
Planning Alternatives for an Intelligent Scheduler

Terrence Harvey and Keith Decker
Computer and Information Sciences

University of Delaware
Newark, DE 19711�

harvey,decker � @cis.udel.edu

Abstract

Manufacturing environments are notoriously dy-
namic. Carefully designed production plans can be
ruined by machine downtime, personnel changes,
or even traffic between you and your supplier. Au-
tomated planning can be very time consuming, and
re-planning to meet contingencies may require time
that isn’t available.
The DECAF agent architecture views the functions
of “planning to achieve objectives” and “schedul-
ing start times of specific actions” as separate but
interrelated agent components that may operate at
different time scales. DECAF has a scheduler that
selects actions at runtime based on a dynamic user-
specified utility function that considers action qual-
ity, cost, and duration. To make good use of the
intelligent scheduler, a planner must provide the
scheduler with appropriate choices.
Every autonomous DECAF agent also includes an
HTN planner that designs plans to make use of
the scheduler’s intelligence. Previous contingency
planners have focused on making a plan responsive
to unmet preconditions or the value of certain run-
time variables. We explore two new kinds of con-
tingency planning: planning to allow the scheduler
to make runtime choices about “pre-planned” alter-
native actions; and planning alternatives to maxi-
mize plan flexibility when the scheduler responds
to a changing user-provided utility function.

1 Introduction
One of the core, definitional aspects of an intelligent software
agent is its ability to flexibly, pro-actively adapt its activi-
ties to achieve its goals [Wooldridge and Jennings, 1995].
AI planning techniques are one way to achieve this goal
achievement flexibility. On the other hand, flexible reactive
adaptation is also a core aspect of intelligent software agents
[Wooldridge and Jennings, 1995], but reactivity is often at
odds with carefully pre-planned behavior. The development
of soft real-time AI scheduling techniques allows for such
situational flexibility. We view planning and scheduling as a
continuum from deciding “how” to do something to deciding

“when” and “in what order”. It makes sense to develop soft-
ware agents with separate planning and scheduling compo-
nents both because of the different algorithms available, and
to explicitly balance the deliberative reasoning an agent does
with respect to action choice and reconsideration in highly
dynamic, volatile environments.

As soon as one comes to this realization, however, it be-
comes clear that the ideal planner for a software agent that has
an intelligent scheduling component is different from those
planners designed to work directly with an execution com-
ponent. Such a planner must plan not only to achieve goals,
but to also provide run-time flexibility in the resulting plan.
This includes well-understood contingencies such as runtime
variables, precondition failures, and interleaved planning and
execution. It also includes some new kinds of contingencies:
“design-to-time” planning to achieve deadlines, and “design-
to-criteria” planning to react to dynamically changing utility
functions.

2 Planning vs. Scheduling in DECAF
For DECAF, the traditional notion of BDI “intentions” as a
representation of a currently chosen course of action is par-
titioned into three deliberative reasoning levels: planning,
scheduling, and execution monitoring. This is done for the
same reasons given by Rao [Rao and Georgeff, 1995]—that
of balancing reconsideration of activities in a dynamic, real-
time environment with taking action [Russell and Wefald,
1991]. Rather than taking the formal BDI model literally,
we develop the deliberative components based on the prac-
tical work on robotics models, where the three tier models
have proven extremely useful [Bonasso et al., 1997]: here,
Planning, Scheduling, and Execution Monitoring. Each level
has a much tighter focus, and can react more quickly to ex-
ternal environment dynamics than the level above it. Most
authors make practical arguments for this architectural con-
struction, as opposed to the philosophical underpinnings of
BDI, although roboticists often point out the multiple feed-
back mechanisms in natural nervous systems.

The DECAF Planner places actions on a Task Queue for
consideration by the Scheduler. In a very simplistic Sched-
uler, the order might be first-come-first-served, resulting in
some very long wait times for tasks. On the other hand, de-
termining an optimal schedule for a set of tasks in a fixed
period of time can be an NP-hard problem. The notion of an



Anytime Agent [Sandholm and Lesser, 1994] is used to allow
agents to search until a specific criteria or quality of answer
is achieved. Real-time performance may also be achieved by
conditional scheduling of agents using sampling [Greenwald
and Dean, 1998]: an initial schedule is laid out and then may
be changed based on the sampling results. A third method for
achieving real-time results is known as Design to Time [Gar-
vey and Lesser, 1991], where the scheduler determines the
exact method to achieve an optimal result in the time given.
The most recent work has resulted in the development of a
sophisticated design-to-criteria action scheduler [Wagner et
al., 1997] that efficiently reasons about action duration, cost,
result quality, and other utility function characteristic trade-
offs. It is for this class of dynamic schedulers that a flexible
planner is necessary.

3 The DECAF Planner
DECAF (Distributed, Environment-Centered Agent Frame-
work) is a toolkit which allows a well-defined software engi-
neering approach to building multi-agent systems. Each au-
tonomous DECAF agent has its own HTN planner. In order
to enter into meaningful negotiations with other agents, each
agent needs to be able to commit to achieve certain objec-
tives1. In DECAF, we also want agents to be able to com-
mit to high level objectives without necessarily committing
to a specific plan to achieve those objectives. For example,
a contractor agent should be able to commit to the objective
of building a house for a certain price, and by a certain time,
without having to specify where materials were going to be
purchased, which subcontractors were going to be hired, and
the number of nails to be used. Making commitments to high
level objectives allows the agent to achieve the objectives in
a manner than is most suitable given the environment at run-
time. If a subcontractor breaks a leg, the contractor agent
can hire a new subcontractor without having to (necessarily)
renegotiate and re-commit.

Input to the Planner is a set of predicate objectives joined
by a quality accumulation function such as AND or OR2. A
plan consists of tasks and actions arranged to achieve the top
level objectives, such as
(AND
(ACHIEVE (MAKE WIDGETS 100 (COST 0 500)(GLOSS HIGH)))
(ACHIEVE (MAKE WIDGETS 2000 (COST 0 400)(GLOSS MEDIUM))))

Actions are leaf nodes in a plan that contain executable code.
Tasks in DECAF are really task decompositions, and contain
no executable code, but designate how information flows in
the plan. Both actions and tasks are written in STRIPS style,
with preconditions and effects. The planner matches the ef-
fect of an action or task against the goal it is trying to achieve.
Predicates are used to describe the preconditions and effects,
and can be constraints or goals depending on whether or not
they are associated with a knowledge or achievement predi-
cate. For example,

(KNOW ?symbol (SYMBOL AMAZON ?symbol))

describes a planning goal; but

1See [Cohen and Levesque, 1990].
2For a description of QAFs in DECAF see [Decker, 1995]

(SYMBOL AMAZON AMZN)

has no performative, and so the planner interprets this as a
constraint that must hold before a task’s effects can be instan-
tiated.

Action and task specifications contain syntactic predicate
descriptions of the parameters and provisions they accept.
Predicates can be arbitrarily named and used without formal
definition, or can be defined in Java class files to have special
executable functions (as in [Wilkins, 1990]). It is the unifi-
cation of such predicates in the descriptions of outcomes and
provisions that allows the planner to plan not only task de-
composition, but information flow as well.

4 Planning to Achieve Objectives
The requirement that agents be able to commit to objectives,
not specific plans to achieve them, motivated three features of
the planner. First, task decompositions are written in terms of
predicate goals. Second, the planner explicitly represents the
goals being addressed at each point in the plan. And third, the
planner stores the entire task network of each plan.

Having task decompositions written in terms of predicate
goals is an important feature of the planning system. Each
task separates a particular goal or set of goals into more spe-
cific goals, that are in turn further decomposed or achieved by
an action. The system plans to achieve the goals at each point
in the plan, without an a priori preference for a particular way
of achieving them.

Planning to achieve predicate goals is useful in a system
where many actions in an agent’s Plan Library have the same
effect. This approach enables the planner to compare all
available means of achieving a task, such as comparing the
expected utility of an action that achieves a complex goal
to the expected utility of a task that decomposes the goal
further. Agents can add to their action/task libraries when
other agents advertise services that are competitive with ex-
isting actions in the agent. Decomposing to specific action
names would make this difficult, since existing decomposi-
tions in the agent would have to be modified. Under the plan-
to-objectives approach, the specification of actions/tasks in
terms of goal predicates facilitates additions to the Plan Li-
brary, since no modifications to existing decompositions are
necessary. This kind of facilitation is important since the DE-
CAF architecture is open and agents can enter or leave the
system at any time.

The second feature of the planner that supports agent com-
mitment to objectives is the explicit representation of goals
at each step in the plan. Because the goals are explicit, the
agent knows at every plan step exactly what its intentions are
at that point. It can then use this information to reason about
its commitments and make decisions about how much more
plan expansion is necessary before committing to an intention
[Rao and Georgeff, 1995; Jennings, 1993].

Third, saving the entire task network of each plan, and the
explicitly represented goals therein, is also necessary for an
agent to be able to reason over time about committing to a
plan or portions of a plan. This requirement results from pos-
sible plan failure or any negotiation of a commitment [Jen-
nings, 1993; Decker and Lesser, 1995]. If the planner back-



tracks from a failure point, it is critical to know at which
points in the plan the agent has committed to an intention
to achieve a goal. Furthermore, having explicit goals stored
in the plan allows the planner to re-plan without starting from
the top objective (this also requires a stored representation
of expected changes to state, which is also maintained along
branches of the plan).

In the case of negotiating or re-negotiating commitments
about a plan, the agent must be able to examine the intentions
(explicit goals) of the plan at each step even after the plan
has been expanded. This requirement was noted by [Young
et al., 1994] for systems that had to reason about dialogue.
In dialogue, as in negotiating about commitment, sometimes
it is necessary to reason not merely about what has been
said/done, but why it was said or done. In this case, hav-
ing stored action/task names would only record the “what”;
recording the explicit goals means that the agent has access
to the “why” as well.

Being able to commit to high-level objectives does not im-
ply an inability to commit to a certain plan. Since the goals
can be very fine-grained, writing task or action specific goals
for a given domain or problem enables the agent to commit
to a fully specified plan, though we feel that this undermines
a purpose for which DECAF was intended, namely achieving
objectives in a dynamic environment.

5 Planning in a Dynamic Environment
One way to handle planning in a dynamic environment is to
interleave planning and execution [Knoblock, 1995]. This
involves developing a plan as far as possible, then halting de-
velopment of the plan and waiting for sensors to instantiate
runtime variables that will influence the development of the
remainder of the plan. For real time applications, this requires
the planner to complete the plan in real time. The DECAF
planner supports this method of interleaved planning and ex-
ecution, but we view planning in real time as a situation to
be avoided when possible. Instead, we would like to plan a
range of alternative paths that allow the scheduler to make the
best of a dynamic situation.

5.1 Contingency Planning
A second way to plan for contingencies in a dynamic envi-
ronment is to enumerate mutually-exclusive possible environ-
ments, create a separate path in the plan for each possibility,
and then determine at runtime which environment is the cur-
rent one. This kind of contingency planning includes CNLP
[Peot and Smith, 1992], and planners with explicit sensing
operations such as SGP [D. Weld and Smith, 1998], Cas-
sandra [Pryor and Collins, 1996], and UWL [Etzioni et al.,
1992]. C-BURIDAN [Draper et al., 1994], which does proba-
bilistic planning and can accommodate noisy sensors, also ex-
pects actions to have mutually exclusive outcomes. The DE-
CAF architecture supports this method of planning for con-
tingencies, but it is not yet implemented in the planner.

5.2 Planning for a Design-to-Criteria Scheduler
A third way to plan for dynamic environments becomes pos-
sible in the presence of an intelligent scheduler. The DECAF

Scheduler currently reasons about a characteristic accumu-
lation function (CAF) that considers real-valued representa-
tions of task cost, quality, and duration. The DECAF agent
planner can choose to provide more than one action to address
the same goal(s) in a plan, and then let the scheduler make the
choice between actions at runtime based on a utility function
and the current environment.

Our planner takes as arguments the agent’s initial objec-
tives and a utility function. This function may differ from
that used by the scheduler, and can consider more parame-
ters than the scheduler’s function3. When called, the planner
first creates the best plan it can based on the utility function,
and the parameters to that function that are stored in each
task. Currently, we store three real-valued parameters for
post-planning use by the scheduler: cost, quality, and dura-
tion.

An arbitrary set of resource parameters
Here is a simple example to motivate the consideration of an
arbitrary set of resources during planning. Consider an agent
that controls the production of widgets. A purchaser is in-
terested in an initial batch of widgets to evaluate the prod-
uct. Price, specifications and completion time are given by
the purchaser; the agent must determine how best to use its
resources to fill the order.

The factory is currently producing widgets, but the product
failure rate is higher than the purchaser’s specs. One option
would be to produce the widgets under the current factory
setup. This option would minimize two costs: the cost of
changes or retooling, and the opportunity cost of lost produc-
tion during downtime. Because price is fixed, profit would
be maximized for this transaction. However, failing to meet
specs could jeopardize future business. To properly consider
this option, the planner must take into account retooling costs,
opportunity costs, and some measure of a task’s effect on fu-
ture business.

A second option would be to retool to meet the failure rate
specifications, thus incurring the costs mentioned above. This
would have the benefit of increasing purchaser satisfaction,
but might run a small risk of missing the purchaser’s com-
pletion date. This risk could be represented as a probability
curve and an associated confidence rating. Retooling may
also provide new business opportunities for the higher qual-
ity goods (or price the widgets out of the market!).

A third option would be to buy a factory that is currently
producing widgets of the desired specifications. However,
two more attributes are involved in evaluating this task: plan-
ning time, since negotiating with other agents and developing
such a complex plan might take days or weeks; and lead time
before the acquisition plan is actually executed. This option
may have a higher risk of missing the completion date.

Evaluating these three simple views of the task requires the
planner to consider six attributes: product quality, retooling
cost, opportunity cost, effect on future business, risk of miss-
ing a deadline, lead time, and the time spent on the planning
process itself. In a real world problem, there could be many
different attributes for each of these. For example, product

3For the planner, the parameters are a vector of arbitrary size.



quality may be divided into failure rate, finish, and size uni-
formity. For each attribute, the planner must be concerned
with absolute values (e.g. maximum cost ��������� ) as well
as user preferences about the relative desirablity of attributes
(e.g. is the customer more interested in reducing cost or in-
creasing quality?).

Because of the infinite variety of task attributes that could
be useful for a given planning task, it is important that the
planner be able to make use of an arbitrary set of attributes.
This way, human task designers can write tasks that use the
attributes needed for a particular problem or domain without
modifying the planner. In the case of the DECAF planner, if
attribute limits (such as resource restrictions) and user prefer-
ences about relative attribute importance are not specified in
the planning goal, the missing attribute will be ignored. For
example, in the plan above the user could choose to specify
only cost, accuracy, execution time, and planning time, caus-
ing the planner to ignore consideration of lead time.

The DECAF planner allows the user to specify an arbi-
trary set of attributes for the planner to use as guidelines when
making decisions about the plan. Each attribute will be paired
with a specification of minimum and maximum acceptable
values. Plan tasks and actions can be programmed with an
arbitrary number of such attributes, and the user may use any
or all of them when presenting a planning goal to the planner.
Having the planner make use of an arbitrary set of attributes
makes the planner useful in a vast array of domains, and al-
lows the use of attributes for novel purposes such as placing
constraints on the planning process itself.

A user-specified utility function
In addition to the hard limits set in design-to-criteria, choices
within those limits are decided by having the planner com-
pare options under a utility function. Allowing users to spec-
ify a utility function enables the planner to implement user
preferences when making planning decisions about resource
use. This gives the user the ability to explicitly control the
relative importance of criteria even when the criteria are not
approaching their limits.

The following examples suggest the flexibility this system
allows:

ExecTime max = 50
Utility = �
	��������������������� ��!"�

With these settings, the planner will choose options that have
high quality, low execution time, regardless of cost or other
considerations, and will not return a plan with execution
time #%$ � .

Furthermore, the user can specify relative importance
through the use of coefficients and exponents:

Cost max = 100
Quality min = 50
ExecTime max = 100
Utility = �
	���������'&)(+*
,.-/�0�1�2�������3�4!"�

While the semantics of “quality squared” may be unclear in
most domains, it is clear that the user wants the planner to be
more reactive to changes in plan quality than to changes in
cost or execution time.

Planning alternatives
Once the Planner chooses the best tasks according to the util-
ity function, it adds alternatives to those tasks that can be cho-
sen by the scheduler at runtime. It does so by inserting an OR
node in the plan. The alternative task selected by the Planner
may be the second best according to the utility function, or
the Planner may choose the most dissimilar option, i.e. the
option that is farthest in unit parameter space from the origi-
nal choice4. The point of choosing a dissimilar (with respect
to the parameters) task or action is to provide the scheduler
with an alternative that might look good under a very different
utility function than the one that led to the first choice.

Planning alternatives for the scheduler provides advantages
under several circumstances. Foremost, for our purposes, is
that it allows the user to change the scheduler’s utility func-
tion each time they use the plan. For example, on one run
the user can specify a utility function that places the highest
priority on result quality, and the result might not arrive for
an hour. On the next run, the user can execute the same plan,
but specifying a utility function with an emphasis on dura-
tion, thus incurring a risk that the result returned may not be
the highest quality possible. In each case, the same plan is
used, but the scheduler can make a last minute decision based
on the user-provided utility function.

A one-dimensional example of planning optional dissimi-
lar tasks is the design-to-time paradigm. By selecting time as
the only component of the utility function, and selecting dis-
similar branching, the planner will generate plans that vary
widely in the amount of time they take to execute. For some
kinds of tasks, extra time should result in extra quality, so this
kind of planning allows the scheduler to maximize quality at
runtime by choosing the task that uses the highest percentage
of the time available for the task.

The value of spending time in planning to create alterna-
tives increases as a function of the number of times the plan
is executed with different user utility functions (assuming that
the alternatives improve runtime or reduce re-planning.) We
expect some plans that are generated by the DECAF planner
to be used many times. Plans that deliver a basket of informa-
tion on a particular stock may be invoked several times a day,
and a user may wish the agent to plan overnight to generate
a high quality information package every morning, and then
run quickly just before lunch to seek newer information. If
the agent is running other plans as well, the scheduler may
benefit by having choices in each plan that allow it flexibility.

One example of a situation where scheduler choice is valu-
able is a plan that includes a long series of actions of uncertain
duration. Planners typically know only a programmer’s esti-
mate of the time for a given action, or perhaps some history,
so this kind of uncertainty is common. If the early part of the
plan is being executed faster than expected, a scheduler with
choice may be able to select higher “quality”, longer duration
actions for the remainder of the schedule. On the other hand,
if early actions take too long, then the scheduler can choose
the shortest remaining actions available in an attempt to meet

4The Planner could also be set up to select multiple alternatives;
we have yet to fully explore even the simple case of similar vs. dis-
similar.



a deadline.
Some other reasons for planning for scheduler choice in-

clude

1. creating choices for the scheduler’s utility function, ei-
ther similar to or different from an earlier choice;

2. increasing the likelihood of runtime success by planning
alternatives for tasks/actions that have a low confidence
of success (based on reasoning about environment or
prior success);

3. accommodating or taking advantage of changes in the
environment between plan time and runtime (consider
finishing a plan before a commitment to facilitate a task
arrives from another agent, and then being able to use
the facilitation at scheduling time);

4. avoiding time spent backtracking and re-planning during
runtime by “re-planning” at plan time;

5. preconditions that may be met at scheduling time, but
weren’t at plan time;

6. providing as many actions with additive quality charac-
teristics as possible, under a SUM node, to allow the
scheduler to “design to time”[Garvey and Lesser, 1991].

7. a decision cannot be made at plan time (e.g. if utility is
based on runtime information; currently the utility func-
tions passed to the DECAF scheduler are based on static
behavior profiles.)

The DECAF agent planner implements to some degree all
but the last reason for planning choices.

6 Related Work
Of the planners that plan for mutually exclusive contingen-
cies (including CNLP [Peot and Smith, 1992], SGP [D. Weld
and Smith, 1998], Cassandra [Pryor and Collins, 1996], UWL
[Etzioni et al., 1992], and C-BURIDAN [Draper et al., 1994]),
none are HTN planners. Reasoning and negotiating about
commitment to high level intentions requires explicit repre-
sentation of intentions/goals to be available after the plan has
been expanded. This aspect of the DECAF planner is easy to
represent in an HTN, but would probably be difficult in other
representations.

Full-scale HTN planners have capabilities not shared by
the DECAF planner, which must be small enough to work in-
side an agent within a multi-agent system. SIPE-2, for exam-
ple, places constraints on variables during planning and uses
causal theory to determine the effects of actions [Wilkins,
1990]. In contrast, the DECAF Planner only maintains con-
straints on plan attributes. The DECAF Planner’s critics are
also very weak, in part because the tasks of information gath-
ering it performs do not tend to have interactive or harmful
side effects.

The planner that is most similar to the DECAF planner is
the planner for RETSINA [Paolucci et al., 2000]. Like DE-
CAF, RETSINA keeps the whole plan network for a plan,
has a separate scheduler and planner, can interleave planning
and execution, and has runtime provisions to allow looping
and conditional behavior. RETSINA does not plan to objec-
tives, however. RETSINA decomposes tasks to the names

of lower level tasks, while DECAF decomposes to predicate
goals. RETSINA uses rationale-based monitors [Veloso et
al., 1998] to manage changes in the environment during plan-
ning; our current work on the DECAF planner is concerned
with managing an environment that changes after planning,
and before or during scheduling.

7 Summary
The design of the representation of actions and information
flow in DECAF necessitate an HTN planner that plans to
achieve objectives. The DECAF planner is designed to pro-
duce flexible plans through its use of scheduler choice, an ar-
bitrary set of resource parameters, and a user-specified utility
function. We expect that planning for an intelligent scheduler
will increase the usefulness and flexibility of every agent’s
plans and decrease the overall time spent in planning.

The simple problems the DECAF Planner has addressed so
far have suggested that our approach has merit. So far our im-
plementation has focused on the task of information retrieval,
but we would like to extend this work to the manufacturing
domain, as we feel the strengths of the DECAF planner offer
great promise here.

References
[Bonasso et al., 1997] R.Peter Bonasso, David Kortenkamp,

and Troy Whitney. Using a robot control architecture to
aoutomate space shuttle operation. In Proceding of the
Ninth Conference on Innovative Appications of AI, 1997.

[Cohen and Levesque, 1990] P. Cohen and H. Levesque.
Persistence, intention and commitment. In P. Cohen,
J. Morgan, and M. Pollack, editors, Intentions and Com-
munication, pages 33–69. MIT Press, Cambridge, MA,
1990.

[D. Weld and Smith, 1998] C. Anderson D. Weld and
D. Smith. Extending graphplan to handle uncertainty &
sensing actions. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence, Madison, WI, July
1998.

[Decker and Lesser, 1995] Keith S. Decker and Victor R.
Lesser. Designing a family of coordination algorithms.
In Proceedings of the First International Conference on
Multi-Agent Systems, pages 73–80, San Francisco, June
1995. AAAI Press. Longer version available as UMass
CS-TR 94–14.

[Decker, 1995] Keith S. Decker. Environment Cen-
tered Analysis and Design of Coordination Mecha-
nisms. PhD thesis, University of Massachusetts, 1995.
http://dis.cs.umass.edu/˜decker/thesis.html.

[Draper et al., 1994] D. Draper, S. Hanks, and D. Weld.
Probabilistic planning with information gathering and con-
tingent execution. In Proc. 2nd Intl. Conf. on A.I. Planning
Systems, June 1994.

[Etzioni et al., 1992] O. Etzioni, S. Hanks, D. Weld,
D. Draper, N. Lesh, and M. Williamson. An Approach
to Planning with Incomplete Information. In Proc. 3rd
Int. Conf. on Principles of Knowledge Representation



and Reasoning, San Francisco, CA, October 1992. Mor-
gan Kaufmann. Available via FTP from pub/ai/ at
ftp.cs.washington.edu.

[Garvey and Lesser, 1991] Alan Garvey and Victor Lesser.
Design-to-time real-time scheduling. COINS Technical
Report 91–72, University of Massachusetts, 1991. To ap-
pear, IEEE Transactions on Systems, Man and Cybernet-
ics, 1993.

[Greenwald and Dean, 1998] Lloyd Greenwald and Thomas
Dean. A conditonal schdeuling approach to designing real-
time systems. The Journal of AAAI, 1998.

[Jennings, 1993] N. R. Jennings. Commitments and conven-
tions: The foundation of coordination in multi-agent sys-
tems. The Knowledge Engineering Review, 8(3):223–250,
1993.

[Knoblock, 1995] C. Knoblock. Planning, executing, sens-
ing, and replanning for information gathering. In Proc.
15th Int. Joint Conf. on A.I., pages 1686–1693, 1995.

[Paolucci et al., 2000] M. Paolucci, D. Kalp, A. Pannu,
O. Shehory, and K. Sycara. A planning component for
retsina agents. In M. Wooldridge and Y. Lesperance, ed-
itors, Lecture Notes in Artificial Intelligence, Intelligent
Agents VI. Springer Verlag, 2000. forthcoming.

[Peot and Smith, 1992] M. Peot and D. Smith. Conditional
Nonlinear Planning. In Proc. 1st Intl. Conf. on A.I. Plan-
ning Systems, pages 189–197, June 1992.

[Pryor and Collins, 1996] L. Pryor and G. Collins. Planning
for contingencies: a decision-based approach. Journal of
Artificial Intelligence Research, 4:287–339, 1996.

[Rao and Georgeff, 1995] A.S. Rao and M.P. Georgeff. BDI
agents: From theory to practice. In Proceedings of the
First International Conference on Multi-Agent Systems,
pages 312–319, San Francisco, June 1995. AAAI Press.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the Right Thing: Studies in Limited Rationality. MIT
Press, Cambridge, MA, 1991.

[Sandholm and Lesser, 1994] Tuomas Sandholm and
V. Lesser. Utility-based termination of anytime agents.
CS Technical Report 94–54, Univ. of Massachusetts,
1994.

[Veloso et al., 1998] M.M. Veloso, M.E. Pollack, and M.T.
Cox. Rationale-based monitoring for continuous planning
in dynamic environments. In Proc. 4th Intl. Conf. on A.I.
Planning Systems, pages 171–179, Pittsburgh, PA, June
1998.

[Wagner et al., 1997] T. Wagner, A. Garvey, and V. Lesser.
Complex goal criteria and its application in design-to-
criteria scheduling. In Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence, Providence,
July 1997.

[Wilkins, 1990] D. Wilkins. Can AI planners solve practi-
cal problems? Computational Intelligence, 6(4):232–246,
November 1990.

[Wooldridge and Jennings, 1995] M. Wooldridge and N.R.
Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[Young et al., 1994] R. Michael Young, Martha E. Pollack,
and Johanna D. Moore. Decomposition and causality
in partial order planning. In Proceedings of the Second
International Conference on AI and Planning Systems,
Chicago, Illinois, 1994.


