to leaves. When we
refer to the shape of a reduction tree, we mean the particular
way in which nodes are linked by edges. Figure 1 shows
two differently shaped reduction trees: a balanced (parallel)
reduction tree and an unbalanced (serial) reduction tree. For
a fixed set of operands, even two reduction trees with the
same shape can yield different values for the reduction if the
assignment of operands to leaves differ between the two trees.
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(a) A balanced (parallel) reduction tree
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+

(b) An unbalanced (serial) reduction tree

Fig. 1. Two reduction trees at the opposite ends of the spectrum.

The effect of varying reduction tree shape and varying
operand-to-leaf assignment is explored in [3]. In their work,
a set of eight identical floating-point values is summed via
three differently shaped reduction trees, yielding in each case
a different value for the sum. Another set of eight floating-
point values, six small and two large, is summed via three
reduction trees of the same shape, but with different assign-
ments of summands to leaves. Again, all three computed sums
disagreed. One key observation is that the consequences of
nondeterministic reduction and floating-point nonassociativity
are felt even for extremely small examples.



On exascale systems the high level of concurrency will
not allow the user to enforce any specific reduction order
because doing so is either too expensive or impossible. At
the same time variability in floating-point error accumulation
may become so great that debugging is impaired or, worse,
fundamentally incorrect results are accepted. An exascale
algorithm must exploit the extreme level of concurrency,
minimize communication (for speed and power reduction),
tolerate frequent hardware failures, and utilize resources as
they become available [1], all the while providing some trust
in the computation’s result.

The conflict between achieving reproducible accuracy and
achieving performance is primarily due to the fact that even
on current HPC platforms, communication costs dominate
arithmetic costs. Simply put, the most performant reduction
trees are those that take into account the underlying physical
topology of the system, which means reducing values in an
order based on which core produced them, not necessarily
their arithmetical properties. Conversely, the reduction trees
that result in the least error accumulation reduce values
based on their arithmetical properties, not their position in
the topology of the system. Recently, Balaji and Kimpe [4]
showed not only that topology-aware reduction trees for MPI
collective operations outperform fixed-reduction trees but that
the performance advantage of allowing the reduction tree to
conform to the system topology, as opposed to a specified
ordering of partial reduction, increases with the number of
cores.

III. MATHEMATICAL TECHNIQUES

In response to the challenges posed by the nonassociativity
of floating-point summation and the nondeterminism at the
extreme scale, mathematical techniques can be applied to
mitigate the degree to which computed sums exhibit sensitivity
to reduction order. Lower sensitivity results in increasingly
reproducible results. Techniques can range from simple fixed-
reduction orders to more sophisticated prerounded algorithms.
In this section we provide a general overview of the tech-
niques; however, in the rest of the paper, we consider only
the compensated summation algorithms (Kahan and composite
precision) as well as the prerounded algorithms for our studies
because they are the only methods that can be feasibly applied
at the exascale.

A. Fixed-Reduction Order

To apply fixed-reduction order, we need to ensure that all
floating-point operations are evaluated in the same order from
run to run. Two major problems exist for this strategy. The
obvious problem is that ensuring that the reduction proceeds
according to a user-determined reduction tree incurs massive
communication and synchronization costs. Additionally, deter-
mining exactly which reduction tree achieves minimal error for
a given set of summands is nontrivial. Conventional wisdom
suggests summing the values in ascending order if they all
have the same sign, and in descending order of magnitude if
they are not. The first case is rare, however, and the second

case assumes that no error beyond initial representation error
is present in the summands; otherwise it is far more vulnerable
to catastrophic cancellation. In summary, fixing the reduction
order is difficult to do correctly where it is possible, but the
salient point is that it cannot be done in a cost-effective way
at exascale [5].

B. Interval Arithmetic

Techniques based on interval arithmetic replace floating-
point types with custom types representing finite-length in-
tervals of real numbers. The actual value of the reduction is
guaranteed to lie within the interval. The width of the interval
increases with the uncertainty of the computation. While the
techniques are reproducible by design, they also cause large
slowdown and are not suitable for applications needing many
digits of accuracy.

C. High-Precision Arithmetic

Perhaps the most obvious technique, and certainly the most
popular in real applications, is to use higher-precision floating-
point types. To our knowledge, the earliest work directly
addressing the issue of numerical reproducibility [6] demon-
strates the use of the double-double precision floating-point
type in a critical section of code to curtail variability in a
global sum. In that work, the goal of using multiple floating-
point types was explicitly to achieve reproducible results.
Parallel to that effort, significant progress has been made in
the field of automated floating-point precision tuning (e.g.,
[7]). Precision tuning is an attempt to reduce precision where
possible while maintaining a prescribed degree of accuracy.
While one can achieve greater reproducibility by pursuing
greater accuracy, the use of high-precision arithmetic can result
in memory-demanding algorithms. By increasing the size of
floating-point variables in most numerically sensitive parts of
the algorithm, for example with manual changes made by an
expert or by some form of analysis, we can reduce the memory
requirements. Still the technique relies on either human experts
or other software and thus is probably unsuitable for many of
the use cases discussed in the recent DOE exascale report [1].

D. Compensated Summation Algorithms

To compute the sum of n values, we obtain n − 1 partial
sums in the process. For each of these partial sums, the
magnitude of error can be estimated. Based on that estimate, an
attempt can be made to compensate for that error by adding
an error term to each partial sum. Compensated summation
is a relatively old technique, having been introduced by
Kahan in [8]; but families of more sophisticated compensated
summation algorithms have been developed, such as compos-
ite precision (CP) summation [9]. In Kahan’s algorithm the
estimated error is added back into the sum at each step. In
CP, the error summation is kept and propagated as each of the
summations are performed and added back in only at the end.



E. Prerounded Summation Algorithms

More recently, an approach called prerounded summation
has emerged for reproducible and accurate summation. The
common strategy used by this type of algorithm is splitting
the operands into “high-order” and “low-order” parts with the
property that the high-order parts can be summed irrespective
of summation order and the low-order parts can be neglected,
or recursed upon, for higher accuracy. The algorithms pro-
posed by Demmel and his group are integrated into the
ReproBLAS library [10], which at this time is undergoing
active development.

IV. INADEQUACY OF CONVENTIONAL WISDOM

The management of reproducible numerical accuracy is
closely related to the task of estimating and predicting error
accumulation. Three common approaches exist, typically used
in isolation, to quantify and mitigate error accumulation. Two
of the approaches can be broadly classified as techniques for
error estimation: using worst-case error bounds and attempting
to track or avoid subtractive cancellation. The third approach
is the use of summation algorithms that are believed to be
inherently less sensitive to variability in the reduction tree.
We emphasize that these approaches have significant value.
However, we demonstrate that the use of any one approach, in
isolation, will not guarantee the reproducibility desired without
a potentially significant loss of performance.

A. Using Analytical Error Bounds

The analysis of the error for a single floating-point sum
can be extended to produce a worst-case error bound for
the reduction of multiple floating-point values. For IEEE-
compliant implementations of floating-point arithmetic, we
have the following bound on the roundoff error for a single
operation. Let x, y be floating-point numbers, let fl(x + y)
be their rounded sum according to a given rounding rule, and
let (x+ y) be their exact sum:

fl(x+ y) = (x+ y) · (1 + δ)

where |δ| ≤ u where u is the unit-roundoff and may be written
u = 1

2β
1−p, where β is the base and p is the number of

mantissa bits of the representation of x and y. Equivalently, if
we let z denote the exact sum x + y, we obtain a bound on
the absolute error |fl(x + y) − z| ≤ u. With some algebra,
one can prove an upper bound on the error in a sum of n
floating-point numbers. We do not include the proof here (it
may be found in [11]), but we state the result. Let x1, . . . , xn
be floating-point numbers, let z denote their exact sum, and

let
n∑

i=1

xi denote their sum in floating-point arithmetic. Then

we have the following upper bound on the absolute error in
the sum:

|
n∑

i=1

xi − z| < n · u ·
n∑

i=1

|xi|.

Using analytical or statistical worst-case error bounds
causes overestimation of the errors. Figure 2 shows an em-
pirical case study in which we measure the error magnitudes

for 10, 000 values sampled in the range (−1000,+1000) and
summed by using 10, 000 different summation orders. The
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Fig. 2. Empirical study of error magnitudes and worst-case error bounds for
10, 000 summations of 10, 000 values randomly sorted.

figure also shows both the analytical and statistical worst-case
error bounds. Both error bounds significantly overestimate the
error magnitude. At the same time we observe the large range
of measured errors obtained for the same set of values just by
randomly shuffling the order in which the terms are summed.

B. Tracking Cancellations
When considering sets of summands with both positive and

negative values, the potential for catastrophic cancellation
arises in the computation of the sum. This numerical phe-
nomenon can result in large relative errors in both the partial
and final sums, leading to the intuitively appealing perspective
of achieving reproducible accuracy by structuring reductions
to avoid cancellation.

Cancellation in general refers to the scenario where the
sum of two floating-point values has a smaller exponent than
both of the summands. In order to subtract one floating-point
number from another, their binary points are aligned and the
mantissa of their difference is determined by subtracting the
mantissas of the operands bitwise and then renormalizing
the result. The effect of the renormalization process is that
the lower-order bits of the operands determine the higher-
order bits of the result. If both summands are exact in the
sense that their mantissa bits are not carrying the error from
previous computations—as is almost never the case—then
their difference can be considered accurate. However, if the
low-order bits of the operands are inaccurate due to alignment
error, many or all of the mantissa bits of the difference of the
operands may be inaccurate. This is the “catastrophic” case.

We emphasize, however, that cancellation does not in and
of itself cause error to accumulate. Rather, it reveals error that
has already accumulated in the operands. In a sense, relative
error can increase because of catastrophic cancellation as
uncertainty in less-significant bits of the operands’ mantissas
is transferred to uncertainty in the most significant bits of the
result’s mantissa. Nevertheless, the number of cancellations is
not a reliable indicator of the overall problem.



To prove this claim, we generate a counterexample with
a set of 1, 000 floating-point numbers uniformly distributed
in [−1, 1]. We compute the sum of these numbers using
100 distinct summation orders and determine the error for
each order. We assess cancellation for each order using the
numerical library CADNA [12]. CADNA uses the CESTAC
method to identify instances of cancellation in a sum and, for
each instance, estimate the difference between the number of
accurate digits in the operands and the number of accurate
digits in the result. In this sense, a cancellation resulting
in the loss of four digits of accuracy is more severe than
a cancellation resulting in the loss of only two digits. Fig-
ure 3 shows the cancellation counts and error magnitudes
for several summation orders of the set of interest for our
counterexample. Each summation order is represented by five
bars, four showing the number of cancellations resulting in
the loss of one, two, four, and eight digits, respectively, and
a fifth bar showing the error magnitude, scaled for ease of
viewing. We observe that the number of cancellations, at
any of the considered severities, does not consistently predict
error magnitude. In particular, consider summation orders 2
and 4. Order 2 has about 5X as many digit cancellations as
order 4, but only half the error. This result lends credence to
the view that although it is tempting to view “keeping track
of cancellations” as a valid strategy for managing error and
ensuring reproducibility, there is not a simple correspondence
between instances of cancellation and error magnitude. Rather,
the relationship between cancellation and error depends on
knowledge of how much error has already accumulated in
the operands involved in the cancellation, a quantity whose
estimation is impeded by the previously discussed loose error
bound.
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Fig. 3. Empirical study of cancellations vs. error magnitude for different
summation orders.

C. Choice of Summation Algorithm

Apart from the standard iterative summation algorithm,
we examine other summation algorithms that exhibit reduced
sensitivity to variability in the reduction tree. However, each
of these algorithms incurs a certain performance penalty

relative to the standard summation. Standard summation is the
cheapest and least complex. Kahan’s compensated summation,
then composite precision summation, and finally prerounded
summation are expected to progressively provide more accu-
racy at the expense of performance. To assess this performance
impact, we measure the execution times of a case study
designed to emulate scenarios in scientific computing in which
partial data is locally generated on multiple processes and
then is globally reduced across the processes. Specifically, on
each process, we generate a chunk of a vector of values of
length 106 from a series that is known to sum to zero under
exact arithmetic. We locally reduce these values using each
of the four summation algorithms: in the case of Kahan and
composite precision, we use the summation operators in [13]
and in the case of prerounded summation, we use the dIAddd
operator provided in [14]. Finally, we globally reduce the local
sums by using MPI Reduce with custom reduction operators
for Kahan, composite precision, and prerounded summations.
To avoid time variations due to network contention we run our
tests on a single dedicated 48-core AMD node. Each tests is
repeated 20 times with a warmed cache. Figure 4 shows the
average execution times and Figure 5 shows the performance
penalties associated with more-reproducible summation. The
latter figure confirms the proposed ranking of the summation
algorithms in terms of performance expense.
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Fig. 4. Comparison of execution time to sum 106 terms for standard
summation (ST), Kahan’s compensated summation (K), composite precision
summation (CP), and prerounded summation (PR).

We argue that applying a judicious mixture of these algo-
rithms, as opposed to uniformly applying a single technique, is
necessary for achieving numerical reproducibility to the degree
required by an application, for a cost acceptable for that appli-
cation. Figures 6(a) and 6(b) support this claim by showing the
relative sensitivity of the three summation algorithms: Kahan’s
compensated summation (K), composite precision summation
(CP), and prerounded summation (PR). For a fixed set of data
we generate multiple reduction trees of the same shape but
with different assignments of operands to leaves. We construct
the set of summands to have mathematical properties that
render its reduction especially prone to both alignment error
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and loss of accuracy due to cancellation. For each reduction
tree, we compute the sum using each of the four algorithms.
By plotting the error magnitude, we see that as a progressively
greater amount of computation is invested in compensating for
roundoff error, the sum becomes less sensitive to the varying
reduction tree.
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Fig. 6. Empirical study of relative sensitivity of three summation algorithms:
Kahan’s compensated summation (K), composite precision summation (CP),
and prerounded summation (PR). Note that (a) zooms into (b).

V. EXPLORING THE REPRODUCIBILITY SPACE

Previous work [3], [4] found that reduction tree shape and
assignment of operands to its leaves (or threads) can have
a profound effect on the concurrent sum of n floating-point
numbers, even when the operands themselves are subject to
minimal alignment error and have the same sign avoiding can-
cellation. We build the work in this paper on this previous work
by targeting a much larger reduction scale and investigating
the impact of four independent parameters on the variability
of a sum when the reduction order is non-deterministic. The
four parameters we consider are the condition number, the
dynamic range, the level of concurrency, and the reduction
algorithm. We present three kinds of results. First, we examine
the sensitivity to variations in the reduction tree of four sum-
mation algorithms at increasing levels of concurrency. Second,

we study the impact of concurrency, condition number, and
dynamic range on reproducible numerical accuracy. Third, we
provide evidence of the need for selecting application-aware
reduction algorithms.

A. Experimental Environment and Parameters

Building on the results of small nondeterministic reduction
trees established in [3], [15], we consider reduction trees at the
size expected for exascale systems consisting of floating-point
operands reflective of those actually reduced in simulations.
Since an exascale system is not available, we emulate the
reduction process with n threads, each computing one of
the n partial sums. We consider two tree shapes at opposite
ends of the spectrum: a completely balanced (see Figure 1(a))
tree and a completely unbalanced (see Figure 1(b)) tree.
For each tree shape, we generate distinct reduction trees by
randomly assigning operands to leaves. We also focus on sets
of floating-point summands whose mathematical properties are
less amenable to reproducible summation. We characterize sets
of floating-point values by their sum condition number and
dynamic range. These are intrinsic properties of the set of
values; they are independent of any imposed ordering. For a
set of floating-point numbers {x1, . . . , xn}, the sum condition
number is defined as

k =

(
n∑

i=1

|xi|

)
/

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
and the dynamic range is defined as

dr = exp(max(|xi|))− exp(min(|xi|)),

where exp(x) is the value of the exponent in the representation
of x. If the dynamic range of two numbers is larger than zero,
then alignment error will occur. For this reason, we use the
dynamic range of a set of values as a rough estimator of
alignment error. The condition number does not correspond
to a single mechanism by which error accumulates. Instead, it
describes how sensitive the final sum is to small errors in the
partial sums.

Table I shows small sample sets of values presenting dy-
namic range dr equal to 0, 8, and 16 as well as condition
number k equal to 1, 1000, and ∞. Note that dr equal to 0
means “all exponents are the same” and not that the numbers
are large or small; on the other hand a larger dr, for example
8 or 16, means that a larger discrepancy exists between the
largest and smallest exponents. In other words, the sign on
the summands makes no difference, and the sum of summands
makes no difference. A condition number equal to 1 means “all
values in sum have the same sign,” while a condition number
number infinity means “the sum of all the values is 0.” In [3]
the operands are well-conditioned; they have k = 1 (the best
possible condition number) and, when varying tree shape, have
dr = 0. We instead focus on ill-conditioned inputs with high
dynamic range because reality is not so rosy. For example,
N -body simulations [16] involve reductions of floating-point
values that are ill-conditioned; both k and dr can frequently
be very large.



TABLE I
EXAMPLE OF SAMPLE SET OF VALUES WITH SPECIFIED DYNAMIC RANGE,

dr, AND CONDITION NUMBER, k.

Sample Set of Values dr k
{1.23e+32, 1.35e+32, 2.37e+32, 3.54e+32} 0 1
{1.23e-32, 1.35e-32, 2.37e-32, 3.54e-32} 0 1

{-1.23e+16, -1.35e+16, -2.37e+16,-3.54e+16} 0 1
{2.37e+16, 3.41e+8, 4.32e+8, 8.14e+16} 8 1
{3.14e+32, 1.59e+16, 2.65e+18, 3.58e+24} 16 1
{2.505e+2, 2.5e+2, -2.495e+2, -2.5e+2} 0 1000
{5.00e+2, 4.99999e-1, 1.0e-6, -4.995e+2} 8 1000
{5.00e+2, 4.99...99e-1, 1.0e-14, -4.995e+2} 16 1000
{3.14e+8, 1.59e+8, -3.14e+8, -1.59e+8} 0 ∞
{3.14e+4, 1.59e-4, -3.14e+4, -1.59e-4} 8 ∞
{3.14e+8, 1.59e-8, -3.14e+8, -1.59e-8} 16 ∞

B. Sensitivity of Summation Algorithms

To examine the sensitivity of summation algorithms to
variability in the reduction tree, we generate and reduce two
sets of summands constructed to have the exact sum of zero
and dynamic range of 32. One set has n = 8K values, and
the other has n = 1M values. These sets of values are more
prone to both alignment error and catastrophic cancellation
than are those studied in [3]. They are also more reflective of
the values that may arise in simulations (e.g., when the net
force on a particle is close to zero).

Figures 7(a)–(h) show the distribution of error magnitudes
for sums computed by using varying reduction trees for
the four summation algorithms of interest in this paper: the
standard iterative summation algorithm (ST); Kahan’s com-
pensated summation algorithm (K); the composite precision
summation (CP), which can be considered an enhanced form
of compensated summation; and the prerounded summation
(PR), which offers guaranteed bitwise reproducibility at a
user-specified level of accuracy. We consider two types of
reduction trees: completely balanced, with results shown in
Figures 7(a), (b), (c), and (d), and completely unbalanced,
with results shown in Figures 7(e), (f), (g), and (h). For each
tree type, we consider both smaller levels of concurrency (8K
leaves in the tree) and higher levels (1M leaves in the tree). The
boxplots in the figures are obtained by considering 100 distinct
reduction trees with the same shape but randomly permuted
assignments of the values to leaves. Note that Figures 7(b),
(d), (f), and (h) provide a zoom-in into Figures 7(a), (c), (e),
and (g), respectively.

The effect of nondeterminism in the reduction tree is
exhibited in Figures 7. For a given summation algorithm, the
distribution of data points and width of the box indicate how
much the sum tends to vary when the overall shape of the
reduction tree is constant but the arrangement of summands
to its leaves is variable. Within the subfigures, we see that
although Kahan summation tends in general to produce more
reproducible sums than standard summation, only compos-
ite precision and prerounded summations offer reproducible
numerical accuracy at an acceptable level. Across a row of
subfigures, we see that as the level of concurrency rises, the

absolute error in the sum rises as expected. However, by
comparing results across a column of subfigures, for example,
the ST data from Figure 7(a) and the ST data from Figure 7(e),
we see that much more variation in the sum occurs when the
tree is unbalanced than when it is balanced for the standard
summation algorithm. To cope with intermittent faults and
inconsistently available resources, we expect that the reduction
trees employed by an exascale system will vary not only in
terms of arrangement of data among their leaves but also in
overall shape. We conclude that because of the difference in
reproducibility observed for differently shaped reduction trees,
exascale applications will need to maintain awareness of the
degree of fluctuation in reduction tree shape and employ more
robust reduction operators accordingly.

C. Effect of Concurrency, Conditioning, and Dynamic Range

For a fixed level of concurrency, the mathematical prop-
erties of the summands can have a significant impact on the
sensitivity of the sum to variations in the reduction tree. In the
previous section, we considered a set of values with a fixed
condition number k and dynamic range dr. In this section,
we examine the effects of varying k and dr at a fixed level
of concurrency n = 1M ; varying dr and n at a fixed k; and
varying k and n at a fixed dr. We represent the spaces of
(k, dr), (n, dr), and (n, k) as a grid of cells, where for each
cell we generate a set of floating-point values with the cell
parameters. The degree to which these sets of values can be
summed reproducibly is tested. For all sets of summands under
consideration, we measure their potential for irreproducibility
by computing their sum with 1,000 distinct, balanced reduction
trees obtained by permuting the assignment of summands
to leaves. As in the our previous experiment we test four
summation algorithms. However, we display results only for
the first three because the composite precision and prerounded
summations performed identically for all sets of inputs con-
sidered. Once all the sums have been computed for a cell, the
error in each sum is calculated with respect to an accurate
reference sum, which we compute in quad-double precision
using the GNU MPFR high-precision library. To visualize the
level of irreproducibility observed, we compute the standard
deviation of the errors and shade the cell according to that
value. Figure 8 illustrates the process in a visual (and more
intuitive) way.

k	  

dr	  

{x1,	  x2,	  ….	  xn}	  

Sσ	  =	  	  	  	  	  	  xσ(i)	  	  σ	  –	  perm.	  of	  [n]	  	  	  
1

n
∑

{Sσ_1	  ,Sσ_2	  ,Sσ_3	   …..	  Sσ_100	  }	  	  

{εσ_1	  , εσ_2	  , εσ_3	   …..	  εσ_100	  }	  	  

δ error variability   

Values	  

Sum	  of	  	  
shuffled	  values	  
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Errors	  

Error	  variability	  

….. 

Fig. 8. Overview of the grid with its cells used to study the effect of
concurrency, conditioning, and dynamic range.
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Fig. 7. Error distributions for the four summation algorithms considered in this paper for balanced and unbalanced reductions: three at a
smaller (8K leaves) and one at higher (1M leaves) levels of concurrency.

Fig. 9. Standard deviation errors for standard summation (left), Kahan summation (middle), and composite precision summation (right) for different (k, dr)
values and fixed concurrency n.

Figure 9 shows how position in the space of possible (k, dr)
values influences the variability of a sum at a fixed level of
concurrency. The darker cells toward the top and right of the
two leftmost grids indicate sets of summands whose sums
varied much more than the level of variation observed for
sets of summands with lower condition number. The darkest
cell in the standard summation grid is anomalous but likely
due to particularly severe subtractive cancellation, since its
condition number is large. The rightmost grid shows that for
all considered sets of summands, the result according to the
composite precision summation did not vary with changes in
the reduction tree.

Figure 10 presents the impact of dynamic range for a fixed

condition number. For these grids, each cell’s summands have
condition number k = 1 so that the ability of dynamic range
to estimate alignment error can be assessed. Note that the
scale by which the cells are shaded for these grids is not the
same as for the grids examining the (k, dr) or (n, k) spaces.
There is a tendency for high-concurrency, high-dynamic-range
cells to exhibit greater variability; but the most valuable lesson
from these visualizations is that dynamic range exerts much
less influence over variability of the sums than does the
condition number, as seen in Figure 11. Here, we observe
a strong relationship between high variability of sums and
sets of summands with high condition number. These results
suggest the need for applications to maintain awareness of



Fig. 10. Standard deviation errors for standard summation (left), Kahan summation (middle), and composite precision summation (right) for different (n, dr)
values and fixed condition number k.

Fig. 11. Standard deviation errors for standard summation (left), Kahan summation (middle), and composite precision summation (right) for different (n, k)
values and fixed dynamic range dr.

the mathematical properties of sets of floating-point values
generated at runtime, and if the reduction tree is expected to
change from run to run, to select reduction algorithms that
take those mathematical properties into account.

D. Intelligent Selection of Reduction Algorithms

Techniques such as compensated summation can reduce the
amount of variability observed in repeated summation when
the summation order changes from run to run. However, appli-
cation developers are faced with the challenge of selecting the
summation algorithm that gives them the level of reproducibil-
ity and accuracy required by their application. At exascale,
judicious selection of reduction algorithms will be vital so
that application-specific reproducible numerical accuracy can
be achieved at tolerable cost. In contrast to the old notion
of bitwise reproducibility, application-specific reproducibility
requires developers to specify an upper bound on the amount

of variability in the values of floating-point reductions that
can be tolerated while maintaining the trustworthiness of the
application’s output.

A set of floating-point values occupies a position in a
complex parameter space: the number of values, reduction
tree, condition number, and dynamic range all exert influence
over which reduction algorithm can cost-effectively achieve
a specified level of reproducibility. Our data suggests that
in order to avoid exceeding a fixed level of variability, if
one cannot control the reduction tree, it may be possible to
use standard summation when values are uniform and well-
conditioned and to adaptively switch to a more robust summa-
tion algorithm if the values to be reduced become less uniform
or less well-conditioned. We argue that unlike attempting to
achieve reproducible numerical accuracy by additional data
movement, as would be required to fix a reduction tree,
estimable quantities such as condition number and dynamic



Fig. 12. Selection of the cheapest but acceptably accurate reduction algorithm among the Kahan (K), composite precision (CP), and prerounding (PR)
algorithms for different error variability thresholds (left to right: t = 5e− 13, 3e− 13, 2.5e− 13, 1.5e− 13, 5e− 14).

range can guide runtime selection of a reduction operator with
the appropriate performance/reproducibility tradeoff for the
application at hand. In Figure 12, we show the (k, dr) grid
for several error variability thresholds. Here cells are shaded
based on the cheapest summation algorithm that achieves a
given degree of reproducibility at that cell. As we reduce
the variability threshold, effectively stepping toward bitwise
reproducibility with smaller and smaller thresholds, we see
that increasingly costly summation algorithms are required for
the more challenging regions in the space (i.e., those with high
condition number and high dynamic range).

Achieving reproducible numerical accuracy by intelligent
runtime selection of reduction algorithms depends on being
able to assess the mathematical properties of the floating-
point values to be reduced. We show that if this assessment
can be done, one can avoid using a more expensive reduction
algorithm when a cheaper one will do. These results present
a strong case for further research into tools that, at exascale,
profile parameters of interest (e.g., n, k, dr, and tree shape) at
runtime and apply cheaper but acceptably accurate reduction
algorithms to subtrees based on the profile.

VI. CONCLUSION

In this paper we identify relevant parameters that, when
analyzed in concert, can provide insight into intelligent selec-
tion of reduction algorithms to achieve reproducible numerical
accuracy on soon-to-exist exascale platforms.

Three main observations emerge from our study on repro-
ducible numerical accuracy. First, reduction tree shape has
a large impact on reproducible numerical accuracy. Second,
mathematical properties of a set of summands have an impact
on the reproducibility of their sum. In applications where the
conditioning and dynamic range can change dramatically over
the course of the runtime, this effect is especially relevant.
Third, we show that if we fix a target level of reproducibility,
we can classify regions of the parameter space by the cheapest
algorithm that achieves the desired level of reproducibility at
that point in the space. This is an important step toward im-
plementing intelligent runtime selection of reduction operators
on future exascale platforms.
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