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Organization of Tutorial

Axiomatic Analysis and
Optimization: Early Work

Axiomatic Analysis and
Optimization: Recent Work
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Search is everywhere,
and part of everyone’s life

Web Search

Desk Search

Enterprise Search
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Goal of Tutorial

Axiomatic Approaches to IR

[ Review major research progress ] [ Discuss promising research directions

You can expect to learn
« Basic methodology of axiomatic analysis and optimization of
retrieval models
* Novel retrieval models developed using axiomatic analysis

Organization of Tutorial
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Search accuracy matters!
# Queries /Day X1lsec  X10sec

GOOS[Q 4,700,000,000  ~1,300,000 hrs ~13,000,000 hrs

<9 1,600,000,000  ~440,000 hrs ~4,400,000 hrs

Pubmed 2,000,000 ~550hrs  ~5,500 hrs
LN LN

How can we improve all search engines in a general way?

Sources:
Google, Twitter: http://www.statisticbrain.com/
PubMed: http://www.ncbi.nlm.nih.gov/About/tools/restable_stat _pubmed.html
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Behind all the search boxes...
Google ©ING
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Document collection|
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smisie: HOW €can we optimize a retrieval model?

o 1 5000 “E,, —v trieva
Query Rouing for Web Search Engines: Archtecture and Ex : Score (q, d odel
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Machine Learning

Natural Language Processing

R bl Y [ETELab

Scoring based on bag of words in genera

O
N

s(g.d) = f| Y weight(w,q,d),a(q.d)

wEgnd

Sum over
matched query terms

gle(w,q),c(w,d),|d |,df (w)] Inverse
Document
Frequency

p(w|C)  (IDF)
Term Frequency (TF)
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Document length

Some are working very well (equally well)

» Pivoted length normalization (PIV) [singhal et al. 1996]
* BM25 [Robertson & Walker 1994]
* PL2 [Amati & van Rijsbergen 2002]

» Query likelihood with Dirichlet prior (DIR) [Ponte & Croft
1998], [Zhai & Lafferty 2001]

but many others failed to work well...

B bl Y [ETELab
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Retrieval model =
computational definition of “relevance”
S(“world cup schedule”, [d))

s(“world”, [d))

1

How many times does “schedule” occur in d?
Term Frequency (TF): c(“schedule”, d)

s(“cup”,[d] ) s(“schedule”, [dJ)

How long is d? Document length: |d|

How often do we see “schedule” in the entire collection C?
Document Frequency: df(“schedule”)
P(“schedule”|C)

B rillAn ) [ETELab

Improving retrieval models is a long-standing
challenge.

« Vector Space Models: [Salton et al. 1975], [Singhal et al. 1996], ...

« Classic Probabilistic Models: [Maron & Kuhn 1960], [Harter 1975],
[Robertson & Sparck Jones 1976], [van Rijsbergen 1977], [Robertson
1977], [Robertson et al. 1981], [Robertson & Walker 1994], ..

« Language Models: [Ponte & Croft 1998], [Hiemstra & Kraaij 1998], [Zhai
& Lafferty 2001], [Lavrenko & Croft 2001], [Kurland & Lee 2004], ...

* Non-Classic Logic Models: [van Rijsbergen 1986], [Wong & Yao 1995],
« Divergence from Randomness: [Amati & van Rijsbergen 2002], [He &

Ounis 2005],
« Learning to Rank: [Fuhr 1989], [Gey 1994], ...

Many different models were proposed and tested.
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Some state of the art retrieval models

* PIV (vector space model)

1+ In(1+In(c(w,d))) N+l

—————¢c(w,q)'In

2, Tosyesl?] )
avdl

¢ DIR (language modeling approach)

c(n,d) u
c(w,q)xIn(1+ )+lg |- In——
;, w p(w|C) wrld]

e BM2S5 (classic probabilistic model)

N=df()+0.5
e A ()+0.5

(h+DxeOnd)  (k+Dxc(wg)

k(-84 gy Kretna)
avdi

¢ PL2 (divergence from randomness)

o og, (-, 4 Tog, - (= ) 40,5 log, a1

2 comar gl 41
ifnf = c(w.d)-log,(1 +c-%":’).)ﬁ - (NC)
e
rillAn ) [EVELab
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PIV, DIR, BM25 and PL2 tend to perform similarly. Performance sensitive to small variations in a formula
1+log(c(t,D))

Performance Comparison (MAP) PIV: 5 (0.0)= E o Q)xlogN+1 x-l-r-lﬁgﬂ-r-bg(-t(-t,-B)ﬁ-

AP88-89 FR88-89 Trec7 oho o0 g sx 2L
avdl
Performance Comparison

PV 023 018 019 029 018 024
DR 022 018 021 030 019 026
BM25 023 019 023 031 019 025 §os

PL2 0.22 0.19 0.22 0.31 0.18 0.26

1

mBefore modification M After modification

Why do they tend to perform similarly even Why is a state of the art retrieval function
though they were derived in very different ways? better than many other variants?
B niilAn ) FV@Lab 5 I niblan ) [ETLab 1
Additional Observations Suggested Answers: Axiomatic Analysis

* Why do these methods tend to perform similarly even though

® PIV (vector space model 1996 f ] ;
( P R ) they were derived in very different ways?
* DIR (language modeling approach) 2001 . .
> o They share some nice common properties
* BM25 (classic probabilistic model) 1994 These properties are more important than how each is derived
* PL2 (divergence from randomness) 2002 + Why are they better than many other variants?
Why does it seem to be hard to beat these strong Other variants don’t have all the “nice properties”
baseline methods? « Why does it seem to be hard to beat these strong baseline
methods?
¢ “Ad Hoc IR — Not Much Room for Improvement” [Trotman & Keeler 2011] We don’t have a good knowledge about their deficiencies
¢ “Has Adhoc Retrieval Improved Since 1994?” [Armstrong et al. 2009] « Are they hitting the ceiling of bag-of-words assumption?

— If yes, how can we prove it?

— If not, how can we find a more effective one?
Need to formally define “the ceiling” (= complete set of “nice
properties”)

Are they hitting the ceiling of bag-of-words assumption?
« If yes, how can we prove it?
« If not, how can we find a more effective one?

i ilAn ©) ITVELab i idlAn ) [ETELab
Organization of Tutorial Axiomatic Relevance Hypothesis (ARH)
* Relevance can be modeled by a set of formally
[ } defined constraints on a retrieval function.

— If a function satisfies all the constraints, it will perform

Axiomatic Analysis and — well empirically.
Obtimization: E yl K ‘ > — If function F, satisfies more constraints than function , ,
pumization:iEar!yiwor F, would perform better than F, empirically.

) N * Analytical evaluation of retrieval functions
‘ ‘ — Given a set of relevance constraints c={c,....c,}

— Function F, is analytically more effective than function F,
iff the set of constraints satisfied by F, is a proper subset
N of those satisfied by F,

‘ J — A function F is optimal iff it satisfies all the constraints in C
i ilAn ©) IFVELab i nidlAn ) [ET@Lab 18




Axiomatic Analysis and Optimization

Function space

Retrieval constraints

R bl Y [ETELab

Different functions, but similar heuristics

* PIV (vector space model)
Tensine(nd)) (o %

* DIR (language modeling approach)

* BM25 (classic probabilisti
3 N -d()+0.

df(w)+05

TF weighting
IDF weighting
Length Norm.

weand|

it = cwd)-log, (1 +c- 2% 5 =N
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Term Frequency Constraints (TFC1)

TF weighting heuristic I:
Give a higher score to a document with more
occurrences of a query term.

e TFC1 q
Let Q be a query and D be a document. b: =
If gEQand t&Q, q
then S(0, DU {g}) > S(0,DU{1}) o _t
o; [T ]
$(0,D)>S(Q,D,)
riblAn ) [VELab
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Axiomatic Analysis and Optimization: Early Work

— Outline
4

* |[Formalization of Information Retrieval Heuristicsl

* Analysis of Retrieval Functions with Constraints
* Development of Novel Retrieval Functions

B rillAn ) [ETELab

Are they performing well because
they implement similar retrieval
heuristics?

Can we formally capture these
necessary retrieval heuristics?

For details, see
+ Hui Fang, Tao Tao and ChengXiang Zhai: A Formal Study of Information Retrieval
Heuristics, SIGIR'04.

* Hui Fang, Tao Tao and ChengXiang Zhai: Diagnostic Evaluation of Information
Retrieval Models. ACM Transaction of Information Systems, 29(2), 2011.

B riblAn ) [ETELab

Term Frequency Constraints (TFC2)

TF weighting heuristic II:

Require that the amount of increase in the score due to
adding a query term must decrease as we add more terms.
« TFC2

Let Q be a query with only one query term q.

Let D, be a document.

then g(D. Uig},0)-S(D,0) > S(D, Uig} Uigh,0)-S(D, Uig}, 0)
Q:
Dy:

Dyt S(D,,0)-S8(D;,0) > S(D;,0) - S(D,,0)

II
a
o Ha

D;:

U riblAn ) IEVELab




Term Frequency Constraints (TFC3)

TF weighting heuristic I11:

Favor a document with more distinct query terms.

* TFC3
Let g be a query and w,, w, be two query terms.
Assume idf (w) =idf(w,) and |d, |=|d, |
If c(w,d,)=c(w,d,)+c(w,,d,)
and  c(w,,d,) =0,c(w,d)) = 0,c(w,,d,) =0 dy:

Wy W,
q:
c(w,dy) c(w,,d,)

d:

then S(d,,q)>S(d,,q). cm.dy)

S(d.q)>S(d,.q)

R bl Y [ETELab

TF & Length normalization Constraint
(TF-LNC)

TF-LN heuristic:
Regularize the interaction of TF and document length.

e TF-LNC
Let Q be a query and D be a document. Q: -q
If g is a query term, b | q
then S(DU{g},0) > S(D,0). R E—
$(Q.D")>S(Q,D)

B bl Y [ETELab

Disclaimers

¢ Given a retrieval heuristic, there could be
multiple ways of formalizing it as constraints.

* When formalizing a retrieval constraint, it is
necessary to check its dependency on other
constraints.

B bl Y [ETELab
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Length Normalization Constraints (LNCs)

Document length normalization heuristic:
Penalize long documents(LNC1);
Avoid over-penalizing long documents (LNC2) .

e LNC1 Q mm
LetQbe a dDbead t. .
query an e a documen D: o,
If tis a non-query term, D: [ |
then S(DU{t},0) < S(D,0) .
$(Q, D) <S(0,D)
e LNC2 Q [

Let Q be a query and D be a document. D:

If DNQ=¢,and D,is constructed by Dy

concatenating D with itself k times,

then §(D,,0)= S(D,0) S(0,D,)=S(0,D)

B rillAn ) [ETELab

Seven Basic Relevance Constraints
[Fang et al. 2011]

TFC1 To favor a document with more occurrences of a query term

TFC2 To ensure that the amount of increase in score due to adding
a query term repeatedly must decrease as more terms are
added

TFC3 To favor a document matching more distinct query terms

TDC To penalize the words popular in the collection and assign
higher weights to discriminative terms

LNC1 To penalize a long document (assuming equal TF)

LNC2, To avoid over-penalizing a long document

TF-LNC

TF-LNC To regulate the interaction of TF and document length

U riblAn ) IETELab

Weak or Strong Constraints?

The Heuristic captured by TDC:

To penalize the words popular in the collection and
assign higher weights to discriminative terms

¢ Our first attempt:
— Let Q={q,, q,}. Assume [D,[=|D,[ and

(q,,D;)+c(q,D4)=c(qy,,D,)+c(q, D,). If td(q,)>=td(q,) and
c(q,,D,)>=c(q,,D,), we have S(Q,D,)=S(Q,D,).

* Our second attempt (a relaxed version):

— Let Q={q,, q,}. Assume |D,[=|D,[ and D, contains only g, and
D, contains only g,.

If td(q,)>=td(q,), we have S(Q.D,UD)= S(Q,D,UD).

U riblAn ) IEVELab
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Key Steps of Constraint Formalization Axiomatic Analysis and Optimization: Early Work

. . . . — Outline
* Identify desirable retrieval heuristics
* Formalization of Information Retrieval Heuristics
* Formalize a retrieval heuristic as reasonable retrieval
constraints.

* Development of Novel Retrieval Functions (1
* After formalizing a retrieval constraint, check how it
is related to other retrieval constraints.
— Properties of a constraint set o
* Completeness ‘
* Redundancy
* Conflict »

R bl Y [ETELab
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An Example of Constraint Analysis An Example of Constraint Analysis

LNC2: Letqbeaquery.

If Yk >1,|d |=k|d, |and c(w,d)) =k-c(w,d,
PIV: 1+ In(1+ In(c(w, d))) N+1 k> bld, =] dy and 0% =kecCndy)
Sdg)= Y —LL'C(W"I)'Z" ) then $(d,.q)= S(d.q)
wegnd l=s+ Savdl
INC2: HI”EHSTS(‘E‘Y dl))).c(u, q)- l”d\r(T) > 1+-n(1+Hn(c(w.dz))) “c(w, q) - ln N+l
Let g be a query. a:

[ 5+S\2\ df (w)

-
If Yk >1,|d, |=k|d, |and c(w,d)) =k-c(w,d,) di: ‘
then S(d,,q)= S(d,,q) dy: 1-Hn(1+Hn(kc(w.ds
s s

olon o) T NAL 1Hin(1Hn(c(w,d2)) N
P c(w,q) - Ingrts > T “e(w, q)-In 2L
fdq)= f(d;.q)

df( )

4.

Does PIV satisfy LNC2? 1+ (1 +In(k-c(w,dy))) _ 1+1In(l+In(c(w,dy)))

>
k-|dy - s
I—s+ gul‘(”‘ T—s+ “lm‘z
I ablan B IFELab B Ay P [FVELab

An Example of Constraint Analysis

An Example of Constraint Analysis
L4 (14 In(k - c(w, dy))) - 1+ 1In(1 + In(c(w, dy)))

. N+1_ 1+log(1+1 t,d
Toldy] da] PIV: S(q.d)= 2 c(r.g)xlog—= %g(cl(dl)))
1 — s+ s 1—s+s25 Eang df (1) )_,®<
tfl — tfz tfi=14In(l1+In(k - c(w.dy)))
(k% Dify — (12— 1)t tfo =1+ In(1 + n(c(w, dy))) BNCHON'3pacS

‘ oo X Upper bound for parameter s

Assuming |, |= avdl,
L,
><( -0
1,

E TlM AN t [mLab Figure 1: Upper bound of parameter s.

n T|MAN ﬁ @ Lab Retrieval constraints




Review: Axiomatic Relevance Hypothesis

* Relevance can be modeled by a set of formally
defined constraints on a retrieval function.

— If a function satisfies all the constraints, it will perform
well empirically.

— If function F, satisfies more constraints than function , ,
F, would perform better than F, empirically.
¢ Analytical evaluation of retrieval functions
— Given a set of relevance constraints c={c,....c,}

— Function F, is analytically more effective than function F,
iff the set of constraints satisfied by F, is a proper subset
of those satisfied by F,

— A function F is optimal iff it satisfies all the constraints in C

R bl Y [ETELab
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Testing the Axiomatic Relevance Hypothesis

« |s the satisfaction of these constraints correlated
with good empirical performance of a retrieval
function?

» Can we use these constraints to analytically
compare retrieval functions without
experimentation?

* “Yes!” to both questions

— When a formula does not satisfy the constraint, it
often indicates non-optimality of the formula.

— Violation of constraints may pinpoint where a formula
needs to be improved.

— Constraint analysis reveals optimal ranges of
parameter values

Violation of Constraints = Poor Performance
¢ Okapi BM25

3 (o N=-df(1)+0.5) (k, +1)- c(1,D) (ky+ D) c(1.Q)
e dO Dy k(-4 b A2y k+et.0)
avdl

Negative - Violates the constraints

1illan ) IFVELab

Constraints Analysis > Guidance for
Improving an Existing Retrieval Function
¢ Modified Okapi BM2.

(k + 1) c(1,D) (kg +1)-c(t.0)

D)+ k((=-b)+ b2y ket O)
avdl

Make it satisfy constraints; expected to improve performance

Keyword Queries Verbose Queries
2 (constraint satisfied by BM25) | Modified BM25 afconstraint violated by BM25)

Okapl
Pivoted
Mog-Okapi

mokapl
mPivoted
W Mod-Okapi

Keyword Queries Verbose Queries
(constraint satisfied by BM25) (constraint violated by BM25)
0.25 5
PIV
0.2 0.2
5 0.15
3 Erveed § BM25 Hiw
01 01—
0.05 0.05
o o
1ilAn ) [EN@Lab
Conditional Satisfaction of Constraints
- Parameter Bounds
* PIV LNC2 = s<0.4
Parameter Sensitivity of Pivoted
o2 04
0.18 -
0.16
~——
o2 i
; 0.1 B
0.08 AT
0.06 N
0.04 AR
0.02
0
0 0.2 0.4 0.6 0.8 1
parameter value (s)
1ilAn ) [EN@Lab

Systematic Analysis of 4 State of the Art Models
[Fang et al. 2011]

Function

Parameter s must be small
—— = Pr— ‘c
Problematic when a query term occurs Cc1* c2*

less frequently in a doc than expected
c3 Negative IDF

c4 4
Problematic with common terms;

parameter ¢ must be large Yes Yes
vioditied

PL2 C5 ce* c7 c8* c8*
(Original)

PL2 Yes ce* Yes c8* c8*
(modified)

TillAn ) [FVELab




Perturbation tests:

An empirical way of analyzing the constraints

For details, see
+ Hui Fang, Tao Tao and ChengXiang Zhai: Diagnostic Evaluation of Information
Retrieval Models. ACM Transaction of Information Systems, 29(2), 2011.

B 1iblAn ) IEVEILab s

Medical Diagnosis Analogy

Non-optimal
ret 'eyg] function

Better performed
retrieval function

Design tests with available

I instruments

IS

How to find available instruments?
How to design diagnostic tests?

I ablan B IFELab

observe symptoms
provide treatments

7/13/14

What if constraint analysis is NOT sufficient?

@

] Retrieval constraints

Relevance-Preserving Perturbations
* Perturb term statistics
* Keep relevance status

Document scaling perturbation:

cD(d,d,K) <
5= I

concatenate every document with itself K times

Relevance-Preserving Perturbations
N

Relevance addition Add a query term to a relevant document
Noise addition Add a noisy term to a document
Internal term growth Add a term to a document that original
contains the term
Document scaling Concatenate D with itself K times

| ion Concatenate two relevant documents K

times

Non-relevant document
concatenation

Concatenate two non-relevant
documents K times

Noise deletion Delete a term from a non-relevant
document
Document addition Add a document to the collection

Document deletion Delete a document from the collection

I ablan B IFVELab
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Length Scaling Test (LV3)

1. Identify the aspect to be diagnosed

test whether a retrieval function over-penalizes long documents

2. Choose appropriate perturbations

S —
O o O
3. Perform the test and interpret the results

TRECS longin scaing ()
oous
o A
i = o Dirichlet over-penalizes
o =—— S e long documents!
TillAn ) [FVELab




Summary of All Tests

Length variance reduction The gain on length normalization

(Lv1)

Length variance amplification The robustness to larger document variance
(Lv2)

Length scaling (LV3) The ability at avoid over-penalizing long
documents

Term noise addition (TN) The ability to penalize long documents

Single query term growth The ability to favor docs with more distinct query
(TG1) terms

Majority query term growth
(TG2)

All query term growth (TG3)

Favor documents with more query terms

Balance TF and LN more appropriately

R bl Y [ETELab

Identifying the weaknesses makes it
possible to improve the performance

MAP P@30
trec8 ‘ wt2g ‘ FR

trec8 ‘ wt2g ‘ FR

DIR 0.257 | 0.302 | 0.202 | 0.365 | 0.331 | 0.151

Imp.D. | 0.263 | 0.323 | 0.228 | 0.373 | 0.345 | 0.166

B bl Y [ETELab

Basic Idea of Axiomatic Approach
Olur Goal

Function space ?

Retrieval constraints

7/13/14

Diagnostic Results for DIR

1€0ND

* Weaknesses
— over-penalizes long documents (TN, LV3)
— fails to implement one desirable property of TF (TG1)
e Strengths

— performs better in a document with higher document
length variance (LV2)

— implements another desirable property of TF (TG2)

B rillAn ) [ETELab

Axiomatic Analysis and Optimization: Early Work
— Outline

* Formalization of Information Retrieval Heuristics
* Analysis of Retrieval Functions with Constraints

N

Development of Novel Retrieval Functions |

Functions satisfying i l ‘
all constraints O
II@Lab

B aiflan B

Three Questions

* How to define the constraints?

We’ve talked about that; more later
* How to define the function space?

One possibility: leverage existing state of the art functions
* How to search in the function space?

One possibility: search in the neighborhood of

existing state of the art functions

For details, see
+ Hui Fang and ChengXiang Zhai: An Exploration of Axiomatic Approaches to
Information Retrieval, SIGIR'05

U riblAn ) IEVELab s




S:0xD—=R 0=4,.4ys4,; D=ddy,....d,

Define the function space inductively

Primitive weighting function (f)

- S(QD) = S(i, M ) =f (W, 1)
D Query growth function (h)
dogo  S(QUD)= SR, M) = (i, M )+h( i, M,

Document growth function (g)
S(Q,D) = S(I, W) = S(W, W )+g(i, W, W)

R bl Y [ETELab

Inductive Definition of Function Space

Derivation of New Document Growth Function
S(Q D) Pivoted Normalization
decompose l b e
generalize l
constrain A(DD SQ.D)41( D pelq, D)| (g}, D)
|, _ ke+avdl/s _ l+avdl/s
8 O raan O e
1iflAn ) IEVELab

A Sample Derived Function based on BM25

[Fang & Zhai 2005]

QTF IDF TF

length normalization

B bl Y [ETELab
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Derivation of New Retrieval Functions
An existing function
S(Q.D)
decompose / l \
f 8 h
generalize l l l
F G H
constrain l l l
assemble
A new function
B0 iblAn ) IT@Lab

Derivation of New Retrieval Functions
S(Q,D) existing function
decompose
’ / l \
8 h
generalize l l
constrain
assemble
new function
B iy Y ITELab

The derived function is less sensitive
to the parameter setting

better Parameter Sensitivity(TREC7 sv)

Axiomatic Model
0.2 —% i -2 - .
0.15

i e

)

0 0.2 0.4 0.6 0.8 1
parameter value (b or s)

=il Axlomatic —k— Mod-Okapl —S— Pivoted =¥~ Okapi

B riblAn ) [ETELab
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Organization of Tutorial

E ]

| J

N
Axiomatic Analysis and :@:
Optimization: Recent Work ‘;

[ J

R bl Y [ETELab

Axiomatic Analysis and Optimization: Recent Work
— Outline

* |Lower-bounding TF Normalization

» Axiomatic Analysis of Pseudo-Relevance Feedback
Models

+ Axiomatic Analysis of Translational Model

For details, see
* Yuanhua Lv and ChengXiang Zhai: Lower ing Term F
CIKM11.

1illan ) IFVELab o

Review: Constraint Analysis Results
[Fang et al. 2011]

PIV Yes Yes Yes C1* c2*

DIR Yes Yes Yes c3 Yes
BM25 ca Yes ca ca ca
(Original)
BM2 Yes Yes Yes Yes Yes
(Modified)

Modified BM25 satisfies all the constraints!
Without knowing its deficiency, we can’t easily propose
a new model working better than BM25

B bl Y [ETELab

How to identify more deficiencies?

* We need more constraints!

» But how?

1illan ) IFVELab “

A Recent Success of Axiomatic Analysis:

Lower Bounding TF Normalization
[Lv & Zhai 2011a]

BIM25 for short queries BM25 (5-0.75, ky=1.2)

Retrioval ———
Relovance ——

) -

Existing retrieval functions lack a

o lower bound for normalized TF with
document length.

Probabily of RelevancelRetrieval

1000 10000 o 10 20 0 r 50

Document Lengin ojevat

ng documents are
overly penalized!

A very long document
matching two query terms
can have a lower score than
a short document matching
only one query term

B bl Y [ETELab

Lower Bounding TF Constraints (LB1)

The presence —absence gap (0-1 gap) shouldn’t be
closed due to length normalization.

LB1: Let Q be a query. Assume D; and D3 are two
documents such that S(Q,D1) = S(Q,D2). If we refor-
mulate the query by adding another term ¢ ¢ @ into Q,
where ¢(q, D1) = 0 and ¢(q, D2) > 0, then S(Q U {q}, D1) <
S(QU{g}, D2).

Q:
S(Q,D)=5(0.D,)
Dy b
Dy: S(QU{q},D)<S(QUA{q}.D,)

(g, D,)

1iflan ) FVELab "
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Lower Bounding TF Constraints (LB2) Constraint Comparison (1)
Repeated occurrence of an already matched query term + LB1 + TFLNC
isn’ importan he fir rren f an qQ
s tas‘ portant as the first occurrence of a @ o Wl
otherwise absent query term.
D, |— D, M
LB2: Let @ = {q1,¢2} be a query with two terms g B B
and ¢». Assume td(q1) = td(gz2), where td(t) can be any Dy ﬂ Dy ﬂ
reasonable measure of term discrimination value. If D; and
Dy are two documents such that ¢(gz2, D1) = ¢(g2, D2) = 0, <(g,D,) (¢, D)
(g1, D1) > 0, ¢(q1, D2) > 0, and S(Q, D1) = S(Q, D2), then 0.D,)=S(Q.D g D,)=c(t.D
S(Q, DiU{a} —{t1}) < S(Q,D2U {g2} — {ta}), for all t, 17 17
oo and t such that t; € D1, t2 € D2, t1 ¢ Q and t2 ¢ Q.
Rl ) “(q.D,)
D;: D,":

Both constraints are designed to avoid over-penalizing long

D,: —E— D,: —¥ documents. However, LB1 is more general since it puts less

restriction on the document length.

“(g, D) e(q.D,)
B riblAn B IEVELab $@P0=S@:L) = S©@.D V)~ inh) <S©.D,Uia)-{0) fillAn ) [E@Lab -

Constraint Comparison (2) No retrieval model satisfies both LB constraints

. LB2 « TFC3
d; 9
Q e q; 9z
c(4,,D,) a . clg,D)) Model LB1 LB2 |Parameter and/or query
D, _ﬁ Dy _ﬁ restrictions
™ D,:
: ﬂ BM25 Yes No b and k; should not be too large
g, - = gD,
o) @02 | eta:2)= <@ 0! ’ PIV Yes No s should not be too large
c(4,D,) PL2 No No c should not be too small
Dy -ﬁ DIR No Yes u should not be too large; query
g\D,) Dz} '? terms should be discriminative
S(0.D,U{q,} ~{11) < S(Q.D, U{q.} - {1,)) \ \S(Q,D‘U{q.))<S<Q‘DZU{qz>) <@:D,)

Both constraints are designed to favor documents covering

more distinct query terms. However, LB2 is more general since
it puts less restriction on the document length.

B niilAn ) FV@Lab filAn ) [EVELab
Solution: a general approach to lower- Example: Dir+, a lower-bounded version
bounding TF normalization of the query likelihood function
* Current retrieval model:
Term frequency ~N Y Document length Dir: g c(q’Q) . log(l + %)+ ‘ Q | 10g ‘TD |
“p(w +
F(c(t,D).| D|,...) K wr :
* Lower-bounded retrieval model: Dir+: ﬁ; (¢,0) 10g(1+ (¢, D) ) 10g(1+ 0 )
A ' P u pw|C) u pw|C)
AY
{F(c(t,D),| D|,..)+ F(0,1,...) oo N
1 u+

I
! ( ) | Otherwise
F(C(t, D)’l D |’ )‘:'-_F_ _5_’ l_"_"_ 4 Dir+ incurs almost no additional computational cost

Appropriate Lower Bound

I ablan B IFVELab 1iflan ) FVELab
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Example: BM25+, a lower-bounded BM25+ Improves over BM25
version of BM25
e el
BVi2S E; (ks +1)c(t.0).  (k+1)cD) | N+l
by ky+c(t,0) kl(l—b+b |D|)+c(t,D) df (1) BM25 0.1879 03104 02931  0.2544
avdl Short
BM25+ 0.1962 0.3172 0.3004  0.2553
k,+1)-clt, k +1)-clt,D N+1
BM25+: ﬁ; (;{+)(5(Q)Q)‘ (, I)l'j(\ ) +0) lo 7O BM25 0.1745 0.2484 0.2234  0.2260
LIRS kl(l—b+bw)+c(t,D) Verbose
BM25+ 0.1850 0.2624 0.2336  0.2274
BM25+ incurs almost no additional
computational cost
I ablan ) IFELab TillAn ) [FVELab n

Ikaiomatic Analysis and Optimization: Recent Work Pseudo-Relevance Feedback
— Outline

. . . Original Query
* Lower-bounding TF Normalization -

Initial Results

Axiomatic Analysis of Pseudo-Relevance Feedback
Models

Expanded Query Selecting
expansion

terms

« Axiomatic Analysis of Translational Model ‘

Initial Retrieval —_—
For details, see Query Expansion %
« Stephane Clinchant and Eric Gaussier: A Tl i ysis of Pseud Second Round Retrieval —_
Feedback Models, ICTIR'13.
B aiblan ) IETEILab fillAn ) [E@Lab
Existing PRF Methods Motivation for the PRF Constraints
[Clinchant and Gaussier, 2011a] [ Clinchant and Gaussier, 2011b][ Clinchant and Gaussier, 2013]
Performance
Model model minimization
* Divergence minimization [zhai&Lafferty 2001b] Robust-A 0.280 0292 0.263
e tri | del k | Trec-1&2-A 0.263 0.284 0.254
eometric relevance moael [Lavrenko et al. 2001] — 2R 0TS o
* eDCM (extended dirichlet compound Trec-182-8 0.273 0.294 0.257
multinomial) [Xu&Akella 2008] Robust-A
DIV Log-logistic model is more effective
. .
DRF BO2 [Amati et al. 2003] mfm“ because it selects terms
. A 629 467 539 :
« Log-logistic model [Cinchant et al. 2010] il « that are not too common (high IDF
. Avg (df) 6.4 7.21 8.6 and small TF)
o a9 30 22 « that still occur in sufficient number
(idf) ’ : ’ o feedback documents (average DF)
B aiblan ) IETEILab fillAn ) [E@Lab
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PRF Heuristic Constraints
[Clinchant and Gaussier, 2013]
» TF effect
— The feedback weight should increase with the term frequency.
+ Concavity effect
— The above increase should be less marked in high frequency ranges.
+ IDF effect
* When all other things being equal, the feedback weight of a term with
higher IDF value should be larger.
* Document length effect
— The number of occurrences of feedback terms should be normalized
by the length of documents they appear in.
+ DF effect

— When all other things being equal, terms occurring in more feedback
documents should receive higher feedback weights.

R bl Y [ETELab

I'kxiomatic Analysis and Optimization: Recent Work
— Outline

» Lower-bounding TF Normalization

* Axiomatic Analysis of Pseudo-Relevance Feedback
Models

* | Axiomatic Analysis of Translational Model |

For details, see

+ Maryam Karimzadehgan and ChengXiang Zhai: Axi ic Analysis of Ti
Language Model for Information Retrieval, ECIR12

B 1iblAn ) IEVEILab s

Translation Language Models for IR

[Berger & Lafferty 1999]

Query = auto wash

“translate” A
auto -|- - -» “auto” > “auto” — - — = ="

d1 | wash Query = car wash

v

auto p(w|d)=2pm1(u|d)p;(w|u)

d2 buy

auto
i ?
ecar|43) How to estimate?
P(“auto”) P(“wash”)
. wn a it | e
@3 ‘car P(“auto”| “car”)
. “auto” I I
== = = tyghicletermeererr®
P(“vehicle|d3)  p(“auto”| “vehicle”)
B il V) IEVEILab

7/13/14

Summary of Constraint Analysis

|| 1 |Concave| IDF_|Doclen] DF |

Mixture Y Cond. Y N N
Div Min Y Y Cond. Y Y
G. Rel. Y Y N Y Y
Bo Y N Cond. N N
Log-Logistic Y Y Y Y Y

The authors also discussed how to revise the mixture
model and geometric relevance model to improve the
performance.

U riblAn ) IEVELab

The Problem of Vocabulary Gap
1 Query = auto wash

auto P(“auto”) P(“wash”)
wash

dt How to support inexact matching?
L7 {“car” , “vehicle”} €==-> “auto”

auto buy (->=<=-) 'wash
42 | buy
auto _
L 7 ,_::_:___:‘.
________ P(“auto”) P(“wash”)
d3 I I I I
I niblan ) [ETILab -

Axiomatic Analysis of Translational Model
[Karimzadehgan & Zhai 2012]

Estimation of translation model

p(w|u) = Pr(d mentions u = d is about w)

* How do we know whether one estimation

method is better than another one?

Is there any better way than pure empirical

evaluation?

* Can we analytically prove the optimality of a
translation language model?

U riblAn ) IEVELab u
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General Constraint 1:
Constant Self-Trans. Prob.

CI:In order to have a reasonable retrieval
behavior, for all translation language models,
the self-translation probability should be the
same (constant).

vvand w,p(wlw) = p(v|v)

w v

Qe W PO, v10,) = (). p@ID)PO 1] * Pamaorn (VIC)
b, K = pWIDy) * POVIW) * Domoan(VIC)
v p(w,v|D2) =p(vID2) * p(v[V) * Psmootn (WIC)
D, ]

If p(w|w)>p(v|v), D1 would be

Dy) = p(ID.
Pty = plviDa) (unfairly) favored

p(vIC) = p(w|C)

R bl Y [ETELab

General Constraint 2

C2: Self-translation probability should be larger
than translating any other words to this word.
Vu and w,p(w|w) > p(w|u)

w

General Constraint 3

C3: A word is more likely to be translated to
itself than translating into any other words.
Vu and w,p(w|w) > p(u|w)

Again to avoid over-rewarding
inexact matches

B bl Y [ETELab

Constraint 5 — Co-occurrence

C5:if both u and v equally co-occur with word w but
v co-occurs with many other words than word u, the
probability of translating word u to word w is higher.
if cw,u) = c(w,v)and 3, c(w',u) <Y, c(w,v)

4

p(wlw) > p(w|v)

Q: “Brisbane”

D: ...“Queensland”
D ... “Australia” ...

p(Brisbane | Queensland) > p(Brisbane | Australia)

B bl Y [ETELab

Q = p(w[D1)=pWw|D,) * p(w|w)
Exact query match p(W|D;) =p(ulD;) * p(w|w)
-]
D Since p(w|Dy)=p(ulD;) =)
u
Dy: e The constraint must be satisfied to
ensure a document with exact
matching gets higher score.
fillAn ) [EVELab

Constraint 4 — Co-occurrence

C4: if word u occurs more times than word v in the
context of word w and both words u and v co-occur
with all other words similarly, the probability of
translating word u to word w should be higher.
if cw,u) > c(w,v)and Y, c(w',u) =3, c(w,v)

pwlw) > p(wlv)

Q: “Australia” . .
“Australia” co-occurs more with
D: ...“Brisbane ... “Brisbane” than with “Chicago” -
D: ...“Chicago ...”
p(Australia | Brisbane) > p(Australia | Brisbane)
TillAn ) [FVELab

Analysis of Mutual Information-
based Translation Language Model
Iw;u) = Xx, =01 Lxy=01P Xw ,Xu)log%

_ I(w;u)
PO = 5w

It only satisfies C3:
vu and w,p(w|w) > p(u|w)

Can we design a method to better satisfy the
constraints?

B riblAn ) [ETELab
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New Method:
Conditional Context Analysis
‘ Spainj -—) Europej ? p(Europe|Spain) high
M # \ﬂj p(Spain| Europe) low
Main Idea:
e P(spain Europe)=3/5
...... Europe ... ... P(Europe|Spain) =3/3
...... Europe
..... Europe
B riilAn ) [FVEILab

Heuristic Adjustment of Self-Translation
Probability

Old way (non-constant self translation)
a+(l-a)p(u|u) w=u
p(wlu)=
(1-a)p(w|u) wu

New way (constant self translation)
p'(uluw) = s(s = 0.5)

1 —-s)p(wlw)

Pl =~ o)

B bl Y [ETELab

Organization of Tutorial

[ )
|

B bl Y [ETELab

NN
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Conditional Context Analysis: Detail

- Use the frequency of seeing word w in the
context of word u to estimate p(w]u).
- See w often in the context of u Phigh p(w|u)

!

_ cwu)+1
Pwhe) = o W) + 1V

Satisfies more constraints than M|
However, C1 is not satisfied by either method
vvand w,p(w|lw) = p(v|v)

B rillAn ) [ETELab

Cross validation results
[ paa |  wap | precsin@i0 |
mi CMI  Cond  CCond I Ml cMI  Cond CCondI

TREC7 0.1854 0.1872+ 0.1864  0.1920*" . 0.42 0.408 0.418 0.418 .
wsJ 0.2658 0.267+ 0.275 0.278*1 . 0.44 0.442 0.448 0.448 .
DOE 0.1750 0.1774+ 0.1758  0.1844*7 . 0.1956 0.2 0.2043 0.2 .

« Conditional-based Approach Works better than
Mutual Information-based

« Constant Self-Translation Probability Improves
Performance

U riblAn ) IETELab

Updated Answers: Axiomatic Analysis

* Why do these methods tend to perform similarly even though
they were derived in very different ways?

more ly modeled with

* Why are they better than many other variants?
Other variants don’t have all the “nice properties”

* Why does it seem to be hard to beat these strong baseline
methods?

We didn’t find a constraint that they fail to satisfy
Are they hitting the ceiling of bag-of-words assumption?

nec No, they have NOT hit the ceiling yet!

pro
B0 iblAn ) I@Lab
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Formal retrieval function constraints for modeling
relevance

Axiomatic analysis as a way to assess optimality of
retrieval models

Inevitability of heuristic thinking in developing retrieval
models for bridging the theory-effectiveness gap
Possibility of leveraging axiomatic analysis to improve
the state of the art models

Axiomatic Framework = constraints + constructive

function space based on existing or new models and
theories

R bl Y [ETELab

Summary: Axiomatic Relevance Hypothesis

For a comprehensive list of the
constraints propose so far, check out:

http://www.eecis.udel.edu/~hfang/AX.html

B bl Y [ETELab

Two unanswered “why questions” that may
benefit from axiomatic analysis

» The derivation of the query likelihood retrieval function relies
on 3 assumptions: (1) query likelihood scoring; (2)
independency of query terms; (3) collection LM for
smoothing; however, it can’t explain why some apparently
reasonable smoothing methods perform poorly

» No explanation why other divergence-based similarity
function doesn’t work well as the asymmetric KL-divergence
function D(Q||D)

B iblAn ) IEVEILab 11
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What we’ve achieved so far

* Alarge set of formal constraints on retrieval
functions

* A number of new functions that are more effective
than previous ones
* Some specific questions about existing models that
may potentially be addressed via axiomatic analysis
* A general axiomatic framework for developing new
models
— Definition of formal constraints
— Analysis of constraints (analytical or empirical)
— Improve a function to better satisfy constraints

B rillAn ) [ETELab

Inevitability of heuristic thinking and
necessity of axiomatic analysis

* The “theory-effectiveness gap”

— Theoretically motivated models don’t
automatically perform well empirically

— Heuristic adjustment seems always necessary
— Cause: inaccurate modeling of relevance

* How can we bridge the gap?
— The answer lies in axiomatic analysis

— Use constraints to help identify the error in
modeling relevance, thus obtaining insights about
how to improve a model

B riblAn ) [ETELab

Open Challenges

* Does there exist a complete set of constraints?
— If yes, how can we define them?
— If no, how can we prove it?

* How do we evaluate the constraints?

— How do we evaluate a constraint? (e.g., should the score
contribution of a term be bounded? In BM25, it is.)

— How do we evaluate a set of constraints?

* How do we define the function space?
— Search in the neighborhood of an existing function?
— Search in a new function space?

B riblAn ) [ETELab
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Open Challenges

* How do we check a function w.r.t. a constraint?
— How can we quantify the degree of satisfaction?
— How can we put constraints in a machine learning

framework? Something like maximum entropy?

* How can we go beyond bag of words? Model
pseudo feedback? Cross-lingual IR?

* Conditional constraints on specific type of
queries? Specific type of documents?

R bl Y [ETELab

Future Scenario 2:
Sufficiently Restrictive Constraints
* We will be able to propose a comprehensive

set of constraints that are sufficient for
deriving a unique (optimal) retrieval function
— Similar to the derivation of the entropy function

C. E. Shannon, A mathematical theory of communication, Bell system technical journal,
Vol. 27 (1948) Key: citeulike:1584479

B bl Y [ETELab

Generalization of the axiomatic analysis
process (beyond IR)

1. Set an objective function, e.g.,
— Ranking: S(Q,D)
— Diversification: (D, q, w(), dsim())
2. ldentify variables that have impacts to the
objective function
3. Formalize constraints based on the variables
— For each variable, figure out its desirable behavior
with respect to the objective function, and these
desirable properties would be formalized as axioms
(i.e., constraints).
Exploratory data analysis
— Study the relations among multiple variables and
formalize the desirable properties of these relations
as additional constraints.

B bl Y [ETELab
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Possible Future Scenario 1:
Impossibility Theorems for IR

» We will find inconsistency among constraints
» Will be able to prove impossibility theorems
for IR

— Similar to Kleinberg’s impossibility theorem for
clustering

J. Kleinberg. An Impossibility Theorem for Clustering. Advances in Neural Information
Processing Systems (NIPS) 15, 2002

B rillAn ) [ETELab

Future Scenario 3 (most likely):
Open Set of Insufficient Constraints

» We will have a large set of constraints without
conflict, but insufficient for ensuring good
retrieval performance

* Room for new constraints, but we’ll never be
sure what they are

* We need to combine axiomatic analysis with
a constructive retrieval functional space and
supervised machine learning

B riblAn ) [ETELab

Generalization of the axiomatic analysis
process (beyond IR) (cont.)

4. For all the formalized constraints, study their
dependencies and conflicts, and remove
redundant constraints.

5. Function Derivation
— If no conflict constraints, find instantiations of the
objective function that can satisfy all constraints.
Derive new functions
Modify existing ones
— If there are conflict constraints, study the trade-off
and identify scenarios that requires a subset of non-
conflict constraints, and then derive functions
based on these constraints.

B riblAn ) [ETELab
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Towards General Axiomatic Thinking

* Given a task of designing a function to solve a problem:
Y=f(X)
— Identify properties function f should satisfy

— Formalize such properties with mathematically well defined
constraints

— Use the constraints to help identify the best function
Potentially helpful for designing any function
« Constraints can be of many different forms (inequality,
equality, pointwise, listwise, etc)
— Pointwise: For all “a” that satisfies a certain condition, f(a)=b

— Pairwise: For all a and b that satisfy a certain condition, f(a)>f(b)
(or f(a)=f(b))

— Listwise: For all a1, a2, ... and ak that satisfy a certain condition,
then f(al)>f(a2)>.... >f(ak ) (or f(al)=....=f(ak))

R bl Y [ETELab

Some Examples of Axiomatic Thinking outside IR (1)

* ProWord: An Unsupervised Approach to Protocol Feature
Word Extraction, by Zhuo Zhang, Zhibin Zhang, Patrick P. C. Lee,
Yunjie Liu and Gaogang Xie. INFOCOM, 2014.

— “Our idea is inspired by the heuristics in information
retrieval such as TF-IDF weighting, and we adapt such
heuristics into traffic analysis. ProWord uses a ranking
algorithm that maps different dimensions of protocol
feature heuristics into different word scoring functions and
uses the aggregate score to rank the candidates.”

B bl Y [ETELab :

Some Examples of Axiomatic Thinking outside IR (3)

« eTuner: Tuning Schema Matching Software Using Synthetic
Scenarios, by Yoonkyong Lee, Mayssam Sayyadian, Anhai Doan
and Arnon S. Rosenthal. VLDB Journal, 2007.

— Using constraints to help generate test cases for schema
matching

— Cited [Fang & Zhai 2004] as a relevant work

B bl Y [ETELab
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Axiomatic Thinking & Machine Learning

Learn f using supervised learning = constrain the choice of f with an

empirical objective function (minimizing errors on training data)

However, the learned functions may violate obvious constraints due

to limited training data (the data is almost always limited!)

Axiomatic thinking can help machine learning by regularizing the

function space or suggesting a certain form of the functions

For example, f(X)=al*x1+a2*x2+...+ak*xk

— Asimple constraint can be if x2 increases, f(X) should increase (derivative
w.r.t. x2 is positive) = a2>0

— Another constraint can be: the second derivative w.r.t. x2 is negative (i.e.,
“diminishing return”) =» the assumed function form is non-optimal;
alternative forms should be considered

B rillAn ) [ETELab

Some Examples of Axiomatic Thinking outside IR (2)

* A Formal Study of Feature Selection in Text Categorization,

by Yan Xu, Journal of Communication and computer, 2009

— “In this paper, we present a formal study of Feature
selection (FS) in text categorization. We first define three
desirable constraints that any reasonable FS function
should satisfy, then check these constraints on some
popular FS methods ... Experimental results indicate that
the empirical performance of a FS function is tightly
related to how well it satisfies these constraints”

B riblAn ) [ETELab

The End
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19



References

R bl Y [ETELab

Axiomatic Approaches (2)

* [Naetal., 2008] Improving Term Frequency Normalization for multi-topical documents

and application to language modeling approaches. S. Na, | Kang and J. Lee. ECIR 2008.

[Gollapudi&Sharma, 2009] An axiomatic approach for result diversification. S. Gollapudi

and Sharma, WWW 2009.

¢ [Cummins & O’Riordan 2009] Ronan Cummins and Colm O'Riordan. Measuring
constraint violations in information retrieval, SIGIR 2009.

* [Zheng&Fang, 2010] Query aspect based term weighting regularization in information

retrieval. W. Zheng and H. Fang. ECIR 2010.

[Clinchant&Gaussier,2010] Information-based models for Ad Hoc IR. S. Clinchant and E.

Gaussier, SIGIR 2010.

[Clinchant&Gaussier, 2011] Retrieval constraints and word frequency distributions a log-

logistic model for IR. S. Clinchant and E. Gaussier. Information Retrieval. 2011.

« [Fangetal., 2011] Diagnostic evaluation of information retrieval models. H. Fang, T. Tao
and C. Zhai. TOIS, 2011.

¢ [Lv&Zhai, 2011a] Lower-bounding term frequency normalization. Y. Lv and C. Zhai. CIKM
2011.

B bl Y [ETELab

Axiomatic Approaches (4)

* [Li&Gaussier, 2012] An information-based cross-language information retrieval model.
B. Liand E. Gaussier. ECIR 2012.

*  [Karimzadehgan&Zhai, 2012] Axiomatic analysis of translation language model for
information retrieval. M. Karimzadehgan and C. Zhai. ECIR 2012.

¢ [Cummins and O’Riodan 2012] Ronan Cummins and Colm O'Riordan. A Constraint to

Automatically Regulate Document-Length Normalisation, 21st ACM International

Conference on Information and Knowledge Management (CIKM), Oct 29 - Nov 2,2012,

Maui, Hawaii, USA

[Clinchant&Gaussier, 2013] A Theoretical Analysis of Pseudo-Relevance Feedback

Models. ICTIR 2013.

B bl Y [ETELab

7/13/14

Axiomatic Approaches (1)

* [Bruza&Huibers, 1994] Investigating aboutness axioms using information fields. P.
Bruza and T. W. C. Huibers. SIGIR 1994.

* [Fang, et. al. 2004] A formal study of information retrieval heuristics. H. Fang, T.
Tao and C. Zhai. SIGIR 2004.

* [Fang&Zhai, 2005] An exploration of axiomatic approaches to information
retrieval. H. Fang and C. Zhai, SIGIR 2005.

« [Fang&Zhai, 2006] Semantic term matching in axiomatic approaches to
information retrieval. H. Fang and C. Zhai, SIGIR 2006.

* [Tao&Zhai, 2007] An exploration of proximity measures in information retrieval.
T.Tao and C. Zhai, SIGIR 2007.

*  [Cummins&O’Riordan, 2007] An axiomatic comparison of learned term-weighting
schemes in information retrieval: clarifications and extensions, Artificial
Intelligence Review, 2007.

+ [Fang, 2008] A Re-examination of query expansion using lexical resources. H.
Fang. ACL 2008.

B rillAn ) [ETELab

Axiomatic Approaches (3)

* [Lv&Zhai, 2011b] Adaptive term-frequency normalization for BM25. Y. Lv
and C. Zhai. CIKM 2011. [Lv&Zhai, 2011] When documents are very long,
BM2S5 fails! Y. Lv and C. Zhai. SIGIR 2011.

* [Clinchant&Gaussier, 2011a] Is document frequency important for PRF? S.
Clinchant and E. Gaussier. ICTIR 2011.

« [Clinchant&Gaussier, 2011b] A document frequency constraint for pseudo-
relevance feedback models. S. Clinchant and E. Gaussier. CORIA 2011.

* [Zhang et al., 2011] How to count thumb-ups and thumb-downs: user-rating
based ranking of items from an axiomatic perspective. D. Zhang, R. Mao, H.
Li and J. Mao. ICTIR 2011.

* [Lv&Zhai, 2012] A log-logistic model-based interpretation of TF
normalization of BM25. Y. Lv and C. Zhai. ECIR 2012.

* [Wu&Fang, 2012] Relation-based term weighting regularization. H. Wu and
H. Fang. ECIR 2012.

* Shima Gerani, ChengXiang Zhai, Fabio Crestani: Score Transformation in
Linear Combination for Multi-criteria Relevance Ranking. ECIR 2012: 256-267

B riblAn ) [ETELab

Other References (1)

[Salton et al. 1975] A theory of term importance in automatic text analysis.

G. Salton, C.S. Yang and C. T. Yu. Journal of the American Society for

Information Science, 1975.

* [Singhal et al. 1996] Pivoted document length normalization. A. Singhal, C.
Buckley and M. Mitra. SIGIR 1996.

* [Maron&Kuhn 1960] On relevance, probabilistic indexing and information

retrieval. M. E. Maron and J. L. Kuhns. Journal o fhte ACM, 1960.

[Harter 1975] A probabilistic approach to automatic keyword indexing. S. P.

Harter. Journal of the American Society for Information Science, 1975.

* [Robertson&Sparck Jones 1976] Relevance weighting of search terms. S.
Robertson and K. Sparck Jones. Journal of the American Society for
Information Science, 1976.

* [van Rijsbergen 1977] A theoretical basis for the use of co-occurrence data
in information retrieval. C. J. van Rijbergen. Journal of Documentation,
1977.

* [Robertson 1977] The probability ranking principle in IR. S. E. Robertson.
Journal of Documentation, 1977.

U riblAn ) IEVELab

20



Other References (2)

* [Robertson 1981] Probabilistic models of indexing and searching. S. E.
Robertson, C. J. van Rijsbergen and M. F. Porter. Information Retrieval
Search, 1981.

* [Robertson&Walker 1994] Some simple effective approximations to the 2-
Poisson model for probabilistic weighted retrieval. S. E. Robertson and S.
Walker. SIGIR 1994.

* [Ponte&Croft 1998] A language modeling approach to information retrieval.
J. Ponte and W. B. Croft. SIGIR 1998.

¢ [Hiemstra&Kraaij 1998] Twenty-one at TREC-7: ad-hoc and cross-language
track. D. Hiemstra and W. Kraaij. TREC-7. 1998.

*  [Zhai&Lafferty 2001] A study of smoothing methods for language models
applied to ad hoc information retrieval. C. Zhai and J. Lafferty. SIGIR 2001.

* [Lavrenko&Croft 2001] Relevance-based language models. V. Lavrenko and
B. Croft. SIGIR 2001.

¢ [Kurland&Lee 2004] Corpus structure, language models, and ad hoc
information retrieval. O. Kurland and L. Lee. SIGIR 2004.

R bl Y [ETELab

Other References (4)

* [Amati et al. 2003] Foundazione Ugo Bordoni at TREC 2003: robust and web
track. G. Amati and C. Carpineto, G. Romano and F. U. Bordoni. TREC 2003.

* [Xuand Akella 2008] A new probabilistic retrieval model based on the
dirichlet compound multinomial distribution. Z. xu and R. Akella. SIGIR
2008.

* [Berger&Lafferty 1999] Information retrieval as statistical translation. A.
Berger and J. Lafferty. SIGIR 1999.

* [Kleinberg 2002] An Impossibility Theorem for Clustering. J. Kleinberg.
Advances in Neural Information Processing Systems, 2002

* [Shannon 1948] A mathematical theory of communication. C. E Shannon.
Bell system technical journal, 1948.

* [Trotman & Keeler 2011] Ad Hoc IR — Not Much Room for Improvement. A.
Trotman and D. Keeler, SIGIR 2011.

* [Armstrong et al 2009] Has Adhoc Retrieval Improved Since 1994? T. G.
Armstrong, A. Moffat, W. Webber and J. Zobel, SIGIR 2009.

B bl Y [ETELab

7/13/14

Other References (3)

* [van Rijsbergen 1986] A non-classical logic for information retrieval. C. J.
van Rijsbergen. The Computer Journal, 1986.

* [Wong&Yao 1995] On modeling information retrieval with probabilistic
inference. S. K. M. Wong and Y. Y. Yao. ACM Transactions on Information
Systems. 1995.

* [Amati&van Rijsbergen 2002] Probabilistic models of information retrieval
based on measuring the divergence from randomness. G. Amati and C. J.
van Rijsbergen. ACM Transactions on Information Retrieval. 2002.

* [He&Ounis 2005] A study of the dirichlet priors for term frequency
normalization. B. He and I. Ounis. SIGIR 2005.

* [Gey 1994] Inferring probability of relevance using the method of logistic
regression. F. Gey. SIGIR 1994.

* [Zhai&Lafferty 2001] Model-based feedback in the language modeling
approach to information retrieval. C. Zhai and J. Lafferty. CIKM 2001.

* [Tao et al. 2006] Regularized estimation of mixture models for robust
pseudo-relevance feedback. T. Tao and C. Zhai. SIGIR 2006.

B rillAn ) [ETELab

21



