
A Study of Semantic Search in SemSearch 2011

Xitong Liu
Department of Electrical and

Computer Engineering
University of Delaware

Newark, DE 19716, USA
xliu@ece.udel.edu

Cong-Lei Yao
HP Labs China

HP Labs
Beijing, China

conglei.yao@hp.com

Hui Fang
Department of Electrical and

Computer Engineering
University of Delaware

Newark, DE 19716, USA
hfang@ece.udel.edu

ABSTRACT
We describe the joint efforts of University of Delaware and
HP Labs China in the participation of both the Entity Search
Track and List Search Track in SemSearch Challenge 2011.
In the Entity Search track we focus on how to apply existing
Information Retrieval techniques to retrieve the related en-
tities from semi-structured RDF corpus and how to improve
the performance using some heuristics. In the List Search
track we studied how to apply Natural Language Process-
ing techniques to analyze the query and extract the type
requirement which can be used to filter out the irrelevant
entities from initial retrieval.

1. INTRODUCTION
We participated both tracks in SemSearch Challenge 2011.
The goal of the first track, Entity Search Track, is to re-
trieve a list of relevant entities given by keyword query. It
can be classified into the category of entity search, on which
more and more research efforts have been put in community
recently, including the expert finding in Enterprise Track [4,
8, 1] and related entity finding (REF) in the Entity Track [2,
3]. One main difference between them is that for both ex-
pert finding and related entity finding entities are retrieved
from unstructured data set while for Entity Search Track
the entities are retrieved from semi-structured data set.

The goal of second track, List Search Track, is to find re-
sources which belong to a particular set of entities. This is
very similar to the Entity List Completion (ELC) pilot task
in Entity Track 2010 [3]. One major difference is that for
ELC task besides entity description, some example entities
are already given in the query and the goal is to complete

the set of entities by retrieving other related entities in the
same set while for the List Search Track only the entity de-
scription is given, which makes the task more challenging.

Obviously we can formulate the problems of both track as
the problem of keyword search over semi-structured data
set. To solve this problem, we plan to leverage the exist-

ing Information Retrieval (IR) techniques which have been
shown to be effective on keyword search over unstructured
data set. Hence there lies two challenges before the prob-
lem solution: (1) how to apply the IR techniques over the
semantic semi-structured date set, (2) how to model the rel-
evance between the keyword query and entities. To address
the first challenge, we process the semi-structured date set
into unstructured document collection on which existing IR
techniques can be applied. For the second challenge, we uti-
lize some semantic features of the entities in the data set to
connect the query and entity.

For the Entity Search Track, we first build the unstruc-
tured entity profile document collection based on the semi-
structured data set and apply axiomatic retrieval functions
to search over the profile document collection using the given
keyword query. The entities are ranked based on the rank
of their profile documents. For the List Search Track, we
first apply some Natural Language Processing techniques to
extract both the content requirement and type requirement.
Content requirement is used to retrieve an initial list of en-
tity candidates, and type requirement is used to filter out
irrelevant entities then.

The paper is organized as follows. We describe the process-
ing of data set in Section 2, introduce the method of Entity
Search Track in Section 3 and the method of List Search
Track in Section 4, and conclude in Section 5.

2. DATA SET PROCESSING
The standard data collection for SemSearch Challenge 2011
is Billion Triple Challenge 2009 dataset 1, which consists
of a set of RDF graph collection represented in N-Quads
format 2:

<subject> <predicate> <object> <context> .

Basically each entity is represented by one node in the RDF
graph, and many attributes are connected with the entity,
as shown in Figure 1(a). Each attribute is a pair of attribute
name and value. In this example, we have one entity “Pride
and Prejudice” with four attributes. To represent the RDF
graph in plain text, N-Quads store each attribute pair in
one record. More specifically, the entity name is taken as the

1http://vmlion25.deri.ie/
2http://sw.deri.org/2008/07/n-quads/

Pride and

Prejudice

novel

Jane

Austen

United

Kingdom

1/28,

1813

author

country

type

publication date

<Pride and Prejudice> <author> <Jane Austen> <LINK> .

<Pride and Prejudice> <country> <United Kingdom> <LINK> .

<Pride and Prejudice> <type> <novel> <LINK> .
<Pride and Prejudice> <publication date> <1/28, 1813> <LINK> .

(a) RDF Graph of Pride and Prejudice (b) N-Quads of Pride and Prejudice

Figure 1: Example of RDF Graph and N-Quads records

subject field, attribute name as the predicate field, attribute
value as the object field. Moreover, the fourth field, i.e. the
context field, is the URI of the RDF graph that provides
the context information of entity. Therefore, each entity is
represented by a couple of N-Quads records, all of which
share the same subject field, as shown in Figure 1(b).

In order to represent the entity in unstructured document,
we follow our method in the participation of Semantic Search
2010 Workshop [6] by merging all the attributes of an entity
(both the attribute name and value) together as “bag-of-
words”. The reason is that each attribute is kind of descrip-
tion of the entity covering certain aspect, merging all the
attributes together would build a profile document, which
can cover many aspects for the entity. The profile document
construction can be done by simply merging all the predi-
cate fields and object fields of N-Quads records which share
the same subject field. The context fields are abandoned
because they can not provide any useful information of the
entity besides the origins of the RDF graphs.

We notice that there are two different formats for the pred-
icate fields:

1. <http://dbpedia.org/property/abstract>, in which
the attribute type is located after the last / of URI,
i.e. abstract.

2. <http://www.aktors.org/ontology/portal#year-of>,
in which the type is located in the string after #, i.e.
year-of.

We only extract the last part in the predicate fields and
discard the remaining parts because we think the last part
already provides enough semantic information about the at-
tribute name. We use Indri 3 to build index over the un-
structured profile document collection.

3. ENTITY SEARCH TRACK
3.1 Problem Formulation
The task of Entity Search Track is to rank the entity accord-
ing to the relevance to a given keyword query. Since we have
already processes the data set into unstructured document
collection, we can use the relevance between the entity pro-
file document and the keyword query to model the relevance

3http://www.lemurproject.org/indri/

between the entity and keyword query, the problem of entity
search over the semi-structured data set is essentially equiv-
alent as document retrieval over the unstructured document
collection.

3.2 Submitted Runs
For this track, we submitted three runs:

UDelAX

The retrieval function we use is the Axiomatic retrieval func-
tion [5] because the results of our system in Semantic Search
2010 Workshop show that it outperforms other two retrieval
functions [6]. The scoring function S(Q, D) is shown as be-
low:

S(Q,D) =
X

t∈Q∩D

c(t, Q) ×
c(t, D)

c(t, D) + s + c(t,D)·|D|
avdl

× (
N + 1

df(t)
)0.35

, (1)

where c(t, D) is the count of term t in document D, c(t, Q) is
the count in query Q, N is the number of documents in the
collection, |D| is the document length, avdl is the average
document length of the collection, df(t) is the number of
documents containing term t and s is a parameter which is
set to 0.05.

UDelProx

Based on the Axiomatic retrieval function, we also applied
query proximity to favor the document which query terms
occur more closer than others because we think that doc-
uments with higher query term proximity indicate higher
relevance. We leverage the facility provided by the Indri
Query Language 4 to apply proximity limitation over the
query terms in the following format: #odN(QUERY) which
means terms must appear in an ordered window and there
must be at most N − 1 terms between any of two adjacent
query terms. N is set to 15 as the results over the query set
of Semantic Search 2010 Workshop show that it can lead to
optimal performance.

UDelVO

Based on the study of query set, we found that they are

4http://www.lemurproject.org/lemur/IndriQueryLanguage.php

Run MAP Rprec P@10
UDelAX 0.1996 0.1928 0.2180
UDelProx 0.2167 0.2391 0.2600

UDelVO 0.1858 0.1885 0.1940

Table 1: Performance of three submitted runs in

Entity Search Track

essentially the entity name in free text. Although most the
entity are represented as URIs, the entity name are some-
times embedded in the URI. For example, the entity “IBM”
may be represented as http://dbpedia.org/page/IBM, and
it may be a relevant result for query “IBM”. Therefore, we
assume that if the URI have any vocabulary overlap (VO)
with the keyword query, it’s an strong evidence that it’s
more likely relevant to the query. Thus based on the initial
retrieval results by Axiomatic retrieval function, we promote
all the entities with vocabulary overlap with the query by
ranking them higher than others.

3.3 Performance Evaluation
We evaluate the performance of the three submitted runs
using the judgement file released by the organizers. We
report three measurements: MAP (Mean Average Preci-
sion), Rprec (Precision at R where R is the number of rel-
evant documents for a given query) and P@10 (Precision
at rank 10), as shown in Table 1. According to the results,
UDelProx performs best among all three runs, which shows
that incorporating term proximity can improve the perfor-
mance. Moreover, UDelVO performs worse than the other
two runs, which shows the assumption that relevant entities
have vocabulary overlap with the keyword query does not
hold for all relevant entities.

4. LIST SEARCH TRACK
4.1 Problem Formulation
The task of List Search Track is to find entities which belong
to a particular set of entities. Actually the query is the
description of entity set. Some sample queries are:

ten ancient Greek city

astronauts who walked on the Moon

The difference between the two tracks are that the Entity
Search Track is to find the entities which match the query (
for example, entities relevant to the entity name: MIT) and
the List Search Track is to to find the set (or a collection) of
entities which match the criterion of the query (for example,
all the ten entities which are ancient Greek cities). The key
challenge for List Search Track is how to utilize the semantic
meta data to find the entities which match the criterion.

Based on the study of query set, we find that almost all
the queries contain two different parts: type requirement Qt

which specifies the type of the entity and content require-

ment Qc which describes some other common attributes of
the entities in the set. For example, consider the query: “as-
tronauts who walked on the Moon”, the “astronauts” is the
type requirement which says that the relevant entities should

be“astronauts”, rather than“doctors”, “politicians”or some-
thing else, while the “who walked on the Moon” asks for the
set of astronauts which share the same attribute: they have
walked on the Moon. To tackle the problem of this track, we
first need to identify both the type requirement and content
requirement.

We found that all the 50 queries are expressed in natural
language rather than keywords as in Entity Search Task.
Therefore, some Natural Language Processing (NLP) tech-
niques can be applied to analyze the query. To address this
challenge, we apply the Illinois Chunker [7] over the queries
and find that it can successfully separate the type require-
ment from content requirement in most cases by chunking
the whole sentence into several parts and the type require-
ment is in one chunk denoted by part of speech tag NP which
stands for noun phase. For example, the query “astronauts
who walked on the Moon” is chunked as below:

[NP Astronauts] [NP who] [VP landed] [PP on] [NP the Moon] .

Based on the analysis, we find that the type requirement for
almost all the queries are in the first NP chunk. Therefore,
we extract the first NP chunk as the type requirement of the
query and the remaining parts as the content requirement.

Intuitively, a relevant entity should meet both the content
requirement and type requirement. Since the content re-
quirement represents some attributes of the entity, we can
use the content requirement as query to retrieve a list of en-
tities by applying some IR techniques such as the axiomatic
function mentioned in Section 3. After that, we can extract
the entities which match the type requirement from the ini-
tial retrieved entity list.

By manually selecting some relevant entities and analyzing
the structure of RDF graph, we find that some attributes
specify the type information of the entity, and we use them
to identify whether the entity meet the type requirement or
not. We manually choose three common attributes which
specify the entity type: “type”, “description” and “sameas”
and check whether the type requirement is mentioned in any
of the attributes. If so, we label it as relevant, otherwise
irrelevant. We keep the relevant entities and remove the
irrelevant ones. The rank of the entities is kept unchanged.

4.2 Submitted Runs
For this track, we also submitted three runs:

UDelRun1

We use the Axiomatic retrieval function [5] for initial re-
trieval and use the type requirement automatically extracted
by the Illinois Chunker to filter out irrelevant entities.

UDelRun2

Although the type requirement can be automatically ex-
tracted by the chunker, sometimes there are some vocabulary

gap between the type requirement in the query and type at-
tributes in the semi-structured data set. For example, one
query is “members of u2” and the automatic extracted type

Run MAP Rprec P@10
UDelRun1 0.0999 0.1283 0.1740
UDelRun2 0.1285 0.1497 0.1800

UDelRun3 0.1079 0.1446 0.1800

Table 2: Performance of three submitted runs in

List Search Track

requirement is “member”. Actually, the type attributes of
the relevant entity may be “person” rather than “member”.
Therefore, our method will fail for such queries. To solve
this problem, we manually expand the type requirement by
adding some conceptually relevant terms. For the previous
example, we will add “person” to the type requirement.

UDelRun3

We applied the model-based relevance feedback [9] to expand
the original content requirement query and retrieve a list
of entities. Manual expanded type requirement is applied
to filter out irrelevant entities then. The only difference
between UDelRun2 and UDelRun3 is the initial retrieval
function.

4.3 Performance Evaluation
The performance of the three submitted runs for the list
search track are evaluated in three measurements: MAP,
Rprec and P@10, as shown in Table 2. UDelRun2 per-
forms better than UDelRun1 as expected, since the manual
expanded type requirement can cover more aspects than the
automatic extracted one. What’s more, the model-based
feedback does not show any advantage than axiomatic re-
trieval function in this case, as UDelRun2 also performs
better than UDelRun3.

5. CONCLUSIONS
In this paper we describe our methods for the participation
of SemSearch Challenge 2011. The main focus is to study
how to apply IR techniques to solve the entity search prob-
lem over the semi-structured data set. In the List Search
Track, some NLP techniques are also applied to better un-
derstand the different query requirement.

In our future work, we plan to study how to automatically
expand the type requirement based on some conception hi-
erarchy.

6. REFERENCES
[1] P. Bailey, N. Craswell, A. P. de Vries, and I. Soborof.

Overview of the TREC 2007 Enterprise Track. In
Proceedings of Text Retrieval Conference, 2007.

[2] K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and
T. Westerveld. Overview of the TREC 2009 Entity
Track. In Proceedings of Text Retrieval Conference,
2009.

[3] K. Balog, P. Serdyukov, and A. P. de Vries. Overview
of the TREC 2010 Entity Track. In Proceedings of Text

Retrieval Conference, 2010.

[4] N. Craswell, A. P. de Vries, and I. Soboroff. Overview
of the TREC 2005 Enterprise Track. In Proceedings of

Text Retrieval Conference, 2005.

[5] H. Fang and C. Zhai. An Exploration of Axiomatic
Approaches to Information Retrieval. In Proceedings of

SIGIR, 2005.

[6] X. Liu and H. Fang. A Study of Entity Search in
Semantic Search Workshop. In Proceedings of Semantic

Search Workshop, World Wide Web Conference, 2010.

[7] M. Mavronicolas and D. Roth. Sequential Consistency
and Linearizability: Read/Write Objects. In In

Proceedings of the 29th Annual Allerton Conference on

Communication, Control and Computing, pages
683–692, 1991.

[8] I. Soborof, A. P. de Vries, and N. Craswell. Overview of
the TREC 2006 Enterprise Track. In Proceedings of

Text Retrieval Conference, 2006.

[9] C. Zhai and J. Lafferty. Model-based Feedback in the
Language Modeling Approach to Information Retrieval.
In Proceedings of CIKM-01, 2001.

