Planning Ahead to Provide Scheduler Choice

Terry Harvey and Keith Decker
Computer and Information Sciences
University of Delaware
Newark DE 19716

{harvey, decker}Qcis.udel.edu

ABSTRACT

The DECAF agent architecture views the functions of “plan-
ning to achieve objectives” and “scheduling start times of
specific actions” as separate but interrelated agent compo-
nents that may operate at different time scales. DECAF
has a scheduler that selects actions at runtime based on a
dynamic user-specified utility function that considers action
quality, cost, and duration. To make good use of the intel-
ligent scheduler, a planner must provide the scheduler with
appropriate choices.

Every autonomous DECAF agent also includes an HTN
planner that designs plans to make use of the scheduler’s
intelligence. Previous contingency planners have focused
on making a plan responsive to unmet preconditions or the
value of certain runtime variables. We explore two new kinds
of contingency planning: planning to allow the scheduler to
make runtime choices about “pre-planned” alternative ac-
tions; and planning alternatives to maximize plan flexibility
when the scheduler responds to a changing user-provided
utility function.

1. INTRODUCTION

One of the core, definitional aspects of an intelligent soft-
ware agent is its ability to flexibly, pro-actively adapt its
activities to achieve its goals [31]. AI planning techniques
are one way to achieve this goal achievement flexibility. On
the other hand, flexible reactive adaptation is also a core as-
pect of intelligent software agents [31], but reactivity is often
at odds with carefully pre-planned behavior. The develop-
ment of soft real-time AI scheduling techniques allows for
such situational flexibility. We view planning and schedul-
ing as a continuum from deciding “how” to do something to
deciding “when” and “in what order”. It makes sense to de-
velop software agents with separate planning and scheduling
components both because of the different algorithms avail-
able, and to explicitly balance the deliberative reasoning an
agent does with respect to action choice and reconsideration
in highly dynamic, volatile environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

As soon as one comes to this realization, however, it be-
comes clear that the ideal planner for a software agent that
has an intelligent scheduling component is different from
those planners designed to work directly with an execution
component. Such a planner must plan not only to achieve
goals, but to also provide run-time flexibility in the result-
ing plan. This includes well-understood contingencies such
as runtime variables, precondition failures, and interleaved
planning and execution. It also includes some new kinds of
contingencies: “design-to-time” planning to achieve dead-
lines, and “design-to-criteria” planning to react to dynam-
ically changing utility functions. This paper includes some
example plans generated by an agent using the planner that
will help motivate these features.

The paper is organized as follows. First, the DECAF
agent architecture is briefly presented, giving context to the
planning and scheduling components along with an overview
of DECAF’s information flow and execution representations.
The DECAF Planner is then presented in more depth, in-
cluding motivation for its features. The potential benefits of
planning alternatives for scheduler choice will be described,
along with some simple plan-and-execute run times from the
system. Last, a brief description of how the DECAF planner
differs from other current systems is presented, along with
a look at the direction of future research on the planner.

1.1 TheDECAF Agent Internal Architecture

DECAF (Distributed, Environment-Centered Agent Frame-
work) is a toolkit which allows a well-defined software en-
gineering approach to building multi-agent systems. The
toolkit provides a stable platform to design, rapidly develop,
and execute intelligent agents to achieve solutions in com-
plex software systems. DECAF provides the necessary archi-
tectural services of a large-grained intelligent agent [7, 24]:
communication, planning, scheduling, execution monitor-
ing, coordination, and eventually learning and self-diagnosis.
This is essentially the internal “operating system” of a soft-
ware agent, to which application programmers have strictly
limited access.

DECAF provides an environment that allows the basic
building block of agent programming to be an agent ac-
tion, or a pre-specified subtask (collection of agent actions).
These building blocks are then chained together by the DE-
CAF planner. This paradigm differs from most of the well
known agent toolkits, which instead use the API approach
to agent construction (e.g., [17]). Functionally, DECAF is
based on RETSINA [24] and T&MS [5].

To augment the functions of the agent Planner, the control
or programming of DECAF agents can be provided via a

[Plan File] [Incoming KQML messages}

DECAF Task and Control Structures

Incoming Objectives Task

Message Queue Queue Queue
J \\ 7
o\ N
ent :
[nitﬁ&iz ation Dispatcher Planner Scheduler Execqtor
Plan Library Pending Action
Action Queue Results Queue

N

[Domain Facts and Beliefs] ‘

Outgoing
KQML Messages

l' Action Modules

Figure 1: DECAF Architecture Overview

GUI called the Plan-Editor. The Plan-Editor can be used
to construct hand-coded hierarchical subtask networks to
be merged into larger, more complete plans by the DECAF
Planner, or to view or edit plans generated by an agent using
the planner.

Figure 1 represents the high level structure of a single
DECAF agent. Structures inside the heavy black line are
internal to the agent architecture and the items outside the
line are user-written or provided from some other outside
source (such as incoming KQML messages).

As shown in Figure 1, there are five internal execution
modules (square boxes) in the current implementation, and
seven associated data structure queues (rounded boxes). DE-
CAF is multi-threaded, and thus all modules execute concur-
rently, and continuously (except for agent initialization).

The Planner monitors the Objectives Queue and plans for
new goals, based on the action and task network specifica-
tions stored in the Plan Library. A copy of the instantiated
plan, in the form of an HTN corresponding to that goal is
placed in the Task Queue area, along with a unique identi-
fier and any provisions that were passed to the agent via the
incoming message. The Task Queue at any given moment
will contain the instantiated plans/task structures (includ-
ing all actions and subgoals) that should be completed in
response to all incoming requests and local maintenance or
achievement goals.

1.2 Planningvs. Schedulingin DECAF

For DECAF, the traditional notion of BDI “intentions”
as a representation of a currently chosen course of action
is partitioned into three deliberative reasoning levels: plan-
ning, scheduling, and execution monitoring. This is done
for the same reasons given by Rao [19]—that of balancing
reconsideration of activities in a dynamic, real-time environ-
ment with taking action [21]. Rather than taking the formal

BDI model literally, we develop the deliberative components
based on the practical work on robotics models, where the
three tier models have proven extremely useful [1]: here,
Planning, Scheduling, and Execution Monitoring. Each level
has a much tighter focus, and can react more quickly to ex-
ternal environment dynamics than the level above it. Most
authors make practical arguments for this architectural con-
struction, as opposed to the philosophical underpinnings of
BDI, although roboticists often point out the multiple feed-
back mechanisms in natural nervous systems.

Once an action from the Task Queue has been selected and
scheduled for execution, it is placed on the Agenda Queue.
In a very simplistic Scheduler, the order might be first-come-
first-served, resulting in some very long wait times for tasks.
On the other hand, determining an optimal schedule for a
set of tasks in a fixed period of time can be an NP-hard prob-
lem. The notion of an Anytime Agent [22] is used to allow
agents to search until a specific criteria or quality of answer
is achieved. Real-time performance may also be achieved by
conditional scheduling of agents using sampling [12]: an ini-
tial schedule is laid out and then may be changed based on
the sampling results. A third method for achieving real-time
results is known as Design to Time [11], where the scheduler
determines the exact method to achieve an optimal result
in the time given. The most recent work has resulted in
the development of a sophisticated design-to-criteria action
scheduler [26] that efficiently reasons about action duration,
cost, result quality, and other utility function characteristic
trade-offs. It is for this class of dynamic schedulers that a
flexible planner is necessary.

1.3 Modeling actions and utility

DECAF’s underlying Hierarchical Task network (HTN)
representation ties together two pieces of work: Williamson’s

work on information-flow representations resulting in RETSINA

[30, 29], and Decker’s work on representations of how local
and non-local action executions effect those characteristics
over which an agent expresses preferences (via a utility func-
tion) resulting in TZEMS [5, 26].

1.3.1 RETSINA Information Flow

The unique contribution of the RETSINA information
flow representation used in DECAF is the declarative de-
scription of the information requirements of actions and the
information producing abilities of actions [29]. This is in
addition to the traditional precondition and effect represen-
tations used in planning systems. The information needs
of an action are represented by a set of provisions. Provi-
sions can be thought of as a generalization of plan action
parameters and runtime variables, in which each provision
has an associated queue of values. This information may
be queued statically at plan-generation time or dynamically
during plan execution. An action is enabled when there is at
least one element queued for each of the actions provisions.
Upon execution, the provision is consumed. Parameters are
a subset of action provisions that are not consumed when
an action runs (and thus do not involve a queue of values).
When an action completes it produces both an outcome and
a result. The outcome is one of a finite set of pre-designated
symbols (e.g. the outcomes of CNLP or the observation la-
bels of C-BURIDAN). The result is an arbitrary piece of
information. Provision Links designate information flow of
results from the outcomes of actions to the provisions of
other actions.

132 TAMS

TEMS task structures are abstraction hierarchies whose
leaves are instantiated basic actions or “executable meth-
ods”. At a basic level this is similar to HTN (Hierarchi-
cal Task Network) or TCA (Task Control Architecture) ap-
proaches to action representation[9, 23]. Additionally, TEMS
allows the specification of dynamically changing and uncer-
tain task characteristics that effect an agent’s preferences
(utility) for some state of the world, including tasks with
hard or soft deadlines. A TZMS specification also indicates
relationships between local and non-local tasks or resources
that effect these agent preference characteristics. Thus it
extends HTN ideas toward specifying “worth-oriented” do-
mains [20]. Recent extensions to TZMS have included named
provision relationships and multiple outcome specifications
[29, 26]. In utility theory, agents have preferences over pos-
sible final states (action or plan outcomes), and preference-
relevant features of an outcome are called attributes. A sub-
stantial body of work exists on relating attribute values to
overall utilities [27]. At its core, TEMS is about specifying
these attributes and the processes by which they change—
what we call a model of the task environment. In DECAF,
we use TAEMS specifications to focus on three common at-
tributes, quality, cost, and duration.

Actions. A DECAF action represents the smallest unit
of analysis. For the purpose of utility calculation, each ac-
tion has a probabilistic model, called the behavior profile,
which specifies the likelihood of each outcome, and the prob-
ability distribution function for the quality, cost, and dura-
tion associated with each outcome.

Tasks. A DECAF task (or subtask) represents a set of
related subtasks or actions, joined by a common quality ac-
cumulation function. For example, in an AND/OR tree, an

AND task indicates that all subtasks must be accomplished
to accomplish the task, while an OR task indicates that
only one subtask needs to be accomplished. Since TAMS
is about worth-oriented environment modeling, it uses con-
tinuous rather than logical quality accumulation functions
(for example min instead of AND, max instead of OR!).
For example, subtasks may be joined by a SUM quality ac-
cumulation function, indicating that as many subtasks as
possible should be attempted. DECAF allows the explicit
specification of a characteristic accumulation function for
each characteristic (e.g. quality, cost, duration).

2. THE DECAF PLANNER

Each autonomous DECAF agent has its own HTN plan-
ner. In order to enter into meaningful negotiations with
other agents, each agent needs to be able to commit to
achieve certain objectives®. In DECAF, we also want agents
to be able to commit to high level objectives without nec-
essarily committing to a specific plan to achieve those ob-
jectives. For example, a contractor agent should be able
to commit to the objective of building a house for a cer-
tain price, and by a certain time, without having to spec-
ify where materials were going to be purchased, which sub-
contractors were going to be hired, and the number of nails
to be used. Making commitments to high level objectives
allows the agent to achieve the objectives in a manner than
is most suitable given the environment at runtime. If a sub-
contractor breaks a leg, the contractor agent can hire a new
sub-contractor without having to (necessarily) renegotiate
and re-commit.

Input to the Planner is a set of predicate objectives joined
by a quality accumulation function such as AND or OR3. A
plan consists of tasks and actions arranged to achieve the
top level objectives, such as (AND (ACHIEVE (UPDATE
NEWS IBM)) (KNOW ?value (PRICE IBM ?value))). Ac-
tions are leaf nodes in a plan that contain executable code.
Tasks in DECAF are really task decompositions, and con-
tain no executable code, but designate how information flows
in the plan. Both actions and tasks are written in STRIPS
style, with preconditions and effects. The planner matches
the effect of an action or task against the goal it is trying
to achieve. Predicates are used to describe the precondi-
tions and effects, and can be constraints or goals depending
on whether or not they are associated with a knowledge
or achievement predicate. For example, (KNOW ?symbol
(SYMBOL AMAZON ?symbol)) describes a planning goal;
but (SYMBOL AMAZON AMZN) has no performative, and
so the planner interprets this as a constraint that must hold
before a task’s effects can be instantiated.

2.1 Planningto Achieve Objectives

The requirement that agents be able to commit to objec-
tives, not specific plans to achieve them, motivated three
features of the planner. First, task decompositions are writ-
ten in terms of predicate goals. Second, the planner explic-
itly represents the goals being addressed at each point in the
plan. And third, the planner stores the entire task network
of each plan.

!The full set of quality accumulation functions, including
alternate definitions for AND and OR, is discussed in [4].
2
See [2].
3For a description of QAFs in DECAF see [4]

Having task decompositions written in terms of predicate
goals is an important feature of the planning system. Each
task separates a particular goal or set of goals into more spe-
cific goals, that are in turn further decomposed or achieved
by an action. The system plans to achieve the goals at each
point in the plan, without an a priori preference for a par-
ticular way of achieving them.

Planning to achieve predicate goals is useful in a system
where many actions in an agent’s Plan Library have the
same effect. This approach enables the planner to compare
all available means of achieving a task, such as comparing
the expected utility of an action that achieves a complex
goal to the expected utility of a task that decomposes the
goal further. Agents can add to their action/task libraries
when other agents advertise services that are competitive
with existing actions in the agent. Decomposing to spe-
cific action names would make this difficult, since existing
decompositions in the agent would have to be modified. Un-
der the plan-to-objectives approach, the specification of ac-
tions/tasks in terms of goal predicates facilitates additions
to the Plan Library, since no modifications to existing de-
compositions are necessary. This kind of facilitation is im-
portant since the DECAF architecture is open and agents
can enter or leave the system at any time.

The second feature of the planner that supports agent
commitment to objectives is the explicit representation of
goals at each step in the plan. Because the goals are ex-
plicit, the agent knows at every plan step exactly what its
intentions are at that point. It can then use this informa-
tion to reason about its commitments and make decisions
about how much more plan expansion is necessary before
committing to an intention [19, 13].

Third, saving the entire task network of each plan, and
the explicitly represented goals therein, is also necessary for
an agent to be able to reason over time about committing to
a plan or portions of a plan. This requirement results from
possible plan failure or any negotiation of a commitment
[13, 6]. If the planner backtracks from a failure point, it is
critical to know at which points in the plan the agent has
committed to an intention to achieve a goal. Furthermore,
having explicit goals stored in the plan allows the planner
to re-plan without starting from the top objective (this also
requires a stored representation of expected changes to state,
which is also maintained along branches of the plan).

In the case of negotiating or re-negotiating commitments
about a plan, the agent must be able to examine the inten-
tions (explicit goals) of the plan at each step even after the
plan has been expanded. This requirement was noted by [32]
for systems that had to reason about dialogue. In dialogue,
as in negotiating about commitment, sometimes it is neces-
sary to reason not merely about what has been said/done,
but why it was said or done. In this case, having stored
action/task names would only record the “what”; recording
the explicit goals means that the agent has access to the
“why” as well.

Being able to commit to high-level objectives does not im-
ply an inability to commit to a certain plan. Since the goals
can be very fine-grained, writing task or action specific goals
for a given domain or problem enables the agent to commit
to a fully specified plan, though we feel that this undermines
a purpose for which DECAF was intended, namely achieving
objectives in a dynamic environment.

Objectivel
(KNOW 2text (Report3 IBM 2text))

CanpD

Objective2
(KNOW Avalue (EPS IBM value))

[EPSActionl] [EPSAction2]

Objective3
(KNOW ?value (PER IBM value))

PERAction

Figure 2: A simple plan generated with the dissim-
ilar branching option turned on, so the second ac-
tion was selected for its “distance” from the first,
without regard to the utility function (see Figure
4). Only decompositions are shown, not data flow.

Objective2
(KNOW value (EPS IBM valug))

[EPSActionl j [EPSAction3]

Figure 3: The left branch of the same plan, but with
similar branching turned on. The second action was
also chosen to fit the utility function. See Figure 4.

2.2 Planningin a Dynamic Environment

One way to handle planning in a dynamic environment is
to interleave planning and execution [14]. This involves de-
veloping a plan as far as possible, then halting development
of the plan and waiting for sensors to instantiate runtime
variables that will influence the development of the remain-
der of the plan. For real time applications, this requires
the planner to complete the plan in real time. The DECAF
planner supports this method of interleaved planning and
execution, but we view planning in real time as a situation
to be avoided when possible. Instead, we would like to plan
a range of alternative paths that allow the scheduler to make
the best of a dynamic situation.

2.2.1 Contingency Planning

A second way to plan for contingencies in a dynamic en-
vironment is to enumerate mutually-exclusive possible envi-
ronments, create a separate path in the plan for each possi-
bility, and then determine at runtime which environment is
the current one. This kind of contingency planning includes
CNLP [16], and planners with explicit sensing operations
such as SGP [3], Cassandra [18], and UWL [10]. C-BURIDAN
[8], which does probabilistic planning and can accommo-
date noisy sensors, also expects actions to have mutually
exclusive outcomes. The DECAF architecture supports this
method of planning for contingencies, but it is not yet im-

plemented in the planner.

2.2.2 Planning for a Design-to-Criteria Scheduler

A third way to plan for dynamic environments becomes
possible in the presence of an intelligent scheduler. The DE-
CAF Scheduler currently reasons about a characteristic ac-
cumulation function (CAF) that considers real-valued repre-
sentations of task cost, quality, and duration. The DECAF
agent planner can choose to provide more than one action to
address the same goal(s) in a plan, and then let the sched-
uler make the choice between actions at runtime based on a
utility function and the current environment.

Our planner takes as arguments the agent’s initial objec-
tives and a utility function. This function may differ from
that used by the scheduler, and can consider more parame-
ters than the scheduler’s function*. When called, the plan-
ner first creates the best plan it can based on the utility func-
tion, and the parameters to that function that are stored in
each task. Currently, we store three real-valued parameters
for use by the scheduler: cost, quality, and duration.

Once the Planner chooses the best tasks according to the
utility function, it creates options to those tasks that can be
chosen by the scheduler at runtime. It does so by inserting
an OR node in the plan. The alternative task selected by
the Planner may be the second best according to the utility
function, or the Planner may choose the most dissimilar op-
tion, i.e. the option that is farthest in unit parameter space
from the original choice. The point of choosing a dissimilar
(with respect to the parameters) task or action is to provide
the scheduler with an alternative that might look good un-
der a very different utility function than the one that led to
the first choice.

Planning alternatives for the scheduler provides advan-
tages under several circumstances. Foremost, for our pur-
poses, is that it allows the user to change the scheduler’s
utility function each time they use the plan. For example,
on one run the user can specify a utility function that places
the highest priority on result quality, and the result might
not arrive for an hour. On the next run, the user can exe-
cute the same plan, but specifying a utility function with an
emphasis on duration, thus incurring a risk that the result
returned may not be the highest quality possible. In each
case, the same plan is used, but the scheduler can make a
last minute decision based on the user provided utility func-
tion.

The value of spending time in planning to create alter-
natives increases as a function of the number of times the
plan is executed with different user utility functions (as-
suming that the alternatives improve runtime or reduce re-
planning). We expect some plans that are generated by the
DECAF planner to be used many times. Plans that deliver
a basket of information on a particular stock may be invoked
several times a day, and a user may wish the agent to plan
overnight to generate a high quality information package ev-
ery morning, and then run quickly just before lunch to seek
newer information. If the agent is running other plans as
well, the scheduler may benefit by having choices in each
plan that allow it flexibility.

One example of a situation where scheduler choice is valu-
able is a plan that includes a long series of actions of uncer-
tain duration. Planners typically know only a programmer’s

“For the planner, the parameters are a vector of arbitrary
size.

estimate of the time for a given action, or perhaps some his-
tory, so this kind of uncertainty is common. If the early
part of the plan is being executed faster than expected, a
scheduler with choice may be able to select higher “quality”,
longer duration actions for the remainder of the schedule.
On the other hand, if early actions take too long, then the
scheduler can choose the shortest remaining actions avail-
able in an attempt to meet a deadline.

Some other reasons for planning for scheduler choice in-
clude

1. creating choices for the scheduler’s utility function, ei-
ther similar to or different from an earlier choice;

2. increasing the likelihood of runtime success by plan-
ning alternatives for tasks/actions that have a low con-
fidence of success (based on reasoning about environ-
ment or prior success);

3. accommodating or taking advantage of changes in the
environment between plan time and runtime (consider
finishing a plan before a commitment to facilitate a
task arrives from another agent, and then being able
to use the facilitation at scheduling time);

4. avoiding time spent backtracking and re-planning dur-
ing runtime by “re-planning” at plan time;

5. preconditions that may be met at scheduling time, but
weren’t at plan time;

6. providing as many actions with additive quality char-
acteristics as possible, under a SUM node, to allow the
scheduler to “design to time”[11].

7. a decision cannot be made at plan time (e.g. if utility
is based on runtime information; currently the utility
functions passed to the DECAF scheduler are based
on static behavior profiles.)

In the next section we examine further two of these rea-
sons to plan for choice for the scheduler. The DECAF agent
planner implements to some degree all but the last reason
for planning choices.

2.3 Creating Choice for the Scheduler

Consider a simple example where assembling Report3 re-
quires finding the earnings per share (EPS) and price earn-
ings ratio (PER) of a given company’s stock. Some tasks
associated with these goals are represented in Figure 5 as
they are in the planner.

Action and task specifications contain syntactic predicate
descriptions of the parameters and provisions they accept.
The “effects” section of REPORT3TASK] can be read “This
task, when executed by the agent, will return a message
that includes a value associated with the keyword “7text”
that makes the predicate (REPORT3 ?symbol ?text) true.”
Similarly, the “provisions” section means that the agent call-
ing must provide a value for the variable “?’symbol” that is
appropriate for the predicate. Predicates can be arbitrarily
named and used without formal definition, or can be defined
in Java class files to have special executable functions (as in
[28]). It is the unmification of such predicates in the descrip-
tions of outcomes and provisions that allows the planner to
plan not only task decomposition, but information flow as
well.

Planning without options | Planning with options

plan task under utility= 1/duration 8.2 sec 9.7 sec
execute plan 5 times 4.9 sec 4.9 sec
utility, ﬁI‘St paI‘t UEPSACTIONl - .076 UEPSACTIONl — 068

Alter utility

fen to Q/(C + D)

time to re-plan 8.0 sec no re-plan
execute plan 5 times 7.8 sec 11.8 sec
utility, second part Uspsacrions = 6.7 Uspsaction2 = 9.6
utility, second part counting time for re-plan | Ugpsacrions+reptan = 4.0 Ugpsacrion2 = 9.6

Figure 4: Planning Twice vs. Planning Once: In this experiment, an agent generated and ran plans. In the
middle column, the branching option of the planner was turned off, so that the planner made a plan to suit
the given utility function. When the function changed, the planner was called to re-plan for the new function.
In the right column, the dissimilar-branching option was on, so that the planner could give the scheduler a
choice to make at runtime (see Figure 2). Even though the alternate was not optimal, it was competitive,
and resulted in increased utility when plan time was considered. See Figure 5 for the action descriptions.

The precondition in EPSACTIONL is a constraint that re-
quires that the agent currently “kmow” the market symbol
for the company in question. If this were a planning predi-

task-name: REPORT3TASK1
effects: (KNOW ?7text (REPORT3 ?symbol ?text))
provisions: (KNOW ?symbol (REPORT3 ?symbol ?text))
subObjectives: (AND

(KNOW ?value (EPS ?company ?value))

(KNOW ?value2 (PER ?company ?value2)))
quality: 90 cost: 40 duration: 30

action-name: EPSACTIONL

effects: (KNOW ?value (EPS ?company ?value))
provisions:(KNOW ?company (EPS ?company ?value))
preconditions: (SYMBOL ?company ?symbol)

quality: 120 cost: 70 duration:25

action-name: EPSACTION2

effects: (KNOW ?amount (EPS ?symbol ?amount))
provisions:(KNOW ?company (EPS ?company ?value))
quality: 90 cost: 10 duration:60

action-name: EPSACTION3

effects: (KNOW ?amount (EPS ?symbol ?7amount))
provisions:(KNOW ?company (EPS ?company ?value))
quality: 80 cost: 20 duration:40

cate, the Planner would construct a plan to satisfy the pre-
conditions.

Given an objective (AND (KNOW ?text (Report3 IBM
?text))), the planner finds all templates in the Plan Library
whose effects can unify with the objective. One plan gen-
erated with the dissimilar branching option is presented in
Figure 2. Here, as in Figure 4, the utility function was
U = 1/duration. The task with the shortest duration, EPs-
ACTION1, is thus selected first.

The planner now chooses an alternative task to present
to the scheduler using one of two strategies pre-selected by
the agent: the alternative task can either be the one closest
in utility to the best task 3, or (as done here) the task with
a behavior profile most unlike that of the best task 2. The
latter option may be attractive in a very dynamic environ-
ment, e.g. if failure of the first task chosen might suggest
trying a very different approach. To find the most “differ-
ent” task, the task with the greatest sum-squared-distance
from the centroid of the tasks already chosen, in this case
EPSACTIONZ2.

A one-dimensional example of planning optional dissimi-
lar tasks is the design-to-time paradigm. By selecting time
as the only component of the utility function, and selecting
dissimilar branching, the planner will generate plans that
vary widely in the amount of time they take to execute. For

Figure 5: Example task descriptions and behavior
profiles (see Figure 4). The behavior profile num-
bers are actually represented with features, MAX
and MIN, but are single valued here for simplicity.

some kinds of tasks, extra time should result in extra qual-
ity, so this kind of planning allows the scheduler to maximize
quality at runtime by choosing the task that uses the highest
percentage of the time available for the task.

Figure 4 shows some timed results of planning without
branching options versus planning for dissimilar task branch-

ing. While our experiment is somewhat artificial®, it illus-
trates a result that we believe will become more pronounced
and more useful as our plans become increasingly complex
and our system resources become more precious.

3. RELATED WORK

Of the planners that plan for mutually exclusive con-
tingencies (including CNLP [16], SGP [3], Cassandra [18],
UWL [10], and c-BURIDAN [8]), none are HTN planners.
Reasoning and negotiating about commitment to high level
intentions requires explicit representation of intentions/goals
to be available after the plan has been expanded. This as-
pect of the DECAF planner is easy to represent in an HTN,
but would probably be difficult in other representations.

Full-scale HTN planners have capabilities not shared by
the DECAF planner, which must be small enough to work
inside an agent within a multi-agent system. SIPE-2, for
example, places constraints on variables during planning and
uses causal theory to determine the effects of actions [28].
The DECAF planner currently lacks critics, in part because
the information gathering tasks it currently performs do not
tend to have interactive or harmful side effects.

The planner that is most similar to the DECAF planner
is the planner for RETSINA [15]. Like DECAF, RETSINA
keeps the whole plan network for a plan, has a separate
scheduler and planner, can interleave planning and execu-
tion, and has runtime provisions to allow looping and con-
ditional behavior. RETSINA does not plan to objectives,
however. RETSINA decomposes tasks to the names of lower
level tasks, while DECAF decomposes to predicate goals.

RETSINA uses rationale-based monitors [25] to manage changes

in the environment during planning; our current work on
the DECAF planner is concerned with managing an envi-
ronment that changes after planning, and before or during
scheduling.

4. SUMMARY

The design of the representation of actions and informa-
tion flow in DECAF necessitate an HTN planner that plans
to achieve objectives. The DECAF planner also designs
plans to make use of an “intelligent” scheduler, increasing
the flexibility of every agent’s plans and (we expect) decreas-
ing the overall time spent in planning.

The simple problems the DECAF Planner has addressed
so far have suggested that our approach has merit. We are
currently expanding our library of actions and decomposi-
tions for information retrieval, as well as investigating eco-
nomic simulation as a domain for further work.

5. REFERENCES

[1] R. Bonasso, D. Kortenkamp, and T. Whitney. Using a
robot control architecture to aoutomate space shuttle
operation. In Proceding of the Ninth Conference on
Innovative Appications of AI 1997.

[2] P. Cohen and H. Levesque. Persistence, intention and
commitment. In P. Cohen, J. Morgan, and M. Pollack,
editors, Intentions and Communication, pages 33—69.
MIT Press, Cambridge, MA, 1990.

50nly the plan-time and run-time numbers are “hard”; and
the utility functions were chosen to make a point.

[3] C. A. D. Weld and D. Smith. Extending graphplan to
handle uncertainty & sensing actions. In Proceedings
of the Sizteenth National Conference on Artificial
Intelligence, Madison, WI, July 1998.

[4] K. S. Decker. Environment Centered Analysis and
Design of Coordination Mechanisms. PhD thesis,
University of Massachusetts, 1995.
http://dis.cs.umass.edu/"decker/thesis.html.

[6] K. S. Decker and V. R. Lesser. Quantitative modeling
of complex computational task environments. In
Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 217-224, Washington,
July 1993.

[6] K. S. Decker and V. R. Lesser. Designing a family of
coordination algorithms. In Proceedings of the First
International Conference on Multi-Agent Systems,
pages 73—-80, San Francisco, June 1995. AAAT Press.
Longer version available as UMass CS-TR 94-14.

[7] K. S. Decker and K. Sycara. Intelligent adaptive
information agents. Intelligent Information Systems,
9:239-260, 1997.

[8] D. Draper, S. Hanks, and D. Weld. Probabilistic
planning with information gathering and contingent
execution. In Proc. 2nd Intl. Conf. on A.I. Planning
Systems, June 1994.

[9] K. Erol, D. Nau, and J. Hendler. Semantics for
hierarchical task-network planning. Technical report
CS-TR-3239, UMIACS-TR~94-31, Computer Science
Dept., University of Maryland, 1994.

[10] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh,
and M. Williamson. An Approach to Planning with
Incomplete Information. In Proc. 8rd Int. Conf. on
Principles of Knowledge Representation and
Reasoning, San Francisco, CA, Oct. 1992. Morgan
Kaufmann. Available via FTP from pub/ai/ at
ftp.cs.washington.edu.

[11] A. Garvey and V. Lesser. Design-to-time real-time
scheduling. COINS Technical Report 91-72,
University of Massachusetts, 1991. To appear, IEEE
Transactions on Systems, Man and Cybernetics, 1993.

[12] L. Greenwald and T. Dean. A conditonal schdeuling
approach to designing real-time systems. The Journal
of AAAI 1998.

[13] N. R. Jennings. Commitments and conventions: The
foundation of coordination in multi-agent systems.
The Knowledge Engineering Review, 8(3):223-250,
1993.

[14] C. Knoblock. Planning, executing, sensing, and
replanning for information gathering. In Proc. 15th
Int. Joint Conf. on A.IL, pages 1686-1693, 1995.

[15] M. Paolucci, D. Kalp, A. Pannu, O. Shehory, and
K. Sycara. A planning component for retsina agents.
In M. Wooldridge and Y. Lesperance, editors, Lecture
Notes in Artificial Intelligence, Intelligent Agents VI
Springer Verlag, 2000. forthcoming.

[16] M. Peot and D. Smith. Conditional Nonlinear
Planning. In Proc. 1st Intl. Conf. on A.I. Planning
Systems, pages 189-197, June 1992.

[17] C. J. Petrie. Agent-based engineering, the web, and
intelligence. IEEE Ezxpert, December 1996.

[18] L. Pryor and G. Collins. Planning for contingencies: a
decision-based approach. Journal of Artificial

[19]

[20]

(21]

(22]

23]

[24]

25]

[26]

27]

28]

[29]

[30]

[31]

32]

Intelligence Research, 4:287-339, 1996.

A. Rao and M. Georgeff. BDI agents: From theory to
practice. In Proceedings of the First International
Conference on Multi-Agent Systems, pages 312-319,
San Francisco, June 1995. AAAI Press.

J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation
among Computers. MIT Press, Cambridge, Mass.,
1994.

S. Russell and E. Wefald. Do the Right Thing: Studies
in Limited Rationality. MIT Press, Cambridge, MA,
1991.

T. Sandholm and V. Lesser. Utility-based termination
of anytime agents. CS Technical Report 94-54, Univ.
of Massachusetts, 1994.

R. Simmons. Structured control for autonomous
robots. IEEE Trans. on Robotics and Automation,
10(1), Feb. 1994,

K. Sycara, K. S. Decker, A. Pannu, M. Williamson,
and D. Zeng. Distributed intelligent agents. IEEE
Ezpert, 11(6):36—46, Dec. 1996.

M. Veloso, M. Pollack, and M. Cox. Rationale-based
monitoring for continuous planning in dynamic
environments. In Proc. 4th Intl. Conf. on A.L
Planning Systems, pages 171-179, Pittsburgh, PA,
June 1998.

T. Wagner, A. Garvey, and V. Lesser. Complex goal
criteria and its application in design-to-criteria
scheduling. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, Providence, July
1997.

M. Wellman and J. Doyle. Modular utility
representation for decision-theoretic planning. In Proc.
fo the First Intl. Conf. on Artificial Intelligence
Planning Systems, pages 236-242, June 1992.

D. Wilkins. Can AI planners solve practical problems?
Computational Intelligence, 6(4):232-246, Nov. 1990.
M. Williamson, K. S. Decker, and K. Sycara.
Executing decision-theoretic plans in multi-agent
environments. In AAATI Fall Symposium on Plan
Ezecution, Nov. 1996. AAAT Report FS-96-01.

M. Williamson, K. S. Decker, and K. Sycara. Unified
information and control flow in hierarchical task
networks. In Proceedings of the AAAI-96 workshop on
Theories of Planning, Action, and Control, 1996.

M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering
Review, 10(2):115-152, 1995.

R. M. Young, M. E. Pollack, and J. D. Moore.
Decomposition and causality in partial order planning.
In Proceedings of the Second International Conference
on AI and Planning Systems, Chicago, Illinois, 1994.

