
Finding Relevant Information of Certain Types from
Enterprise Data

Xitong Liu
Dept of Electrical and Computer Engineering

University of Delaware, DE, USA
xliu@ece.udel.edu

Hui Fang
Dept of Electrical and Computer Engineering

University of Delaware, DE, USA
hfang@ece.udel.edu

Cong-Lei Yao
HP Labs, China

conglei.yao@hp.com

Min Wang
HP Labs, China

min.wang6@hp.com

ABSTRACT
Search over enterprise data is essential to every aspect of
an enterprise because it helps users fulfill their information
needs. Similar to Web search, most queries in enterprise
search are keyword queries. However, enterprise search is a
unique research problem because, compared with the data
in traditional IR applications (e.g., text data), enterprise
data includes information stored in different formats. In
particular, enterprise data include both unstructured and
structured information, and all the data center around a
particular enterprise. As a result, the relevant information
from these two data sources could be complementary to each
other. Intuitively, such integrated data could be exploited
to improve the enterprise search quality. Despite its impor-
tance, this problem has received little attention so far. In
this paper, we demonstrate the feasibility of leveraging the
integrated information in enterprise data to improve search
quality through a case study, i.e., finding relevant informa-
tion of certain types from enterprise data. Enterprise search
users often look for different types of relevant information
other than documents, e.g., the contact information of per-
sons working on a product. When formulating a keyword
query, search users may specify both content requirements,
i.e., what kind of information is relevant, and type require-
ments, i.e., what type of information is relevant. Thus, the
goal is to find information relevant to both requirements
specified in the query. Specifically, we formulate the problem
as keyword search over structured or semistructured data,
and then propose to leverage the complementary unstruc-
tured information in the enterprise data to solve the problem.
Experiment results over real world enterprise data and sim-
ulated data show that the proposed methods can effectively
exploit the unstructured information to find relevant infor-
mation of certain types from structured and semistructured
information in enterprise data.
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1. INTRODUCTION
Enterprise search allows users to access information from

enterprise data to fulfill their information needs such as in-
formation seeking and decision making. For example, a cus-
tomer may need to search for specifications of certain prod-
ucts, and a product manager may need to find persons who
have expertise in certain areas. Clearly, enterprise search
quality is essential to an enterprise’s productivity and cus-
tomer satisfaction.

Similar to Web search and traditional ad hoc search, queries
of enterprise search are often keyword queries. However, en-
terprise search is different in many aspects [22]. One of the
most unique characteristics is that enterprise data include
not only unstructured information such as documents but
also structured or semistructured information such as rela-
tional databases and RDF data. These two types of informa-
tion are complementary to each other since all the informa-
tion centers around the enterprise. In particular, structured
or semistructured information has schema which ties a piece
of information with its meaning, while unstructured informa-
tion often contains more detailed information described in
free text. The different characteristics of these two types of
information make it possible to leverage one type of informa-
tion to help search over the other. Intuitively, the schema
of the structured databases or RDF data could be useful
for providing domain knowledge in keyword search over un-
structured information while the rich content information
in free text could be useful for query understanding and
term weighting in keyword search over structured informa-
tion. There have been some previous studies on enterprise
search such as document search and expert finding [13, 35,
5, 11], but few of them studied how to leverage structured or
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semistructured information to improve search quality over
unstructured information or vice versa.

In this paper, we study a research problem related to en-
terprise search, i.e., finding relevant information of certain
types from enterprise data. The problem is chosen because
it can demonstrate the feasibility of leveraging unstructured
information to improve search over structured or semistruc-
tured data. Instead of finding relevant documents, enter-
prise search users often want to search for other types of
relevant information. When searching for relevant informa-
tion, a user may specify not only a content requirement, i.e.,
what kind of information is relevant, but also a type require-
ment, i.e., what type of information is a user looking for. For
example, a user may submit query “John Smith contact in-
formation” to find the contact information of John Smith.
In this query, “John Smith” is the content requirement while
“contact information” is the type requirement. Clearly, the
retrieved results should be the contact information of John
Smith such as his emails and phone numbers rather than a
ranked list of relevant documents. Despite its importance,
the problem of finding relevant information of certain types
has not received much attention in IR until recently. Re-
lated efforts mainly focused on finding a particular type of
information such as experts [8] and related entities [10]. It
remains unclear how to solve the problem in a more general
way.

We formulate the problem as finding the information that
is relevant to both content and type requirements specified
in keyword queries from semistructured or structured data.
The first challenge is to separate the type requirement from
content requirement in a keyword query. We propose to uti-
lize term semantic similarities computed from unstructured
data and the difference of term distributions in unstructured
data and structured data to identify type requirements spec-
ified in keyword queries. The second challenge is to rank
results based on their relevance to both requirements. We
discuss how to compute the relevance scores for each re-
quirement and combine the relevance scores for the two re-
quirements then. Our main contribution is that we proposed
methods that can utilize the unique characteristic of enter-
prise data, i.e., the complementary information in the struc-
tured databases and unstructured documents, and use the
integrated information to improve the accuracy of enterprise
search.

Figure 1 illustrates the main ideas. Give a keyword query,
we first identify both the content and type requirements by
utilizing the unstructured information. After that, we con-
duct search over the (semi-)structured information based on
both requirements. Note that the semistructured or struc-
tured information could be either manually created or auto-
matically extracted from unstructured data.

We evaluate the proposed methods over a real-world enter-
prise data collection and a simulated collection constructed
from standard collections [1, 2]. Both of them contains un-
structured documents and structured information such as
relational databases or RDF data. Experiment results show
that the proposed methods can effectively utilize the inte-
grated enterprise data to find relevant information satisfying
both content and type requirements. Our work is the first
step towards the goal of leveraging the integrated informa-
tion to improve enterprise search quality.

The rest of the paper is organized as follows. We dis-
cuss the related work in Section 2. Section 3 describes the

Figure 1: Overview of finding relevant information
of certain types from enterprise data.

problem formulation. We discuss how to identify content
requirement and type requirement in Section 4 and how to
rank results based on both requirements in Section 5. Exper-
iment design and results are discussed in Section 6. Finally,
we conclude in Section 7.

2. RELATED WORK
Enterprise search is important, but it has not received

much attention in the research community until recently.
One study suggests that poor search quality within enter-
prises often causes significant loss of opportunities and pro-
ductivities [18]. A more recent study takes one step further
and discusses several challenges in enterprise search [22], un-
fortunately, no solution has been presented there. Motivated
by the importance of the enterprise search, the enterprise
track in TREC has been launched since 2005 [13, 35, 5,
11]. Most research efforts focus on some particular enter-
prise search problems such as document search [26, 30, 6,
33, 38], expert finding [8, 7, 34, 12, 9], metadata extrac-
tion [14] and user behavior in enterprise search [19, 25]. To
our best knowledge, few studies looked into how to better
leverage the integrated data to improve the enterprise search
quality.

One limitation of traditional IR systems is that retrieved
information items are limited to documents. However, users
may be interested in other types of relevant information such
as persons or product prices. Many recent efforts attempted
to address this limitation. For example, commercial Web
search engines started to direct queries to different vertical
search engines based on user intentions and then aggregate
the vertical search results [4]. Dalvi et. al. [15] proposed to
develop a web of concepts and discussed the importance of
concept search, which is in the similar line as the problem
we studied in this paper. This work mainly discussed the
challenges in Web domain while our work focuses on solving
the problem in enterprise search. Li [29] has studied how
to better understand the semantic structure of noun phrase
queries by formulating them as intent heads and intend mod-
ifiers which correspond to type and content requirements in
our paper. However, the work does not move further to uti-

48



lize the semantic structure of query to build a more effective
retrieve model. Other research efforts in IR include related
entity finding [10] and expert finding [8, 7, 34, 12, 9]. These
studies mainly focused on searching over unstructured data
for a particular type of information such as experts [8] or
related entities [10]. On the contrary, we focus on searching
over structured or semistructured data for a broad range of
information type specified in keyword queries.

Our work is closely related to semantic data search and
keyword search over semistructured or structured data. Se-
mantic data search mainly deals with the retrieval of se-
mantic data [21], but most existing studies focused on the
Web domain. DBXplorer [3] and DISCOVER [24] join tu-
ples with primary-foreign key relation from multiple tables
as tuple trees and rank them solely by the number of joins
in the trees. EASE [28] follows the same idea to favor the
compact joining graphs by utilizing the proximity between
the keyword nodes to model the compactness of the join-
ing graph. Hristidis et al. [23] adopt pivoted normalization
methods to rank tuple trees. Koutrika et al. [27] use the
IR-standard ranking method to compute the tf · idf weight
of any query term in search entity. However, most of them
assume that keyword queries only contain content require-
ment. None of them studied how to return results based
on both content and type requirements and how to leverage
unstructured information as what we do in this paper.

Compared with existing work, our main contribution is to
leverage the unique characteristic of enterprise data, i.e., the
integration of unstructured and structured information, to
improve the search quality of enterprise search. In particu-
lar, we propose methods that can exploit unstructured data
to identify the type and content requirements in keyword
queries and to bridge the vocabulary gap between query and
the structured data. Moreover, to our best knowledge, our
work is the first one that studies the problem of finding rel-
evant information of the certain type from structured and
semistructured data for enterprise search.

3. PROBLEM FORMULATION
Enterprise search users often look for relevant information

other than documents. When formulating a keyword query,
search users may specify not only what kind of information
is relevant, i.e., content requirements, but also what type
of information is desirable, i.e., type requirements. Without
loss of generality, we assume that a query term describes
either content or type requirement and we can represent
a keyword query as Q = QC

S
QT , where QC is the set

of query terms describing the content requirement and QT

is the set of query terms describing the type requirement.
Given a keyword query and an enterprise data collection, our
goal is to retrieve information satisfying both requirements
from the collection.

An enterprise data collection contains unstructured, semi-
structured as well as structured information. Semistruc-
tured and structured data always associate the type or se-
mantic meaning information with a piece of information.
For example, the schema of a relational database specify the
type of each cell in the database, and the RDF predicates or
XML tags specify the semantic meaning of RDF triples or
XML elements. On the contrary, unstructured data do not
directly provide any information about the type or seman-
tic meanings. A commonly used strategy for dealing with
search for information of certain types over unstructured in-

formation is to apply natural language processing techniques
such as NER to extract information of certain types from the
unstructured information [10], and then store the extracted
semantic information in structured or semi-structured for-
mat. Therefore, the problem can be simplified as finding
relevant information of certain types from semistructured
or structured collections for keyword queries.

In a structured collection such as a relational database,
there are multiple tables and each of them contains a set of
attributes. For example, every tuple in the table corresponds
to an entity, and every column corresponds to an attribute of
the entity. Given the schema of a table, we know the type for
each attribute based on the attribute name. Every element
in the table contains the value of an attribute (i.e., type) for
the corresponding entity. As an example, Figure 2 shows an
relational database instance with two tables. The Employee

table stores the information about the employees, and it has
nine attributes: Employee ID, Name, Department, Email,

Phone, Education, Starting Date, Salary and Job De-

scription). The Department table stores the information
about the departments, and it has five attributes: Depart-

ment ID, Name, Address, Phone and Contact Person. Al-
though semi-structured data do not have a strict schema as
structured data, predicates or tag names often provide the
meaning for corresponding information items in the collec-
tion. For example, besides the relational database, Figure 2
also shows two XML documents, one of which stores the
employee data such as name, homepage and the other stores
the department data such as office location, director.

An alternative way of looking at the structured or semistruc-
tured data is to represent each information item as a two di-
mensional vector, where one dimension represents the type
and the other represents the value. Thus, the problem of
finding relevant information of certain type can be reformu-
lated as ranking all the information items in the collections
based on their relevance to the query Q = QC

S
QT . Let us

consider the example shown in Figure 2 again. Given query
“John Smith contact information”, the system is expected
to return his email address and phone number stored in the
Employee table, the address and phone number stored in
the Department table, plus the homepage and office location
stored in the two XML documents. Note that the relevant
information is scattered in multiple tables and XML docu-
ments.

It is clear that there are two challenges we need to address.
The first one is to separate content and type requirements
in a keyword query, and the second one is to rank informa-
tion based on their relevance to both requirements. We will
discuss how to utilize the integrated information of enter-
prise data to address these two challenges in the next two
sections.

4. REQUIREMENTS IDENTIFICATION
Search users may specify both type requirement, i.e., what

type of information is desirable, and content requirement,
i.e., what kind of information is relevant. Note that, in this
paper, we assume that we know whether a query has type re-
quirements and consider only those with both requirements.
Deciding whether a query contains type requirements is out
of the scope of this paper and could be solve using classifi-
cation methods, which we plan to study in our future work.
We now discuss how to identify these two requirements in a
keyword query.

49



Employee ID Name Department Email Phone Education Starting Date Salary Job Description 

1232 John Gates 11 gates@foo.com x-3229 M.S. 2003-05-02 9000 Manager 

1339 John Smith 11 smith@foo.com x-3282 M.S. 2004-07-07 8500 Deputy Manager 

1024 Brad Jobs 36 jobs@foo.com x-1917 Ph.D. 2004-08-14 8000 Developer 

Department ID Name Address Phone Contact Person 

11 HR 802 Alpha Dr x-3229 John Gates 

36 R&D 120 Alpha Dr x-1988 Mark Bidden 

52 QA 912 Alpha Dr x-5120 Tim Copper 

Employee 

Department 
Query 

Relevant Results 
Email: smith@foo.com 
Phone: x-3282 
Department Address: 802 Alpha Dr 
Department Phone: x-3229 
Homepage: http://foo.com/~smith 
Office Location: San Francisco, CA 

Relational Database 

John Smith     contact information 

Qc QT 

XML Data 

Enterprise Data 

Figure 2: An example of finding relevant information of certain types from enterprise data.

4.1 Similarity based method
Intuitively, terms describing content requirement are se-

mantically related, and those describing type requirement
are semantically related. For example, consider query “John
Smith contact information”, terms “John Smith” are seman-
tically related while “contact information” are semantically
related. It is clear that the terms describing these two re-
quirements naturally form two clusters. Thus, to identify
requirements, we need to cluster query terms into two clus-
ters and then assign one cluster as type requirement and the
other as content requirement.

One deciding factor in clustering algorithm is the term
similarity function. Fortunately, in addition to the struc-
tured databases, we also have a complementary collection of
unstructured documents in enterprise data. Thus, we pro-
pose to utilize the unstructured information to compute sim-
ilarities among query terms based on the assumption that
the co-occurrences of terms indicate their semantic relations.
The term similarity can be computed based on mutual in-
formation as follows [37]:

sim(t, u) =
X

Occt∈{0,1}
Occu∈{0,1}

p(Occt, Occu) log
p(Occt, Occu)

P (Occt)P (Occu)
(1)

where Occt and Occu are two binary random variables
which represents the presence or absence of two terms t and
u.

Note that, unlike previous studies [16], the data collection
used for computing term similarities and the collection used
for searching are quite different. If these two collections are
quite different, this method would not work because related
terms on one domain may not be related on another. For
example, “jaguar” and “drive” may be related on a set of
documents about cars while they would not be related in a
document collection about animals. Fortunately, since the
two collections we used in this paper, i.e., structured in-
formation and unstructured information of one enterprise,
are complementary and both about the enterprise, related
terms discovered from one data set are likely to be related
on another data set as well.

Given the term similarity function, we then cluster query
term using hierarchical agglomerative clustering [31], which
starts by treating each term in the query as one cluster,
merges two clusters with highest mutual information at each
step and stops when there are only two clusters left. Note
that each query is treated as bag of words and terms are
assumed to be independent with each other. We plan to
consider the order of terms in our future work.

The remaining problem is to identify which term cluster
is the content requirement and which is the type require-
ment. Since the database schema contains the table names
as well as attributes names, they provide descriptions of dif-
ferent types. Thus, given a database, we can create a profile
about types according to its schema by merging all the ta-
ble names and attribute names together as one document.
We then compute the similarity between our profile about
type and each of the clusters. The similarity is computed
by taking the average of term semantic similarity as shown
in Equation (1). The cluster with higher similarity would
be identified as the type requirement while the other corre-
sponds to the content requirement. Similar approaches can
also be applied to RDF or XML data collection.

4.2 Language Modeling based Method
We assume that each term in the query Q is independent

and terms in content requirement QC and type requirement
QT are generated from two different unigram language mod-
els θC and θT , respectively. The language models can be
estimated using maximum likelihood estimation over the en-
terprise collection. In particular, we estimate p(wi|θT ) over
all the attributes of semistructured or structured data while
we compute p(wi|θC) over the unstructured data.

Given a query Q = {q1, q2, . . . , qi, . . . , qn}, we use Rlm(qi) ∈
{0, 1} to denote the requirements identification result for
each term using language modeling approach, where Rlm(qi) =
0 means qi is identified as content requirement and Rlm(qi) =
1 means qi is identified as type requirement. Intuitively, the
requirements identification for term qi can be formulated
as comparing the language modeling generation probability
directly:
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Rlm(qi) =

j
0 if p(wi|θC) > p(wi|θT )
1 if p(wi|θC) ≤ p(wi|θT )

(2)

The idea behind this method is that we assume terms
from one requirement has higher probability to be gener-
ated from the associated language model than the other [32].
However, results show that this method fails to work ef-
fectively, since it ignores the similarity between terms. In
order to overcome this limitation, we propose to use the
language modeling generation probability as prior to adjust
the results of similarity-based methods. Similarly, we use
Rsim(qi) ∈ {0, 1} to denote the identification results of sim-
ilarity based method. First, we use the results of language
modeling approach to validate the results of similarity-based
method for each term:

Rsim(qi) =

j
Rsim(qi) if Rsim(qi) = Rlm(qi)

Radjust(qi) if Rsim(qi) �= Rlm(qi)
(3)

The reason of the validation approach is that we think
for each term if the identification results from two methods
are consistent, it is a strong proof that the term is correctly
identified. For terms whose results from two methods differ,
we will adjust the identification results to Radjust(qi), which
can be formulated as:

Radjust(qi) =

(
Rsim(qi) if

sim(qi ,Oqi
)

sim(qi ,Cqi
)

> priorlm(qi)

1 − Rsim(qi) otherwise
(4)

where:

priorlm(qi) =

(
p(qi|θT )
p(qi|θC )

if Rsim(qi) = 0
p(qi|θC )
p(qi|θT )

if Rsim(qi) = 1
(5)

and Oqi = {qj |qj ∈ Q, i �= j, Rsim(qi) = Rsim(qj)} is a set
of terms which share the same semantic based identification
results with qi and Cqi = {qj |qj ∈ Q, Rsim(qi) �= Rsim(qj)}
is a set of terms whose identification results differ from that
of qi. Here

sim(qi ,Oqi
)

sim(qi ,Cqi
)

is the probability that qi is correctly

identified by the similarity based method and priorlm(qi) is
the prior probability that qi is incorrectly identified based
on the knowledge of language modeling. Based on the com-
parison of two probabilities, we decide whether we should
keep the similarity based identification result or adjust the
result to another requirement.

5. RANKING METHODS
After identifying two requirements in a given keyword

query, we may formulate a query as Q = QC

S
QT , where

QC is the content requirement and QT is the type require-
ment. The problem is to rank information items such as all
the table elements in the database, all the XML elements or
all RDF nodes based on their relevance with respect to the
query. Recall that every information item in the structured
or semistructured information can be represented as a two
dimensional tuple, where one dimension corresponds to its
type and the other corresponds to its value. Thus, the prob-
lem boils down to model the relevance for each two dimen-
sional information item I with respect to Q = QC

S
QT ,

which is referred to as 2-dimensional search. The general
relevance estimation approach can be formulated as:

Score(Q, I) = α ·Score(QT , I)+(1−α) ·Score(QC, I) (6)

α ∈ [0, 1] controls the influence of these two scores. The es-
timation of Score(QT , I) and Score(QC , I) varies on struc-
tured and semi-structured data due to the different data
characteristics.

5.1 Structured Data
In the relational databases, QC is used to rank tuples, i.e.,

rows in the table, while QT is used to rank attributes, i.e.,
columns in the table. Thus, we need to assign a relevance
score to each of the table elements and rank them according
to their relevance scores.

Let us start with a simple case when there is only one ta-
ble in the database. For table T , we denote its m attributes
as AST = {A1

T ,A2
T , ...,Am

T }. The table has n tuples which
are denoted as T = {T1, T2, . . . , Tn}, each tuple represents
one entity with M attribute values and therefore it can be
denoted as Ti = {T 1

i , T 2
i , . . . , T m

i } where T j
i denotes the jth

attribute value of the ith tuple. In order to estimate the rel-
evance score of a table element T j

i , we can utilize its context

information including Ti and Aj
T . Specifically, Ti is the tu-

ple which contains the table element and the values of other
attributes in the tuple provide context information that can
be exploited to infer the relevance of the tuple with respect
to the content requirement, i.e., QC . Aj

T is the attribute
name of the table element, and it can provide information
related to the type requirement, i.e., QT . Therefore, we pro-
pose to compute the relevance score of table element T j

i as
follows:

Score(Q, T j
i ) = α · Score(QT , T j

i ) + (1 − α) · Score(QC , T j
i )

= α · Score(QT ,Aj
T ) + (1 − α) · Score(QC , Ti) (7)

where Score(QT ,Aj
T ) is the relevance score between the

type requirement QT and attribute name Aj
T , Score(QC , Ti)

is the relevance score between the content requirement QC

and the tuple Ti. When α = 0, only the relevance score for
content requirement contributes to the final relevance score,
which means that every attribute of a tuple would receive
the same relevance score. When α = 1, only the relevance
score for type requirement matters, which means that all the
information with the certain type would be relevant.

Let’s consider the example in Figure 2. We assume there
is only one Employee table in the database. Score(QT ,Aj

T )
will calculate the relevance score between the type require-
ment“contact information”and all the nine attribute names,
and it’s expected to give higher rank score to attribute Email
and Phone than others. Score(QC , Ti) will calculate the rel-
evance score between the content requirement “John Smith”
and all the three tuples, and it’s expected to give higher rank
score to tuple with Employee ID 1339 than others. By com-
bining the results of two ranking scores using Equation (7),
we can get the email and phone (i.e. smith@foo.com, x-3282)
of John Smith at the top of the ranked list of attribute val-
ues.

However, tables in a real database are more complicated.
In particular, the information related to an entity might be
scattered in multiple tables due to normalization [20]. In
the example shown in Figure 2, the address of an employee
is stored in the Department table rather than the Employee

table where “John Smith” occurs. Fortunately, these two
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table can be joined based on the foreign/primary key rela-
tionship. For example, Department is a foreign key from the
Employee table to the Department table. After joining these
two tables, we would be able to know that the attributes in
the Department table can provide additional information to
the tuples in the Employee table.

It is clear that, given a tuple in a table, we can find ad-
ditional information stored in other tables that can be con-
nected to the table through join operations. Let N (T ) de-
note a set of all the tables that can be either directly or
indirectly connected to the table T through join operations.
Thus, in order to exploit the additional information, we pro-
pose to generalize the ranking function as follows:

Score(Q, T j
i ) = α · Score(QT ,Aj

T )

+ (1 − α) ·
X

T ′∈{Ti}∪N(T )

Score(QC , T
′
k) · Proximity(T

′
, Ti) (8)

where T ′
k corresponds to a tuple in table T ′ that is connected

to the tuple Ti in table T , and T ′
k = Ti when T = T ′.

Proximity(T ′, Ti) denotes the proximity between the two
tables. It intends to assign prior weights to the attributes in
connected tables. The intuition is that we need to give more
weights to the information stored in a table that is closer to
the target table. The closeness between tables is defined
by the number of foreign key links used to connect these
two tables. There could be different ways of defining such a
proximity function, and in this paper, we use the following
simple strategy:

Proximity(T1, T2) =
1

1 + nl(T1, T2)

where nl(T1, T2) is the number of foreign key links between
table T1 and T2. If T1 is the same as T2, nl(T1, T2) = 0.
The estimation follows the intuition that the farther a ta-
ble is from the target table Ti, the less confidence we have
to conclude that the additional information in the table is
relevant to the one in the target table. Therefore, for the
example shown in Figure 2, we will give higher weight to the
attributes in table Employee (e.g. Email, Phone) and lower
weight to the attribute in table Department (e.g. Address).

We now describe how we estimate the two score compo-
nents: Score(QC , Ti) and Score(QT ,Aj

T ). Since QC and

QT are essentially keyword queries, and Ti and Aj
T can be

treated as unstructured document, we may use any retrieval
functions to compute them. In this paper, we use F2-EXP,
an axiomatic retrieval function [16] because previous study
shows that the function is robust and insensitive to param-
eter settings and a fixed parameter setting can reach com-
parable performance with other state of the art retrieval
functions.

However, the users may not be aware of the schema of
the enterprise database, thus if they come up with the type
requirement of the query, it may not have any overlapped
terms with the target attribute names in the database. In
the example shown in Figure 2, the relevant attributes Email,
Phone and Address do not have any overlapped term with
the type requirement “contact information”. The attribute
Contact Person has one overlapped term, but it’s not a rel-
evant attribute with regard to the query. We call this the
vocabulary gap between database and user queries. There-
fore, using ordinary keyword search retrieval models will
fail definitely because these models depends on the over-

Pride and 
Prejudice 

Jane 
Austen 

author 

country 

type 

publication date 

Sense and 
Sensibility 

author 
type 

publication date birth date 

1/28,1813 
1811 

12/16,1775 

type 

Figure 3: An example RDF graph.

lapped terms between the query and document. To bridge
the vocabulary gap, we follow the existing work on semantic
term matching [17] and utilize the unstructured documents
collection to get the K most semantic similar terms of the
original type requirement based on the mutual information
estimated in Equation (1). This works under the assump-
tion that the type requirement and its target attribute have
high semantic similarity. We then expand the original type
requirement QT with the K weighted terms into QTEXP ,
which is used to replace QT to estimate the relevance score.

5.2 Semi-Structured Data
Due to space limit, here we only take RDF as example

of semi-structured data. Our method is also applicable to
other semi-structured data like XML. In RDF graph, each
entity is represented as one node, and one entity may have
several attributes. Each attribute is a pair of attribute name
and attribute value. In the terminology of RDF, each en-
tity and one of its attribute is expressed in one statement
called triple, in which the entity is subject, attribute name
is predicate and attribute value is object. Consider the ex-
ample shown in Figure 3, there are three entities in total,
and entity “Pride and Prejudice” has three attributes (i.e.
type, author and publication date). Intuitively, the type
attribute describes the type information of the entity and
the other attributes as well as entity name describes all the
other information related to the entity. Therefore, for each
entity Ei, we take the type attribute as the type aspect ET

i

and all the other attributes as content aspect EC
i and even-

tually each entity can be expressed as 2-dimensional vector
Ei = {EC

i , ET
i }. For example, consider the entity Ei =

“Pride and Prejudice” in Figure 3, EC
i = “Pride and Preju-

dice, 1/28, 1983, Jane Austen”. Currently we only consider
the type attributes with directly connections to the entities.
However, they may also inherit type attributes from oth-
ers through hierarchical relations. We will take them into
consideration in our future work.

To retrieve entities from RDF graph, we need to estimate
the relevance between Ei and both the content requirement
QC and type requirement QT . Similar to Equation (7), the
relevance score can be formulated as:

Score(Q, Ei) = α · Score(QT , Ei) + (1 − α) · Score(QC , Ei)

= α · Score(QT , E
T
i ) + (1 − α) · Score(QC , E

C
i ) (9)

Note that for one entity not all of the attributes values
are plain text. Some of the attribute values may also be
other entities in the graph, therefore entities are connected
with each other through such attributes as links. In the
example shown in Figure 3 both the entity “Pride and Prej-
udice” and “Sense and Sensibility” share the same attribute
“author” with value “Jane Austen” which is also an entity.
These three entities are connected through the directed arcs.
Therefore, the related information for one entity is scattered
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into several nodes, similar to the normalization [20] in rela-
tional database. Intuitively, to get a more accurate esti-
mation of the content requirement score of each entity, we
should not only consider the node itself, but also its neigh-
bors. By leveraging the graph information, after we have
done the initial estimation of Score(QC , EC

i ), we update it
in the following way:

Score(QC , EC
i ) = (1 − β)Score(QC , EC

i )

+ β
1

|N (Ei)|
X

j∈N (Ei)

Score(QC , EC
j ) (10)

where N (Ei) is the set of all the neighbor nodes of entity Ei,
|N (Ei)| is the size of N (Ei), β ∈ [0, 1] controls the influence
of the scores from neighbor nodes.

We now describe how we estimate the two score com-
ponents: Score(QC , EC

i ) and Score(QT , ET
i ). Similar to

the score component estimation over structured data as de-
scribed in end of Section 5.1, we may also use any retrieval
functions to do so by treating QC and QT as keyword queries
and EC

i and ET
i as unstructured documents, respectively.

Again, considering the vocabulary gap between the type re-
quirement and the attribute names in the RDF data, we
expand the original type requirement QT with the K most
semantic similar terms into QTEXP based on the mutual
information by utilizing the unstructured documents collec-
tion.

6. EXPERIMENTS
We describe the experiment design and results in this sec-

tion. We choose two data sets for evaluation: one is a real
world enterprise data set, and the other one is a simulated
data set constructed using standard collections. Over each
data set, we conduct two sets of experiments to evaluate
the effectiveness of requirement identification methods and
ranking methods.

6.1 Real-world Enterprise Data Set
We now describe the enterprise data set used in this pa-

per. The data set contains both unstructured and structured
information about HP, which is referred to as REAL.

We first study a query log with queries submitted to the
HP web search engine. The log includes 1,060,792 queries
in total. The average number of terms in each query is 2.2,
which is similar to the observation in web search [36]. After
analyzing the query log, we find that the majority of the
queries are about product search. Thus, the enterprise data
we use for this paper is built around products of HP.

The first part of the data collection includes all the web
pages of HP. There are 477,800 web pages, which leads to
a total size of 18 GB unstructured information. On aver-
age each document has 877 terms. The second part of the
collection includes a relational database with 25 tables that
contain the information about products of HP with a total
size of 39,524 KB structured information. A table could be
either independent or related to other tables. When a table
is related to another table, they could be joined together
based on their foreign/primary keys.

Specifically, there are five types of tables in the database:
product, product series, product marketing subcategory, prod-
uct marketing category and product type. A product belongs
to one product series, a product series belongs to one prod-
uct marketing subcategory, a product subcategory belongs

Methods Equation Prec Recall F1
Similarity (1) 0.752 0.746 0.746
Language Modeling (4) 0.890 0.887 0.887

Table 1: Performance of type requirement identifi-
cation over REAL.

to one product category, and a product category belongs to
one product type. Clearly, these five types form a concept
hierarchy of the products in the databases. The database
contains 3,238 products, 983 product series, 134 product
marketing subcategories, 54 product marketing categories
and 8 product types. Each product table contains informa-
tion about one type of products. Each product type has its
own schema because different types of products may have
different specifications. For example, the specification of a
printer may include resolution while that of a camera may
include storage. Within a product table, each tuple in the
table contains the information of a product with the corre-
sponding type. For instance, every tuple in the printer table
corresponds to a printer.

Note that although the enterprise data we used center
around products, our proposed algorithms are general enough
and can be applicable to any enterprise data.

Based on the analysis over the query log, we find that
23.21% queries have mentioned any attribute in the prod-
uct database, thus these queries have great potential to
benefit from our proposed 2-dimensional search methods.
Within these queries, we manually select a set of 50 queries
which mention both valid product name and attribute in
the database. Clearly, all the 50 queries contain both the
content and type requirement. The search results of the
2-dimensional search need to follow the format below:

<tuple ID, attribute name, attribute value>

Each result is specified by the triple of tuple ID (the primary
key of the tuple), attribute name and attribute value. More-
over, we create a judgment file which assign relevance labels
to table elements for every query by manually retrieving rel-
evant elements from the table. A relevant result should be
an exactly same triple in the judgment file. We use MAP
(Mean Average Precision) over the 50 queries as the main
measurement for the performance. Since each query has 9
relevant results on average, we also use P@10 (Precision at
rank 10). Besides that, the performance measured with R-
precision (R is the number of relevant results for a given
topic) is also reported.

We first compare performance of two requirement identi-
fication methods proposed in Section 4. To evaluate their
performance, we first create judgment files for all the query
set by manually identify both content and type requirements
for each query. Since the query requirement identification
essentially is a classification problem in which each term has
to be classified into two classes: either content requirement
or type requirement, we evaluate the performance by calcu-
late the macro-average of precision, recall and F1 for each
query, and take the average over all the queries then. Table 1
shows the performance of two query requirements identifi-
cation methods over REAL. We can see that both methods
can reach reasonable performance, and the language mod-
eling method can reach better performance than similarity
based method. In the following experiments, we only re-
port the ranking results using the identification results of
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Models Equation MAP P@10 R-Precision
1dBL (11) 0.0637 0.1466 0.0111
2dBL (12) 0.5416 0.5640 0.5111
2dRank (8) 0.6655� 0.7139� 0.6546�

Table 2: Optimal performance comparison on
REAL. � means improvement over 2dBL is statis-
tically significant.
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Figure 4: Precision-recall curves over REAL.

language modeling method because it is expected to lead to
better performance.
Baseline Methods: Our work is related to keyword search
over structured databases. The main difference is that ex-
isting methods only consider ranking joined tuples rather
than table elements [23], i.e., attributes. The first baseline
method we use is one of the state of the art methods for
keyword search over structured databases [23], which is re-
ferred to as 1dBL. In order to apply existing methods to
solve our problem, we can use them to rank tuples and then
return all the attributes in a random order as follows:

Score1dBL(Q, T j
i ) =

1

|N (T )|
X

T ′∈{T}∈N (T )

Score(QC , T ′
k), (11)

where N (T ) denotes a set of all the tables that can be either
directly or indirectly connected to the table T through join
operations and |N (T )| is the size of N (T ).

Moreover, we also implement a stronger baseline where
we combine our proposed method by incorporating the rel-
evance score based on the type requirement into the first
baseline. This method is referred to as 2dBL.

Score2dBL(Q, T j
i ) = α · Score(QTEXP

,Aj
T )

+(1−α) · 1

|N (T )|
X

T ′∈{T}∈N (T )

Score(QC , T ′
k) (12)

In fact, 1dBL is a special case of 2dBL when α is set to 0.
Implementation Details: Our proposed method is re-
ferred to as 2dRank. There are two components in the
proposed ranking function and two baseline methods. (Note
that QT is expanded into QTEXP as described at the end of
Section 5.1.)

Table 2 shows the optimal performance comparison of
the three methods measured with three standard evalua-
tion metrics. In addition, we also plot the precision-recall
curve for all the three models in Figure 4. It is clear that
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Figure 5: Performance sensitivity of 2dBL and
2dRank over REAL.

Identification Methods MAP P@10 R-Precision
Similarity 0.5349 0.5542 0.5170
Language Modeling 0.6655 0.7139 0.6546

Table 3: Optimal performance of ranking based on
different type requirement identification results on
REAL.

the 2dRank performs much better than the two baseline
methods. First, we can see that the 2-dimensional search
can clearly yield to better search performance because it
can return direct answers. Second, the proximity function in
Equation 8 is more effective for 2-dimensional search. More-
over, 1dBL shows that even without incorporating type con-
straints into the ranking, our model can still find some rel-
evant information, although with the penalty of great per-
formance loss.

We have manually checked the results of some queries,
and found that for some queries whose type requirements
have vocabulary gap with the database schema (for example,
one such type requirement is “dimension”), some relevant at-
tributes (“width”, “depth”, “height”) are successfully ranked
at the top. This proves the effectiveness of our method on
bridging the vocabulary gap.

We also examine the performance sensitivity with respect
to the parameter α for 2dBL and 2dRank, as shown in
Figure 5. We find that 2dRank always performs better
than 2dBL at all α levels. When α = 1, both models are
essentially the same as their ranking functions regress to
Score(QT ,Aj

T ). For α set to either 0 or 1, both models
regress to one-dimensional search, therefore the performance
is definitely poor. We also notice that 2dBL reaches the
optimal performance when α = 0.2 and 2dRank reaches
the optimal performance when α = 0.5.

To verify the correlation between the ranking performance
and quality of query requirements identification, we report
the optimal performance of the ranking results using dif-
ferent identification methods in Table 3. Connecting with
the results in Table 1 we find that that better requirements
identification results can lead to better ranking results, as
we expected.

6.2 Simulated Data Set
Enterprise data collection is hard to find since most enter-

prises do not want to publish their internal data for security
concerns. In order to evaluate our proposed methods on
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Methods Equation Prec Recall F1
Similarity (1) 0.771 0.748 0.757
Language Modeling (4) 0.605 0.618 0.601

Table 4: Performance of type requirement identifi-
cation over SIMU.

semistructured data, we constructed a simulated data set
by choosing the Billion Triple Challenge 2009 dataset [1],
which consists of a RDF graph with 1,464,829,200 nodes, as
semi-structured data. Beside this, we choose the Category
B (first 50 million pages of English part) of ClueWeb09 col-
lection [2] as the complementary unstructured data. The
reason that they can serve as complementary to each other
is because both data sets contain entity information over the
web. The data set is referred to as SIMU.

We choose the query set used in the List Search Track of
SemSearch 2011 Challenge [21]. The query set consists of 50
queries which are hand-written by the organizing committee.
The average number of terms in each query is 5.4. Here are
some sample queries:

astronauts who walked on the Moon

nations where Portuguese is an official language

The reason to choose it is because based on the analysis we
find all the queries have mentioned both the content and
type requirements. The judgment file, which is created by
system pooling from the participants’ submissions, is also
provided along with the query set. We report the perfor-
mance evaluation using MAP, P@10 and R-Precision.

We first report the performance of two query requirements
identification methods over SIMU data set in Table 4. Ac-
cording to the results, we find that the language modeling
based method failed to outperform similarity based method.
Results analysis shows that the quality of language modeling
estimation of θC on ClueWeb09 is not as accurate as that
on unstructured part of REAL data set, since ClueWeb09
has a much wider domain coverage. In the following exper-
iments, we only report the ranking results using the identi-
fication results of similarity based method.
Baseline Methods: By treating each entity as an unstruc-
tured document by merging all the attributes, we use the
whole original query directly to retrieve entities from the
data collection directly using the F2-EXP retrieval func-
tion. This method essentially performs 1-dimensional re-
trieval, and is denoted as 1dBL.

Moreover, we implemented another baseline by estimat-
ing Score(QT , ET

i ) and Score(QC , EC
i ) directly using F2-

EXP retrieval function and combine them as shown in Equa-
tion (9). As it is essentially 2-dimensional search, we refer
it as 2dBL.
Implementation Details: Based on 2dBL, we use our
proposed graph based method in Equation (10) to estimate
Score(QC , EC

i ). This method is referred as 2dGraph.
Moreover, based on 2dBL, we also implement another

ranking method by substituting QT with the semantic ex-
panded requirement QTEXP in the estimation of Score(QT , ET

i ).
This method is referred as 2dSem.

Finally, we implement one method by both using the graph
based method to estimate Score(QC , EC

i ) and substituting
QT with QTEXP . It is referred to as 2dGraphSem. The
ranking function is:

Method MAP P@10 R-Precision
1dBL 0.1542 0.1780 0.1553
2dBL 0.1585 0.1920 0.1767
2dSem 0.1675� 0.1900 0.1636
2dGraph 0.1659� 0.2120 0.1835
2dGraphSem 0.1653 0.2180 0.1831

Table 5: Optimal performance comparison on
SIMU. � means improvement over 2dBL is statis-
tically significant.

Identification Methods MAP P@10 R-Precision
Similarity 0.1675 0.1900 0.1636
Language Modeling 0.1612 0.1850 0.1609

Table 6: Optimal performance of ranking based on
different type requirement identification results on
SIMU.

Score(QC , EC
i ) = α · Score(QTEXP

, ET
i )

+ (1 − α) ·
“
(1 − β)Score(QC , EC

i )

+ β
1

|N (Ei)|
X

j∈N(Ei)

Score(QC , EC
j )

”
(13)

The optimal performance for the five methods are shown
in Table 5. By comparing 1dBL with other methods, we find
that 2-dimensional search can always outperforms 1 dimen-
sional search. What’s more, both the graph based estima-
tion of the content requirement score and type requirement
score using semantic expanded queries can lead to better
performance.

Finally, we verify the correlation between the ranking per-
formance and quality of query requirements identification,
by reporting the optimal performance of the ranking results
using different identification methods in Table 6. It shows
again that better requirements identification results can lead
to better ranking results.

7. CONCLUSIONS AND FUTURE WORK
The paper aims to demonstrate the feasibility of leverag-

ing unstructured information to improve the search quality
over structured and semi-structured information. The prob-
lem is to find relevant information of certain types from
structured and semi-structured information. We propose
ranking methods that can utilize unstructured information
to identify type requirement in keyword queries and bridge
the vocabulary gap between the query and the data col-
lection. We conduct experiments over one real world en-
terprise data set and one simulated data set. Experiment
results show that our proposed ranking strategy is effective
to retrieve relevant information with the type specified in
keyword queries.

Enterprise search is important. Our proposed work is
only a small step toward improving enterprise search qual-
ity. There are many interesting future research directions
based on this work. First, it would be interesting to study
how to identify queries with type requirements. Second, we
would like to extend our query requirements identification
model so that it can process queries with multiple content or
type requirements. Third, we plan to study how to retrieve
information of certain types from unstructured information
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directly in our future work. Finally, it would be interesting
to study how to provide seamless support for search over
both unstructured and structured information.
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