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Abstract. Information graphics, such as bar charts and line graphs,
are a rich knowledge source that should be accessible to users. However,
techniques that have been effective for document or image retrieval are
inadequate for the retrieval of such graphics. We present and evaluate a
new methodology that hypothesizes information needs from user queries
and retrieves infographics based on how well the inherent structure and
intended message of the graphics satisfy the query information needs.
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1 Introduction

Information graphics (infographics), such as the one in Figure 1, are effective
visual representations of complex information. Moreover, the overwhelming ma-
jority of information graphics from popular media appear to be designed to con-
vey an intended message. For example, the intended message of the graphic in
Figure 1 is ostensibly that Toyota has the highest profit among the car manufac-
turers listed. Although much research has addressed the retrieval of documents,
very little attention has been given to the retrieval of infographics. But info-
graphics are an important knowledge resource that should be accessible from a
digital library.

Suppose that one is writing a government report about the success of
Japanese car companies and poses the following query:

Q1: “How does the net profit of Toyota compare to other car manufacturers?”

A graphic satisfying this information need would presumably depict net profit
on the dependent axis and Toyota along with other car manufacturers on the
independent axis; in addition, the graphic would compare Toyota’s net profit
against those of the other car manufacturers. The infographic in Figure 1, which
appeared in zmetro.com, is such a graphic. When Q1 was entered into major
commercial image search engines, none of the highest ranked retrieved graphics
were comparing car manufacturers according to their net profit, and thus they
would not satisfy the query’s information need.

Techniques that have been effective for document or image retrieval are inad-
equate for the retrieval of information graphics. Current search engines employ
strategies similar to those used in document retrieval, relying primarily on the
text surrounding a graphic and web link structures. But the text in the sur-
rounding document generally does not refer explicitly to the infographic or even
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Fig. 1: An Example Infographic

describe its content [5]. An obvious extension would be to collect all the words in
an infographic and use it as a bag of words. However, the text in graphics is typ-
ically sparse and we will show that this approach is insufficient. Content-based
image retrieval (CBIR) has focused on extracting visual features or retrieving
images that are similar to a user specified query image. Although CBIR can find
bar charts and line graphs, a user with an information need is not just, if at
all, seeking visually similar graphics. Moreover, since images are free-form with
relatively little inherent structure, it is extremely difficult to determine what is
conveyed by an image, other than to list the image’s constituent pieces.

Infographics, on the other hand, have structure: the independent axis depicts
a set of entities (perhaps ordinal entities in the case of a line graph) and the
dependent axis measures some criteria for each entity. In addition, the graphic
designer constructs the graphic using well-known communicative signals (such
as coloring an entity in the graphic differently from other entities) to convey an
intended message. Current retrieval mechanisms, both those used for document
retrieval and those used for image retrieval, have ignored a graphic’s structure
and message, and thus have been ineffective in retrieving infographics.

We propose a novel methodology for retrieving infographics in response to
a user query. Our approach analyzes the user query to hypothesize the desired
content of the independent and dependent axes of relevant infographics and the
high-level message that a relevant infographic should convey. It then ranks candi-
date graphics using a mixture model that takes into account the textual content
of the graphic, the relevance of its axes to the structural content requested in the
user query, and the relevance of the graphic’s intended message to the informa-
tion need (such as a comparison) identified from the user’s query. We currently
focus on static simple bar charts and line graphs; in the future, our methodology
will be extended to more complex infographics.

This paper presents our new methodology for retrieving infographics, to-
gether with experiments which validate our approach. Section 2 outlines the
problem in more detail. Section 3 presents our methodology and describes how
relevance of each graphic component to a user query is measured. Section 4
presents experimental results showing the significant improvement our method-
ology makes over a baseline approach that uses simple text retrieval techniques.
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2 Problem Formulation

Our research is currently limited to two kinds of infographics, simple bar charts
and single line graphs that convey a two dimensional relationship between the
independent axis and the dependent axis, which we will refer to respectively as
x-axis and y-axis. Let an infographic be G. Given a digital library D of such
infographics, we will present a ranking methodology for all G∈D according to
the relevance of each graphic G to a query Q, denoted R(Q,G). We assume
that in our digital library, each infographic G is stored with its original image
together with an XML representation specifying the structural components of the
graphic as described in Section 2.1 and the message components of the graphic
as described in Section 2.2. This paper is not concerned with the computer vision
problem of parsing a graph to recognize its bars, labels, colors, text, etc.; other
efforts, such as the work in [6, 13], are addressing the processing of electronic
images such as bar charts and line graphs.

2.1 Structural Content of Infographics

Our approach takes into account three structural components of each infographic
G: 1) text that appears in a graphic’s caption or sub-caption, denoted Gc; 2) the
content of the independent axis (referred to as x-axis), denoted as Gx, consisting
of the labels on the x-axis, such as the names of the car manufacturers in Figure 1;
3)the content of the dependent axis (referred to as y-axis), denoted as Gy.

Determining Gy is not straightforward. Infographics often do not explicitly la-
bel the y-axis with what is being measured. For example, net profit is being mea-
sured on the y-axis in Figure 1 but the y-axis itself is unlabeled. Previous work
on our project developed a system that utilized a set of heuristics to extract in-
formation from other graph components and meld them together to form a y-axis
descriptor [9]. We assume that the XML representation of each infographic in our
digital library contains all three structural components, GStruct = {Gx, Gy, Gc}.

2.2 Message Content of Infographics

Infographics in popular media generally have a high-level message GIM that
they are intended to convey. For example, Figure 1 conveys a message in the
Max category, namely Toyota has the highest net profit among the listed car
manufacturers. Previous work on our project [10, 27] identified a set of 17 cate-
gories of intended messages that could be conveyed by simple bar charts and line
graphs. For example, a Rank message conveys the rank of an entity with respect
to some criteria (such as profit) whereas a Relative-Difference message compares
two specific entities. The entity being ranked or the entities being compared are
referred to as focused entities Gfx since the graphic is focused on them.

Both [10, 27] identified communicative signals that appear in graphics and
help to convey the graphic’s intended message. For example, salience of an entity
in a graphic might be conveyed by coloring the bar differently from other bars
(such as the bar for Toyota in Figure 1), thereby suggesting that it plays a
significant role in the graphic’s high-level message. These communicative signals
were entered as evidence in a Bayesian network that hypothesized the graphic’s
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intended message, both the category of intended message (such as Rank) and
any focused entities that serve as parameters of the message.

We assume that each infographic G in our digital library is stored along
with its message components, Gmsg = {GIM , Gfx}, its structural components
Gstruct = {Gx, Gy, Gc}, and a bag of words Gt of all the words in graphic G.

3 Retrieval Methodology

Given a query, our retrieval methodology first analyzes the query to identify
the requisite characteristics of infographics that will best satisfy the user’s in-
formation need. Then the infographics in our digital library are rank-ordered
according to how well they satisfy this information need as hypothesized from
the user’s query. Section 3.1 discusses the analysis of user queries, Section 3.2
discusses the fast preselection of a set of candidate infographics and Section 3.3
discusses the rank-ordering of infographics in response to a user query.

3.1 Natural Language Query Processing

Our vision is that since the graphics have structure, the users whose particular
information needs could be satisfied by infographics will formulate their queries
to indicate the requisite structure of the desired graphics. Thus our methodology
uses full-sentence user queries so that the semantics of the query can be analyzed
to identify characteristics of relevant graphics. Consider the following two queries
which contain similar keywords but represent different information needs:

Q2: Which Asian countries have the most endangered animals?
Q3: Which endangered animals are found in the most Asian countries?

Both queries request graphics that convey the entities that have the largest value
with respect to what is measured on the y-axis. However, query Q2 is asking
for an infographic comparing Asian countries on the x-axis according to their
number of endangered animals on the y-axis, while query Q3 is asking for a com-
parison of different endangered animals on the x-axis according to the number
of Asian countries in which they reside on the y-axis. Our methodology utilizes
our previous work that extracted clues from a query Q and used these clues as
attributes in a learned model that hypothesized from Q the requisite content Qx

of the x-axis, the requisite content Qy of the y-axis, and the noun words that do
not belong on any of these axes Qn [19, 20]. Our retrieval methodology treats
these axes contents separately instead of treating a query as a bag of words,
thereby recognizing the difference between queries such as Q2 and Q3.

Similarly, consider the query:

Q4:How does the number of doctor visits per year change with a person’s age?

Although both graphics in Figure 2 contain the same data, that is, a person’s
age on the x-axis and the number of doctor visits on the y-axis, the changing
trend in doctor visits (as requested by the query) is more discernible from the
graphic on the left than from the graphic on the right which ranks age ranges
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Fig. 2: Graphics Displaying the Same Data with Different Messages

in terms of number of doctor visits. This correlates with Larkin and Simon’s
observation [18] that graphics may be informationally equivalent (that is, they
contain the same information) but not computationally equivalent (that is, it
may be more difficult to perceive the information from one graphic than from
the other). The model developed in our previous work [19] also processed a
user query to identify the preferred category of intended message QIM and the
focused entity Qfx (if any) of relevant infographics.

In this paper, we process each user query Q using the learned models from
our previous work [19, 20] in order to 1) extract all of the query components
that convey structural information, Qstruct = {Qx, Qy, Qn}, and 2) identify the
requisite message information that should be conveyed by the desired graphic
Qmsg = {QIM , Qfx}. In addition, we form a bag of words Qt consisting of all
words in query Q.

3.2 Infographics Preselection

As a first step for speeding-up infographic retrieval in a large digital library, we
first preselect a subset of infographics that are loosely relevant to the words in
a given user query. However, the words in a user query may differ from those
appearing in a relevant graphic, especially since a graphic’s text is typically
sparse. Query expansion is a commonly used strategy in IR to improve retrieval
performance [1, 11, 22] since it is effective in bridging the vocabulary gap between
terms in a query and those in the documents. The basic idea is to expand the
original query with semantically similar terms other than those explicitly given
in the original query.

But infographic retrieval presents an additional problem. Consider a query
such as Which car manufacturer has the highest net profit?. An infographic such
as the one shown in Figure 1 displays a set of car manufacturers on the inde-
pendent axis (Toyota, Nissan, Honda, etc..) but nowhere in the graphic does the
term car or a synonym appear. Identifying the ontological categories, such as car
or automobile, of these labels is crucial for infographics retrieval since the user
query often generalizes the entities on the independent axis rather than listing
them.

To tackle the sparsity problem, before storing a graphic in the digital library,
we expand the text in the graphic using Wikimantic[4], a term expansion method
that uses Wikipedia articles as topic concepts. Given a sequence Gs of the text in
a graphic, Wikimantic extracts all Wikipedia articles and disambiguation articles
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whose titles contain a subsequence of Gs; each of these articles is viewed as a
Wikimantic concept and is weighted by the likelihood that the concept generates
sequence Gs. Wikimantic then builds a unigram distribution for words from the
articles representing these weighted concepts. By expanding graph entities such
as Toyota, Nissan, Honda, and GM through Wikimantic, words such as car or
automobile are part of the produced unigram distribution — that is, as a side
effect, the ontological category of the individual entities becomes part of the
term expansion.

This expansion of the graphic components (as opposed to the typical expan-
sion of the query) accomplishes two objectives: 1) it addresses the problem of
sparse graphic text by adding semantically similar words, and 2) it addresses
the problem of terms in the query capturing general classes (such as car or au-
tomobile) when the graphic instead contains an enumeration of members of that
general class. If the expanded text of an infographic contains at least one of the
query noun words, this infographic is preselected for further rank-ordering.

3.3 Methodology for Rank-ordering Infographics

After preselecting a candidate pool P of infographics for a given query Q, our
methodology measures the relevance R(Q,G) of Q to each infographic G ∈ P .
Our hypothesis is that graph retrieval should take into account the relevance of
the structural and message components of an infographic to the requirements
conveyed by the user’s query. We consider the following relevance measurements,
as depicted in Figure 3:

– X Axis Relevance R(Qx, Gx): relevance of the graphic’s x-axis content Gx

to the requisite x-axis content Qx extracted from the user’s query.
– Y Axis Relevance R(Qy, Gy): relevance of the graphic’s y-axis content Gy to

the requisite y-axis content Qy extracted from the user’s query.
– Intended Message Category Relevance R(QIM , GIM ): relevance of the cate-

gory of intended message GIM of the infographic to the category of intended
message QIM preferred by the query.

– Intended Message Focused Entity Relevance R(Qfx, Gfx) and R(Qfx, Gnx):
relevance of the graphic’s focused entity Gfx (if any) to the focused entity
Qfx (if any) extracted from the user’s query. In cases where Qfx appears
on the x-axis of a graphic but is not focused, such graphics may address
the user’s information need, though less so than if the graphic also focused
on Qfx. Therefore we also measure the relevance of the non-focused x-axis
entities Gnx ∈ Gx to the query focused entity Qfx as R(Qfx, Gnx).

We consider three mixture models which respectively capture structural rel-
evance, message relevance, and both structural and message relevance. Since
the results of query processing are not always correct, we add to each model a
back-off relevance measurement R(Qt, Gt) which measures the relevance of all
the words in the query to all the words in a candidate infographic. In addition,
we include a baseline model that treats the words in the graphic and the words
in the query as two bags of words and measures their relevance to one another.
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Fig. 3: Relevance Measurements for Component Approaches

Model-1 (structural components): relevance of the structural components (the
x-axis and the y-axis) computed by the following function:

R1(Q,G) = ω0 ·R(Qt, Gt) + ω1 ·R(Qx, Gx) + ω2 ·R(Qy, Gy) (1)

Model-2 (message components): relevance of intended message components
(message category and message focused entity, if any) computed by the following
function:

R2(Q,G) = ω0 ·R(Qt, Gt) + ω3 ·R(QIM , GIM )

+ω4 ·R(Qfx, Gfx) + ω5 ·R(Qfx, Gnx)
(2)

Model-3 (both structural and message components): relevance of both struc-
tural and intended message components, computed by the following equation:

R3(Q,G) = ω0 ·R(Qt, Gt) + ω1 ·R(Qx, Gx) + ω2 ·R(Qy, Gy)

+ω3 ·R(QIM , GIM ) + ω4 ·R(Qfx, Gfx) + ω5 ·R(Qfx, Gnx)
(3)

Baseline-Model (bags of words): relevance of the bag of words in the query
to the bag of words in a graphic, calculated by the following equation:

Rbaseline(Q,G) = R(Qt, Gt) (4)

The weighting parameters, ωi, are learned using multi-start hill climbing to
find a set of parameters that yields a local maximal retrieval evaluation metric.
Such hill-climbing search has been used successfully to learn parameters in other
problems where the available dataset is small [23]. The next subsections discuss
how relevance is measured for each of the terms in the above relevance equations.

3.4 Measuring Textual Relevance

The relevance between the words from the query and words from the graphic,
such as R(Gt, Qt), R(Gx, Qx), R(Gy, Qy), and R(Gfx, Qfx), are textual rel-
evances, measured by relevance function Rtext. We use a modified version of
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Okapi-BM25 [12] for measuring textual relevance Rtext:

Rtext(Qc, Gc′) =
∑

wi∈Qc

log(
|D|+ 1

gfi + 1
) · tfi · (1 + k1)

tfi + k1

where Qc is a query component and Gc′ is a graphic component, |D| is the total
size of our graphic collection, gfi is the number of graphics that contain the
word wi, tfi is the term frequency of wi in Gc′ , and k1 is a parameter that is
set to 1.2, a widely used value. This version of Okapi-BM25 has replaced the
original inverse document frequency in Okapi with the regular inverse document

frequency (idf = log( |D|+1
gfi+1 )) to address the problem of negative idf . Our version

of Okapi also does not take graphic text length into consideration, since text in
graphics usually have similar limited length; moreover, a graph component, such
as the message focused entity or the dependent (y) axis, only consists of a noun
entity and therefore normalizing the length of such a component does not have
the same affect as for documents. Our version of Okapi also does not take query
term frequency into consideration, since most terms in the query occur only
once.

3.5 Intended Message Relevance Measurement

Intended message relevance measures the relevance of the category of the in-
tended message (such as Rank) along with the message focused entity of a query
to those of an infographic. For measuring the intended message category rel-
evance RIM , we condense the message categories in [10] and [27] into seven
general categories of intended messages extracted from user queries:

– Trend messages: convey a trend over some ordinal entity. Note that while
a graphic might convey a rising trend, a query would be much more likely
merely to request the trend of some entity since the user would not know a
priori whether the trend is rising, falling, or stable.

– Rank: convey the rank of a specific entity with respect to other entities.
– Min: convey the entity that has the smallest value with respect to other

entities.
– Max: convey the entity that has the largest value with respect to other

entities.
– Rank-all: convey the relative rank of a set of entities
– Rel-Diff: convey the relative difference between two entities
– General: convey no specific message and just display data

We abstract a concept hierarchy containing the seven general intended mes-
sage categories, as shown in Figure 4. Our methodology uses relaxation as the
paradigm for ranking infographics according to how well an infographic’s cat-
egory of intended message GIM satisfies the requisite intended message QIM

extracted from the user query.
A six degree relevance measurement for RIM is computed based on this hier-

archy. When GIM matches QIM , little perceptual effort is required for the user
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Fig. 4: Intended Message Category Similarity

to get the message information he or she wants; this infographic is deemed fully
relevant to the query in terms of message relevance. However, when GIM differs
from QIM , the amount of perceptual effort that the user must expend to sat-
isfy his information need depends on GIM . By moving up or down the intended
message hierarchy from QIM → GIM , QIM is relaxed to match different GIM

with different degrees of penalties for the relaxation. The greater the amount
of relaxation involved, the less message-relevant the infographic is to the query,
and the more points penalized for message relevance.

At the top of the hierarchy is the General intended message category, which
captures the least information message-wise. Message categories lower in the
hierarchy contain more specific information. When QIM is lower in the hierarchy
than GIM , QIM requires more specific information than provided by GIM . By

relaxing QIM
up−→ GIM , perceptual effort is needed for the user to get the desired

information; this infographic will be penalized for not having specific enough
information. For example, consider two graphics, one whose intended message
is the Rank of France with respect to other European countries in terms of
cultural opportunities (and thus France is highlighted or salient in the graphic)
and a second graphic whose intended message is just a ranking (category Rank-
all) of all European countries in terms of cultural opportunities. If the user’s
query requests the rank of France with respect to other countries, then the first
graphic matches the user’s information need whereas the second graphic requires

a relaxation of message category from (QIM = Rank)
up−→ (GIM = Rank-all); in

this latter case, user effort is required to search for France among the countries
listed and thus the second infographic is penalized for message relevance.

Limited space prevents further detail about the relaxation process.

4 Experimental Results and Discussion

4.1 Data Collection

A human subject experiment was performed to collect a set of 152 full sentence
user queries from five domains. We used the collected queries to search on popular
commercial image search engines to get more infographics from the same domain.
This produced 257 infographics that are in the domain of the collected queries.

Each query-infographic pair was assigned a relevance score on a scale of 0-3
by an undergraduate researcher. A query-infographic pair was assigned 3 points
if the infographic was considered highly relevant to the query and 0 points if
it was irrelevant. Infographics that were somewhat relevant to the query were
assigned 1 or 2 points, depending on the judged degree of relevance.
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Query Approach Baseline Model-1: Model-2: Model-3:
Structural Message Structural

and Message

Learned Model
exact match 0.3245 0.3766 0.3568 0.4168

graph expansion 0.3905 0.4280 0.4191 0.4520

Hand Labeled
exact match 0.3245 0.4348 0.3881 0.4576

graph expansion 0.3905 0.4782 0.4433 0.4866

Table 1: NDCG@10 Results

4.2 Experimental Results

In order to evaluate our methodology, we performed experiments in which we
averaged together the results of 10 runs, with the Bootstrapping method [26] (a
recommended evaluation method for small data sets) used to randomly select
training and testing sets of queries. Normalized Discounted Cumulative Gain
(NDCG) [17] is used to evaluate the retrieval result. It is between 0 and 1 and
measures how well the rank-order of the graphs retrieved by our method agrees
with the rank order of the graphs identified as relevant by our evaluator. We use
a Student’s t-test for computing significance.

The third column of Table 1 gives the NDCG@10 results for the baseline
and the next three columns give the results for our three models (structural,
message, and structural+message). The first two rows of Table 1 show results
when the learned models from our previous work [19, 20] are used to hypothesize
requisite structural and message content from the user queries; since the learned
models are not perfect, the last two rows of Table 1 show results when hand-
labelled data is used.1 Furthermore, the first and third rows show results when
textual relevance is computed using exact match of query words with graph
words, whereas the second and fourth rows give results when query words are
matched with words in the expansion of the graph text via Wikimantic.

The experimental results show that utilizing structural relevance (Model-1)
and utilizing message relevance (Model-2) each provide significantly better re-
sults than the baseline approach (p=0.001). Furthermore, the combination of
structural and message relevance improves upon either alone (p=0.0005). The
results also show that Wikimantic graph expansion improves the retrieval per-
formance consistently throughout all of the approaches. Furthermore, the re-
sults using hand-labelled data are considerably better than the results using
the learned models from our previous work to extract structural and message
content from user queries, thereby indicating that improvement in these learned
models should produce better retrieval results.

5 Related Work

Most infographic retrieval systems, such as SpringerImages and Zan-
ran (http://www.springerimages.com, http://www.zanran.com), are based on
graphics’ textual annotations as in image retrieval [14], such as the graphics’

1 For the baseline method, the results are the same since structural and message
information is not considered.
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names and surrounding text. There has been previous work on semi-structured
data retrieval, such as xml data, that first measures the relevance of each semi-
structured data element separately, and then combines the relevance measure-
ments to form the overall measurement [15].

In this paper, we focus on natural language queries since they allow users
to express their specific information need more clearly than keywords [19, 24, 3].
Previous work on verbose and natural language queries used probabilistic models
and natural language processing techniques [2, 21] to identify the key content in
such queries. Research on retrieval of structured data, such as linked data and
ontologies, also relies on the syntax and semantics of natural language queries [8].
However, attributes and relationships in the data are explicitly given in the
ontologies, and the queries specify the desired attribute and/or relationship. In
our work, the retrieved unit is a graphic as opposed to the value of an attribute,
and extracting structural and message content from a query is more complex.

6 Conclusion and Future Work

This paper has presented a novel methodology for retrieving information graphics
relevant to user queries; it takes into account a graphic’s structural content
and the graphic’s high-level intended message. Our experimental results show
that our methodology improves significantly over a baseline method that treats
graphics and queries as single bags of words. To our knowledge, our work is the
first to investigate the use of structural and message information in the retrieval
of infographics. We are currently extending the variety of relevance features and
exploring widely used learning-to-rank algorithms to achieve higher retrieval
performance. We will also take into account the text surrounding the graphic
and we will explore question-answering from relevant graphics.
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