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Abstract

Topology control is the problem of assigning power
levels to the nodes of an ad hoc network so as to
create a specified network topology while minimizing
the energy consumed by the network nodes. While
considerable theoretical attention has been given to
the issue of topology control in wireless ad hoc net-
works, all of that prior work has concerned stationary
networks. When the nodes are mobile, there is no al-
gorithm that can guarantee a graph property (such
as network connectivity) throughout the node move-
ment.

In this paper we study topology control in mobile
wireless ad hoc networks (MANETs). We define a
mobility model, namely the constant rate mobile net-
work model (CRMN), in which we assume that the
speed and direction of each moving node are known.
The goal of topology control under this model is to
minimize the maximum power used by any network
node in maintaining a specified monotone graph prop-
erty. Network connectivity is one of the most funda-
mental monotone properties.

Under the CRMN model, we develop general
frameworks for solving both the decision version (i.e.
for a given value p > 0, will a specified monotone
property hold for the network induced by assigning
the power value p to every node?) and the optimiza-
tion version (i.e. find the minimum value p such that
the specified monotone property holds for the net-
work induced by assigning the power value p to ev-
ery node) of the topology control problems. Efficient
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algorithms for specific monotone properties can be
derived from these frameworks. For example, when
the monotone property is network connectivity, our
algorithms for the decision and optimization versions
have running times of O(n2 log2 n) and O(n4 log2 n)
respectively. Our results represent a step towards
the development of efficient and provably good dis-
tributed algorithms for topology control problems for
MANETs.

1 Introduction

Two of the most critical issues associated with wire-
less ad hoc networks used in military and search-
and-rescue operations are to conserve energy so as
to prolong the battery life and to accommodate the
movement of the network nodes. This paper consid-
ers these issues in the context of topology control.

A wireless ad hoc network consists of a collection of
nodes which self-organize using communication based
on radio propagation, since there is no pre-existing
infrastructure. In communicating through wireless
links, each node functions, when necessary, as a relay
so as to allow multihop communications. In wireless
ad hoc networks, battery power is a precious resource.

In a mobile wireless ad hoc network (MANET),
where nodes move freely, the network topology is
formed based on the nodes’ transmission ranges and
routes of node movement. The objective in topology
control is to maintain a specified network topology
(i.e. graph property) such as connected, biconnected
or diameter at most d. The desired effect of topol-
ogy control is to reduce energy consumption, reduce
MAC layer interference between adjacent nodes, and
to increase the effective network capacity. Note that
the network performance can be impacted in a major
way by the network topology. A dense topology may
induce high interference, which, in turn, reduces the
effective network capacity due to limited spatial reuse
and may cause unnecessarily high energy consump-
tion. In contrast, a sparse topology is vulnerable to
network partitioning due to node or link failures.

The primary method of accomplishing topology
control is by adjusting the transmission powers of the
network nodes. That is, each node is assigned a trans-
mission power level so that the induced graph of the
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network satisfies a prespecified topology. Further, the
assignment of transmission powers to nodes aims to
optimize some function of those powers. The most
common objective, and the one utilized throughout
this paper, is to minimize the maximum power uti-
lized by any node.

While over the past several years considerable the-
oretical attention [13, 7, 8, 18, 20, 9, 4, 14, 17, 16, 1,
15, 11] has been given to the issue of topology control
in wireless ad hoc networks, all of that work has con-
cerned stationary networks. Such results are useful
in the context of ad hoc networks where nodes are
generally stationary (e.g. sensor networks). How-
ever, in other applications of ad hoc networks such as
search-and-rescue operations and mobile robots pa-
trolling an area, most of the nodes in the system are
mobile. (Additional discussion regarding these appli-
cations is provided in Section 2.3.) In such contexts,
it is important to study topology control problems for
mobile ad hoc networks. To our knowledge, the im-
pact of node mobility on topology control problems
has not received attention in the literature. In this
paper we are the first to provide polynomial time al-
gorithms for optimally solving topology control prob-
lems in mobile wireless ad hoc networks. These topol-
ogy control problems are studied under a generic mo-
bile network model, Constant Rate Mobile Networks,
in which we assume the speed and direction of each
moving node is known. As will be explained in Sec-
tion 2, this generic model underlies several mobility
models considered in the literature.

Our primary contribution is a collection of poly-
nomial time algorithms and frameworks4 for topol-
ogy control problems for maintaining specified graph
properties in mobile ad hoc networks where certain
information is known about node movement. The
centralized algorithms that we provide are immedi-
ately applicable in networks where node movements
are predictable and/or periodic, hence transmission
powers can be computed in advance by a central au-
thority. Two example scenarios of this variety are
provided in a later section. Relative to distributed
topology control algorithms for mobile ad hoc net-
works, our results are useful in two ways. First, these
first centralized algorithms that we provide will serve
as a critical baseline for the performance evaluation of
future distributed heuristics. Second, developing any
topology control algorithm when nodes are mobile is
a difficult task, regardless of whether the algorithm is
distributed or centralized. Part of this process is to
uncover basic properties and characteristics of topol-

4In the context of this paper, a framework is a collection of
concrete algorithms with each algorithm solving the topology
control problem for a particular graph property.

ogy control problems when nodes are mobile. Our
centralized results provide an important first step in
this understanding that can be built upon in future
work to develop distributed algorithms.

2 Key Definitions & Summary

of Main Results

In this section we first introduce the fundamentals of
topology control, and provide the formal definitions
of monotone properties. Then we establish a generic
mobility model and specify topology control problems
that incorporate mobility. To conclude this section,
we provide a summary of the main results obtained
in this paper.

2.1 Topology Control Fundamentals

In studying topology control for MANETs, we are
given a network N consisting of a set V of nodes
in the plane, each of which may move as time pro-
gresses5. At any given time instant, for each ordered
pair (u, v) of nodes, there exists a transmission power
threshold, denoted by π(u, v), with the following sig-
nificance: A signal transmitted by node u can be re-
ceived by node v if and only if the transmission power
of u is at least π(u, v). In this paper we utilize the ge-
ometric model in which the threshold is determined
by the Euclidean distance d(u, v) between u and v.
Throughout this paper, the threshold π(u, v) is taken
to be d(u, v)α, where α is the attenuation constant
associated with path loss. The path loss is the ratio
of the received power to the transmitted power of the
signal [19]. The value of α is typically between 2 and
4. Note that in the geometric model, threshold val-
ues are symmetric. That is, π(u, v) = π(v, u). In the
remainder of this paper, we let π(u, v) denote both
itself and π(v, u).

At any instant in time, given the transmission pow-
ers and the positions of the nodes, an ad hoc network
can be represented by an undirected graph over the
nodes of the network. An edge (u, v) is in this induced
graph if and only if the transmission powers of both
u and v are at least the threshold π(u, v).

In the context of MANETs, the main goal of topol-
ogy control is to assign transmission powers to nodes
so that the mobile network N achieves a specified
property P (i.e. the graph induced by those transmis-
sion powers has the property P) and the transmission

5We let the node name represent both itself and the Eu-
clidean position of the node.
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powers are optimal. Two common optimization ob-
jectives considered in the literature are to minimize
the maximum power (denoted by MaxP) and to min-
imize the total power (denoted by TotalP) assigned
to the nodes. Under MaxP, it is standard to assume
that the same power is assigned to all nodes6. In this
case, we say that network N achieves a property P
under such power.

It is clear that the difficulty of finding the opti-
mal power may vary with the property P. Note that
given a general property P , the corresponding topol-
ogy control problem may be NP-hard. For example,
letting G be the graph induced from network N un-
der power p, consider the property that G is a Tree.
Simply determining whether there is any power as-
signment (without any optimization objective) such
that the resulting undirected graph G is a tree is
NP-complete [15]. Hence, there is no efficient way
to find a power p such that network N achieves any
general property P under power p, unless P = NP.
To efficiently deal with graph properties in a general
manner, the properties we consider in this paper are
monotone properties [15]. Fortunately, the commonly
used properties in networks are in this class.

2.2 Monotone Properties

Definition 2.1 A property P of the undirected graph
induced by a power assignment is monotone if the
property continues to hold even when the powers as-
signed to some (perhaps all) nodes are increased while
the powers assigned to the other nodes remain un-
changed.

This definition implies that for any monotone prop-
erty P , if G is a graph satisfying P and one or more
additional edges are added to G, then the resulting
graph also satisfies P.

Since a stationary network is in one-to-one corre-
spondence with the graph which is induced by the
powers assigned to the nodes, Definition 2.1 applies
directly to a stationary network. For a mobile net-
work, at any instant in time, there exists a stationary
network. Hence, a mobile network achieves a mono-
tone property P if P is achieved by all stationary
networks that exist during the lifetime of the mobile
network.

For example, if P is Connected, then at every
instant in time, the undirected graph induced by the
transmission powers of the nodes is connected. Fol-

6In particular, this assumption can be made without loss of
generality for monotone properties, as will become clear from
the next section.

lowing this convention, we extend all monotone prop-
erties from stationary networks to mobile networks.

Other examples of monotone properties include k-
Connected (including both k-Node-Connected
and k-Edge-Connected, where k ≥ 1), Bounded
Diameter, and Minimum Degree Constraint.
Here, k-Node/Edge-Connected means that the
graph remains connected with the removal of any set
of k − 1 nodes/edges; Bounded Diameter means
that the diameter of a graph cannot exceed a prespec-
ified constant c (c ≥ 1), where the diameter is the
maximum shortest path distance between any pair
of nodes in a graph; and Minimum Degree Con-
straint means that the node degree of every node in
the graph is at least a prespecified constant c (c ≥ 1).
Note that Minimum Degree Constraint does not
require the graph to be connected.

2.3 Mobility Models & Problem Spec-

ification

Ideally, one would solve the topology control prob-
lem just once, thereby assigning powers to the nodes
so that the MANET achieves a monotone property
(such as Connected) throughout the network life-
time. Unfortunately even for monotone properties,
this requirement is not realistic in that nodes are
moving, and with that movement the power require-
ments needed to achieve the property may change
dramatically. A more realistic approach is to assign
power levels so that the network achieves the prop-
erty throughout some prespecified interval of time.
At the start of each interval, the power levels of the
nodes are recomputed based on the current location
of the nodes and taking into account any additional
information that is known about the movement of the
nodes. Thus, the general problem that we consider
in this paper is to minimize the maximum power as-
signed to any node in the MANET such that the net-
work achieves a specific monotone property through-
out a unit time interval. Since this interval would
generally be quite short, we can assume that during
each unit time interval the movement of each node
can be represented by a line segment. That is, the
movement of the node is on a straight line without
any bends or curves. If a node does not move at all
during a unit time interval then it is stationary, oth-
erwise the node is moving. A stationary network is
one in which all of the nodes are stationary.

Using a notation similar to the one used in [15], we
specify a topology control problem by a triple of the
form 〈M, P, O〉. In this notation, M represents the
mobility model, P represents the desired graph prop-
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erty and O represents the minimization objective. In
this paper, M ∈ {CRMN}, which will be explained
shortly. Generally, O ∈ {MaxP, TotalP} (abbre-
viations of Max Power and Total Power). While the
transmission powers must be assigned to the nodes
so that the resulting graph (induced by the assigned
powers in relation to the edges of the threshold graph)
achieves P, MaxP represents the maximum power
among all assigned powers is minimized and TotalP
represents the total power of all assigned powers is
minimized. Note that for the problems studied in this
paper, we only consider MaxP. For monotone graph
properties, it is easy to see that the MaxP objective
is equivalent to minimizing the power which is uni-
formly assigned to all nodes. Therefore, we will use
this approach for MaxP throughout the remainder
of this paper.

The model and problems we study are:

Definition 2.2 Constant Rate Mobile Network

(CRMN): In this model, each of the n nodes in the
given network N is mobile. Associated with each node
are its starting and ending Euclidean7 positions in
the unit time interval. It is assumed that each node
moves at its own uniform rate and direction through-
out the time interval. The goal is to minimize the
power uniformly assigned to every node such that the
network N achieves monotone property P through-
out the unit time interval. Note that in the above, P
could be any monotone property.

For convenience, the CRMN problems are repre-
sented by 〈CRMN, P, MaxP〉 in the remaining of
this paper.

As can be seen from Definition 2.2, the CRMN
model attempts to represent in a uniform manner the
mobility patterns of all the nodes in the system. The
underlying assumption is that each node moves along
a straight line during each unit time interval; how-
ever, different nodes may move with different speeds
and along different directions. We now point out how
the CRMN model arises in the context of two of the
mobility models proposed in the literature [5]. As
a first example, consider the random way point mo-
bility model [12] where the movement of each node
consists of segments with a pause between succes-
sive segments. In each segment, an individual node
is assumed to move with a uniform velocity along a
straight line, as in the CRMN model. A second exam-
ple is provided by the column mobility model, which
is known to be useful in modeling the search or scan

7Henceforth, when the meaning is clear, we omit the word
“Euclidean”.

of a region [5]. In this model, each mobile node is as-
signed a reference point along a line (column). (The
orientation of the line is changed periodically to move
the search to a different part of the region.) For each
time period, a mobile node moves along line segments
around its reference point. For each line segment, the
the node is assumed to move with a constant veloc-
ity. Thus, the node movement along each segment is
again captured by the CRMN model.

An example scenario for the CRMN model arises in
the context of communication among a group of satel-
lites. In such a MANET, since each satellite typically
moves at a constant speed and direction within a unit
time interval (e.g. a few hours), the minimum signal
transmission power for maintaining connectivity can
be pre-computed on the ground by mission control.
To do this, the ground center collects all the neces-
sary information from each of the satellites, computes
the power values centrally and sends the power value
to the satellites. This ensures that the satellite net-
work remains connected throughout its mission life-
time. This is one context in which our centralized
algorithms (presented in later sections) can be used.

As another scenario that can be captured by the
CRMN model, consider a set of robotic guards pa-
trolling an area too dangerous (e.g. due to environ-
mental issues, or in a war zone situation, enemy ac-
tion) for humans. It is likely that a) the placement
of a large number of fixed stations is prohibitively
difficult so standard cellular communication is not
possible, hence the use of a mobile ad hoc network is
required, and b) the robots patrol in a fixed pattern
on a periodic basis (e.g. if the region being patrolled
is polygonal and each robot is going around the poly-
gon). Using the fixed robot patrol patterns, a central
station can pre-compute the transmission powers that
the robots should use at each point along their routes.
This pattern of robot mobility is precisely captured
by the CRMN model.

In subsequent sections of the paper, we present
centralized algorithms for topology control problems
under the CRMN model. We discussed two exam-
ple scenarios (namely communication among a group
of satellites and communication among robots pa-
trolling a region) where mobility can be captured us-
ing the CRMN model. We note that in these two sce-
narios, one can use centralized algorithms for topol-
ogy control since the mobility patterns are known in
advance. Thus, optimal power values can be precom-
puted and the nodes can be programmed to use ap-
propriate power values at different times to minimize
power consumption.
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2.4 Summary of Main Results

The main contributions of this paper are polynomial
time algorithms and frameworks for each of the spec-
ified topology control problems in MANETs. Our
main results are:

• A framework for solving 〈CRMN, P , MaxP〉,
where P can be any monotone property. For
example, when P is Minimum Degree Con-
straint or Connected, the resulting algo-
rithm runs in time O(n6 log n).

• An improved algorithm for 〈CRMN, Con-
nected, MaxP〉, which runs in time
O(n4 log2 n).

• A framework for solving the decision version8 of
〈CRMN, P , MaxP〉, where P can be any mono-
tone property. When P is Connected, the re-
sulting algorithm runs in time O(n2 log2 n).

3 Additional Definitions & Sta-

tionary Networks

In this section we provide additional definitions and
notations, and discuss some prior work for stationary
networks.

3.1 Additional Definitions & Notation

We begin with three definitions concerning transmis-
sion powers and related graphs relative to stationary
networks (later we will extend these to MANETs):

• We let Gp(N ) denote the undirected graph in-
duced from a stationary network N , when trans-
mission power p is uniformly assigned to each
node. That is, in Gp(N ), an edge is present be-
tween nodes u and v if and only if p ≥ π(u, v).

• A threshold graph is a complete undirected edge-
weighted graph where each edge is of positive
weight. The weight weight(u, v) of each edge
(u, v) is its threshold π(u, v). A threshold graph
for a stationary network N is a threshold graph
with the same node set as N and where, for each
edge (u, v), weight(u, v) = π(u, v).

8For an optimization problem, its decision version is: Given
any proposed solution to the optimization problem, determine
if that solution satisfies the objective (without optimization)
of the problem. Specifically, the decision version of 〈CRMN,
P, MaxP〉 is to determine whether for a given a power p, the
CRMN N achieves monotone property P under p.

• Given an undirected edge-weighted graph G =
(V, E) and a power p, the graph Gp(V ) induced
from G under p is a graph with the same node
set as G, and with an edge (u, v) if and only if
p ≥ weight(u, v).

3.2 Stationary Networks

The general form of topology control for station-
ary networks was first proposed by Ramanathan and
Rosales-Hain [18]. Among the several results in that
paper, they presented an algorithm for 〈Undir, Con-
nected, MaxP〉 (where Undir refers to the undi-
rected graph model for stationary networks) that
minimizes the power uniformly assigned to any node
in a stationary network such that the resulting net-
work is connected. Subsequently, [15] extended that
algorithm and provided a general polynomial frame-
work for 〈Undir, P, MaxP〉, where P is any mono-
tone graph property. In this paper we make extensive
use of the framework given in [18, 15] for 〈Undir, P ,
MaxP〉 and we outline that algorithm and related
concepts in the next several paragraphs. Please note
that while we use some ideas from [18, 15], the results
of [18, 15] are only for systems with stationary nodes.
New ideas are needed to handle mobile nodes and all
the necessary definitions and proofs are presented in
Section 4.

Recall that for MaxP, it is standard to assign the
same power to all nodes. In this context, the topol-
ogy control problem for stationary networks is to in-
duce a graph Gp(N ) from the network under a uni-
form power p, such that Gp(N ) achieves a monotone
property P (i.e. N achieves monotone property P
under power p). Considering Connected as an ex-
ample monotone property, note that given a station-
ary network N consisting of n nodes and a power p,
the graph Gp(N ) is easily constructed in time O(n2).
Likewise, given Gp(N ), it can be determined in time
O(n2) if that graph is connected. It follows that given
network N and power p, O(n2) time is sufficient to
check if N is connected under power p.

With these preliminaries concluded, the framework
described in [15] is shown in Figure 1. That frame-
work is based on the insight that p must come from
among the threshold values associated with node
pairs in N . This permits the framework to do a bi-
nary search over those threshold values searching for
the least p such that N achieves a monotone property
P under power p.

Thus, we solve 〈Undir, Connected, MaxP〉 by
replacing P with Connected in Framework 1. Sub-
sequently, the running time is O(n2 log n) as de-
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Input: A stationary network N with node set V ,
and a monotone property P.

Output: The minimum power pmin such that N
achieves P under pmin.

Steps:

1. Construct threshold graph Gth = (V, E) fromN .

2. Sort E by threshold values, and use binary
search to locate the least pmin ∈ E such that
N achieves P under power pmin.

3. Return pmin.

Figure 1: Framework 1 for 〈Undir, P , MaxP〉 —
MINMAXGRAPHFORP

scribed in [18], since there are at most O(log n) pow-
ers that need to be checked and each checking (for
Connected) takes time O(n2). Establishing a con-
vention of naming the framework, we let Framework 1
be called MinMaxGraphForP. When P is Con-
nected, the corresponding algorithm is called Min-
MaxGraphForConn.

We will make use of MinMaxGraphForP as a
subroutine throughout this paper. Additionally, for
the convenience of future discussion, we introduce
a meta function CheckGraphForP with the fol-
lowing significance: Given property P and power p,
CheckGraphForP(N , p) is called to solve the deci-
sion version of 〈Undir, P, MaxP〉, that is, checking
whether the stationary network N achieves P un-
der p. Note that CheckGraphForP is implied in
step 2 of Framework 1. It simply goes through all
the edges to check whether P is satisfied. When P
is Connected, the algorithm is CheckGraphFor-
Conn(N , p) and runs in time O(n2).

4 Constant Rate Mobile Net-

works

In this section we consider topology control for mono-
tone properties in constant rate mobile networks
(CRMN). An instance N of a CRMN is a MANET
in which all the n nodes are moving and each node
moves at its own uniform rate and direction inde-
pendently throughout a unit time interval. Associ-
ated with each moving node Vi are its starting and
ending Euclidean positions in the unit time interval.
The goal is to minimize the power uniformly assigned

to any node in the MANET such that the network
achieves a monotone property throughout the unit
time interval.

In this section, for a moving node Vi, we refer to its
starting position as Vi, to its ending position as V ′

i ,

and to the vector ~vi =
−−→
ViV

′

i
9 as its moving route.

Our approach to solving an instance of CRMN is
based on partitioning the unit time interval into time
slots. We refer to this as time slicing. Note that
at any time instant, since the positions of all of the
moving nodes will be known, a threshold graph can
be constructed. Our goal is to use time slicing to pro-
duce constant-order time slots such that the ordering
of the sorted list of threshold graph edges is invari-
ant within each time slot. Because of the invariance
of this ordering, there is a specific edge which de-
termines for every instant in the time slot the min-
imum power p such that the induced graph Gp(N )
(at that time instant) achieves the specified mono-
tone property. Our framework will find this edge for
every time slot, then compute the largest threshold
value for each such edge within its time slot, and fi-
nally select the largest of these values as the overall
solution to the instance of CRMN.

This section is organized as follows. In the first
subsection, we introduce notation and terminology
related to distance and threshold functions. In sub-
section 4.2, we provide the specifics of constant-
connectivity time slots (a weaker version of constant-
order time slots) and present a framework for solving
the decision version of the CRMN problem. Then, in
subsection 4.3, we provide the specifics of constant-
order time slots and present a framework for solving
the optimization version of the CRMN problem. Fi-
nally in subsection 4.4, we provide a faster algorithm
to solve an instance of CRMN when property P is
Connected.

4.1 Distance Functions & Threshold

Functions

Since |~vi| is the length of the moving route of node
Vi in a unit time interval, it follows that |~vi| is also
the moving speed of Vi. Further, at any instant t in
[0, 1], the position of node Vi is given by ~vi · t.

Consider two moving nodes A and B. We define
the distance function between nodes A and B to be
dAB(t). At any time instant t of the unit time inter-
val, this function gives the distance between moving
nodes A and B. Recall that these two nodes each

9~vi represents the vector
−−→
ViV

′

i
starting at Vi and ending at

V ′

i
.
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Figure 2: A Distance Example — Parabola

moves at a constant direction and rate throughout
the unit time interval. Note that these rates need
not be the same. In a coordinate system with the
X-axis being time t and the Y-axis being the value of
distance function dAB(t), that distance function is a
parabola. An example is shown in Figure 2.

The threshold function between A and B is
π(A, B)[t] = dα

AB(t), where α is again the atten-
uation constant associated with path loss. Hence,
the threshold function is also drawn as a parabola
in a coordinate system with the X-axis being time
t and the Y-axis being the value of threshold
function π(A, B)[t]. At any time instant t, this
function gives the threshold between moving nodes
A and B. The threshold between A and B in
a time slot [tg, th] is given by π(A, B)[tg , th] =
max(π(A, B)[tg ], π(A, B)[th]). Here it is easy to see
that for any t ∈ [tg, th], π(A, B)[t] ≤ π(A, B)[tg, th].

Finally, a distance function is the square root of
a quadratic function. Since there are at most two
real solutions10 to a quadratic equation, the following
lemma is obvious:

Lemma 4.1 Given any two non-identical distance
functions dAB(t) and dCD(t), there are at most two
real solutions for t to the equation dAB(t) = dCD(t).

Since a threshold function is π(A, B)[t] = dα
AB(t),

it follows that:

Corollary 4.2 Given any two non-identical thresh-
old functions π(A, B)[t] and π(C, D)[t], there are
at most two real solutions for t to the equation
π(A, B)[t] = π(C, D)[t].

4.2 A Framework for the Decision

Version of 〈CRMN, P, MaxP〉

In this subsection, we describe a framework to solve
the decision version of CRMN problems. That is,

10Imaginary solutions do not have any physical significance
in this context.

Figure 3: An Example of Constant-Connectivity
Time Slots

given a power p and an instance N of CRMN, to
decide whether N achieves a monotone property P
under p.

As noted in the overview, our framework for the
decision version of CRMN is based on time slicing.
For each pair of distinct nodes Vi and Vj in N , we
calculate the real solutions (if any) to the equation
π(Vi, Vj)[t] = p. The resulting solutions are called
slicing points. Note that if π(Vi, Vj)[t] ≡ p, then Vi is
constantly connected to Vj , and no slicing point will
be recorded for use in the following. We collect all of
the O(n2) distinct slicing points in a sorted list. If
there are identical slicing points, they are represented
by a single point in this list. Adjacent points in this
sorted list define a time slot. An important fact is
that connectivity of two moving nodes changes only
when the edge between them either comes into, or
goes out of, existence. This can only occur around
a slicing point. It follows that each time slot is
a constant-connectivity time slot. More precisely, a
time slot [tx, ty] is a constant-connectivity time slot
if given a power p and a graph G = (V, E), the fol-
lowing conditions hold:

• ∀(Vi, Vj) ∈ E, ∀t ∈ (tx, ty) : π(Vi, Vj)[t] ≤ p

• ∀(Vi, Vj) 6∈ E, ∄t′ ∈ (tx, ty) : π(Vi, Vj)[t
′] ≤ p.

Note that the slicing points defining the time slot
are not included in the above calculations. To see
why these points must be excluded, consider consec-
utive time slots [ti−1, ti] and [ti, ti+1], and assume
some edge (Vj , Vk) does not exist at an interior point
of [ti−1, ti], but does exist at an interior point of
[ti, ti+1]. Thus, this edge comes into existence at slic-
ing point ti. Clearly, ti cannot be included in the
constant-connectivity calculation for [ti−1, ti]. For-
tunately, as we will show later there is no need to
explicitly check connectivity at the slicing points.

An example of constant-connectivity time slots
is shown in Figure 3. There are three constant-

7



connectivity time slots: [t1, t2], the time ending at
t1 and the time beginning with t2.

Having partitioned the unit time interval into
constant-connectivity time slots, our framework sim-
ply checks the monotone property P for each such
time slot. Network N achieves P under power p if
and only if it achieves P under p in each such time
slot. Since the connections among nodes in network
N under power p are interpreted as the edges in
the induced graph Gp(N ), it follows that it is only
necessary to check P in the induced graph for each
constant-connectivity time slot. The details are given
in Framework 2 (Figure 4).

The remainder of this subsection is devoted to a
proof of correctness and running time analysis for
Framework 2. To prove the correctness, we begin
with the following lemma.

Lemma 4.3 Given a constant-connectivity time slot
[tk, tk+1], any edge present at an instant t′k ∈
(tk, tk+1) is also present at any instant t′′k ∈ [tk, tk+1].

Proof: Since [tk, tk+1] is a constant-connectivity time
slot, edge set E of Gk = (V, E) at t′k ∈ (tk, tk+1) is
invariant in (tk, tk+1). Note that both tk and tk+1

are either the first or last instant that some edge is
present in E. Thus, any edge present at an instant
t′k ∈ (tk, tk+1) is also present at any instant t′′k ∈
[tk, tk+1].

Theorem 4.4 Framework 2 returns true if and only
if network N achieves the monotone property P un-
der power p.

Proof: We show that network N achieves P under
power p if and only if every graph Gk (constructed at
step 4.b in Framework 2) achieves P.

If some Gk does not achieve P , then clearlyN does
not achieve P under power p.

Conversely, if network N does not achieve P under
power p, then at some instant t ∈ [0, 1] the induced
graph at t under power p does not achieve P . If t
is not a slicing point, then t is in some (tk, tk+1).
Since (tk, tk+1) is a constant-connectivity time slot,
it follows that Gk does not achieve P . If t is a slicing
point, say tk, then recall that tk is either the first or
last instant at which some edge is present. In either
case, it follows that the edge set of Gk as constructed
at step 4.b in Framework 2 is a subset of the edge set
present at tk. Hence, Gk does not achieve P. The
theorem follows.

Theorem 4.5 If CheckGraphForP runs
in time Rc, then Framework 2 runs in time
O(max(n4, n2Rc)).

Input: An instance N of CRMN , a power p, and a
monotone property P.

Output: If N achieves P under power p, return true;
else return false.

Steps:

1. T ← ∅ : a set of slicing points.

2. For each two distinct nodes Vi, Vj in N do,

(a) If the equation π(Vi, Vj)[t] = p is a linear
equation,

i. Compute the solution tg to the equa-
tion π(Vi, Vj)[t] = p.

ii. If tg ∈ (0, 1), then T ← T ∪ {tg}.

(b) If the equation π(Vi, Vj)[t] = p is a
quadratic equation,

i. Compute the real solutions tg and th to
the equation π(Vi, Vj)[t] = p.

ii. If tg ∈ (0, 1), then T ← T ∪ {tg}.

iii. If th ∈ (0, 1), then T ← T ∪ {th}.

3. Let ST be the sorted list of distinct values in T ,
and let Tk = [tk, tk+1] be the kth time slot of
the unit time interval as defined by the adjacent
values in ST .

4. For each Tk do,

(a) t′k ← an interior time instant of Tk.

(b) Construct a graph Gk = (V, E), where V is
the set of nodes in N and E = {(Vi, Vj) :
π(Vi, Vj)[t

′

k] ≤ p}.

(c) If CheckGraphForP(Gk) is false, then
return false.

5. Return true.

Figure 4: Framework 2 for the Decision Version of
〈CRMN, P, MaxP〉 — CHECKCRMNFORP

Proof: In Framework 2, step 2 takes O(n2) time, since
there are O(n2) equations and each can be solved
in time O(1). Obviously, step 3 takes O(n2 log n)
time. Now, consider the running time of step 4. Im-
plementing step 4 as described in Framework 2 re-
quires O(max(n4, n2Rc)) time, since there are O(n2)
time slots, and for each k, constructing Gk also takes
O(n2) time. The theorem follows.

Corollary 4.6 If P is Connected, then Frame-
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work 2 runs in worst case time O(n2 log2 n) and ex-
pected time O(n2 log n(log log n)3).

Proof: From Theorem 4.5, the running time of
Framework 2 for Connected is O(n4). However,
that running time can be reduced by observing
that Gk and Gk+1 for the consecutive time slots
(tk, tk+1) and (tk+1, tk+2) differ only by the inser-
tion or deletion of an edge 11. This allows us to
implement step 4 using dynamic graph algorithms
[10, 21]. Such algorithms process a sequence of up-
date and query operations interspersed in any or-
der, where the update operations include the inser-
tion and deletion of edges, and the query operation is
a query about some property of the graph12. Us-
ing [10], these operations for Connected can be
implemented in O(log2 n) amortized time per up-
date and O(log n/ log log n) amortized time per query.
Thus, over all O(n2) iterations, step 4.b can be
implemented in O(n2 log2 n) worst case time and
step 4.c can be implemented in O(n2 log n/ log log n)
worst case time. Likewise from a result of [21]
in which queries require O(log n/ log log log n) time
while updates require O(log n(log log n)3) expected
amortized time, it follows that over all the O(n2)
iterations, steps 4.b and 4.c can be implemented in
O(n2 log n(log log n)3) expected amortized time and
O(n2 log n/ log log log n) time. Note that step 4.c
uses these dynamic graph operations in place of
CheckGraphForP. Hence, for Connected, the
worst case running time is O(n2 log2 n) and the ex-
pected running time is O(n2 log n(log log n)3).

4.3 A Framework for 〈CRMN, P,

MaxP〉

In this subsection, we give a framework for solving
the optimization version of CRMN problems. That is,
given an instance N of CRMN, to find the minimum
power pmin uniformly assigned to all nodes such that
N achieves a monotone property P under pmin. We
begin with the following lemma:

11This is assuming that there is only one slicing point at
tk+1. When there are multiple slicing points at tk+1, the up-
date operations described in this proof are applied to each of
those slicing points.

12In [10], there are only two graph properties (related to this
paper) handled by their dynamic graph algorithms. These
properties are Connected and 2-Node/Edge-Connected.
However, it is not hard to see that Minimum Degree Con-
straint can be processed incrementally in constant time as
follows. Let every node be associated with a counter that
records the number of incident edges on that node. The up-
date operation is that when an edge comes into or goes out of
existence, the degree of each node is accounted for by increas-
ing or decreasing the counter associated with each endpoint of
that edge.

Figure 5: An Example of Constant-Order Time Slots

Lemma 4.7 Given moving nodes A (which moves
from A to A′) and B (which moves from B to B′),
max(π(A, B), π(A′, B′)) is the minimum power that
can be assigned to both A and B such that nodes A
and B are continuously connected as they move si-
multaneously from their respective starting positions
to ending positions at their respective constant rates.

Proof: Since the distance function dAB(t) between
nodes A and B is the square root of a quadratic func-
tion, the maximum distance between nodes A and B
is max(|AB|, |A′B′|). Hence, the lemma follows.

Next, letting Gt = (V, Et) be the threshold graph
at time instant t, we state two definitions. (We use
|ei| to denote the length of an edge ei in Gt.)

Edge em ∈ Et is a MinMax edge at t, if G′

t = (V, E′

t)
achieves a monotone property P, where E′

t = {ei ∈
Et : |ei| ≤ |em|}, and G′′

t = (V, E′′

t ) does not achieve
P, where E′′

t = Et \ {ei ∈ Et : |ei| ≥ |em|}.

Time slot [tx, ty] is a constant-order time slot if
there exists an ordered list E∗ of the network edges
such that at any time instant t ∈ [tx, ty], E∗ is an
ordered list by length of the edges in Gt.

An example of constant-order time slots is shown
in Figure 5. Since π(A, B)[t] is always greater than
or equal to π(C, D)[t] before t1 and after t2, and
since π(A, B)[t] is smaller than or equal to π(C, D)[t]
throughout [t1, t2], there are three constant-order
time slots: [t1, t2], the time ending at t1 and the time
beginning with t2.

With these definitions in hand, we have the follow-
ing lemma.

Lemma 4.8 Given a constant-order time slot [tx, ty]
and a time instant t′ ∈ (tx, ty), if edge em is a Min-
Max edge at t′, then em is a MinMax edge at any
instant t′′ ∈ [tx, ty].

Proof: By way of contradiction, assume that there
exists an instant t′′ ∈ [tx, ty] such that em is not a
MinMax edge at t′′. Let ep be a MinMax edge at t′′,
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and note that |ep| cannot be equal to |em| at t′′, since
then em is also a MinMax edge at t′′.

Let G = (V, E) be the threshold graph for an in-
stance N of CRMN. There are two cases.

Case 1: |ep| > |em|.

Here, let G′′ = (V, E′′) be the graph at t′′ with
E′′ = E \ {ei : |ei| ≥ |ep|}. Since ep is a MinMax
edge at t′′, G′′ does not achieve a monotone property
P . Let G′ = (V, E′) be the graph at t′ with E′ =
{ei : |ei| ≤ |em|}. Since em is a MinMax edge at t′,
G′ achieves P . Since the ordering of the sorted edge
list is invariant and |ep| > |em|, E′ is a subset of E′′.
Hence, G′′ does not achieve P while G′ achieves P.
This is a contradiction.

Case 2: |ep| < |em|.

Here, let G′′ = (V, E′′) be the graph at t′′ with
E′′ = {ei : |ei| ≤ |ep|}. Since ep is a MinMax edge
at t′′, G′′ achieves a monotone property P . Let G′ =
(V, E′) be the graph at t′ with E′ = E \ {ei : |ei| ≥
|em|}. Since em is a MinMax edge at t′, G′ does not
achieve P . Since the ordering of the sorted edge list
is invariant and |ep| < |em|, E′ is a superset of E′′.
Hence, G′′ achieves P while G′ does not achieve P.
This is also a contradiction.

Thus, em is a MinMax edge in G at any instant
t′′ ∈ [tx, ty].

Based on Lemma 4.8, the framework for solving an
instance of CRMN will be presented in two phases.
We first give an algorithm for time slicing that pro-
duces the constant-order time slots, then we pro-
vide the framework optimally solving an instance of
CRMN.

Our algorithm for time slicing is as follows.
For each pair of non-identical threshold functions
π(Va, Vb)[t] and π(Vc, Vd)[t], we calculate the real
solutions (if any) to the equation π(Va, Vb)[t] =
π(Vc, Vd)[t] (equivalently, to the equation dVaVb

(t) =
dVcVd

(t)). The resulting solutions are called slicing
points, and the edges (Va, Vb) and (Vc, Vd) are said
to define the slicing points. Note that any pair of
distinct edges define at most two slicing points. We
collect all O(n4) distinct slicing points into a sorted
list. Adjacent points in this sorted list define a time
slot. Here, given a threshold graph G = (V, E) at
an instant in a time slot [tx, ty], the ordering of a
sorted edge list for E is invariant in [tx, ty]. It follows
that each such time slot is a constant-order time slot.
Algorithm 3 presents the details for time slicing.

Lemma 4.9 Algorithm 3 runs in time O(n4 log n).

Proof: There are O(n2) edges and O(n2) threshold
functions. Hence, there are O(n4) equations to be

Input: An instance N of CRMN .

Output: A set of constant-order time slots Tk.

Steps:

1. T ← ∅ : a set of slicing points.

2. For each two distinct threshold functions
π(Va, Vb)[t] and π(Vc, Vd)[t] do,

(a) If the equation π(Va, Vb)[t] = π(Vc, Vd)[t] is
a linear equation,

i. Compute the solution tg to the equa-
tion π(Va, Vb)[t] = π(Vc, Vd)[t].

ii. If tg ∈ (0, 1), then T ← T ∪ {tg}.

(b) If the equation π(Va, Vb)[t] = π(Vc, Vd)[t] is
a quadratic equation,

i. Compute the real solutions tg and th to
the equation π(Va, Vb)[t] = π(Vc, Vd)[t].

ii. If tg ∈ (0, 1), then T ← T ∪ {tg}.

iii. If th ∈ (0, 1), then T ← T ∪ {th}.

3. Let ST be a sorted list of the values in T , and
let Tk = [tk, tk+1] be the kth time slot of the unit
time interval as defined by the adjacent values in
ST , where 1 ≤ k ≤ w.

4. Return {Tk : 1 ≤ k ≤ w}.

Figure 6: Algorithm 3 — TIMESLICING

solved. Since there are at most two solutions for
an equation and each can be solved in time O(1),
step 2 takes time O(n4). However, since step 3 takes
O(n4 log n) time for sorting the O(n4) slicing points,
Algorithm 3 runs in time O(n4 log n).

Making use of TimeSlicing, we present our
Framework 4 for solving an instance of CRMN in
Figure 7. In Framework 4, step 1 slices the unit
time interval into constant-order time slots. For each
constant-order time slot, step 2 builds a threshold
graph at an internal instant of the time slot, finds a
MinMax edge in that threshold graph, and calculates
the largest threshold value of the MinMax edge in the
constant-order time slot. Step 3 returns the largest
threshold value among all of the time slots as the so-
lution to the instance of CRMN. We now establish
the correctness and the running time of Framework 4.

Theorem 4.10 Framework 4 computes the
optimal solution to an instance of CRMN,
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Input: An instance N of CRMN , and a monotone
property P .

Output: The minimum power pmin such that N
achieves P under pmin.

Steps:

1. {Tk : 1 ≤ k ≤ w} ← TimeSlicing(N ).

2. For k from 1 to w do,

(a) Let t′k be an interior time instant in Tk, and
construct a threshold graph Gk = (V, E) at
t′k.

(b) pmk
← MinMaxGraphForP(Gk).

Construct G
pm

k

k (V ), the graph induced
from Gk by pmk

. Select from Gk

an edge emk
= (Vmk

, Vm′

k
) such that

π(Vmk
, Vm′

k
)[t′k] = pmk

.
Let pmk

← π(Vmk
, Vm′

k
)[tk, tk+1].

(c) Put pmk
into set P .

3. pmin ← the largest value in P .

4. Return pmin.

Figure 7: Framework 4 for 〈CRMN, P, MaxP〉 —
MINMAXCRMNFORP

and the running time is O(max(n6, n4Ro)), if
MinMaxCRMNForP runs in time Ro.

Proof: Since constant-order time slots are produced
by TimeSlicing, it follows directly from Lemma 4.8
that a MinMax edge is found in the induced graph
within each constant-order time slot. Hence, Frame-
work 4 computes the optimal solution for each
constant-order time slot. The overall optimal solu-
tion is clearly the largest of these values.

In Framework 4, step 1 runs in time O(n4 log n).
There are O(n4) iterations in step 2, and step 2.a
takes time O(n2) to construct a threshold graph,
while step 2.b takes time Ro to find a MinMax edge.
Hence, step 2 runs in time O(max(n6, n4Ro)). Step
3 takes time O(n4) to find the largest value.

The theorem follows.

When P is specified as Connected, since Min-
MaxGraphForConn runs in time O(n2 log n),
Framework 4 runs in time O(n6 log n). In the next
subsection, we provide a faster algorithm for Con-
nected.

4.4 A Faster Algorithm for Connec-

tivity

To improve upon the running time of Framework 4
when P is Connected, rather than independently
building a threshold graph and finding a MinMax
edge for each constant-order time slot, we instead
produce the MinMax edges incrementally by using
dynamic graph algorithms.

Here, the two keys to improving the running time
are (1) avoiding an explicit construction of threshold
graphs, and (2) computing the MinMax edge incre-
mentally. To help achieve these two objectives, we
incrementally construct the induced graph G

pm
k

k (V ),
where pmk

is the threshold value of a MinMax edge
for threshold graph Gk.

The key step of this implementation is as follows.
Assume that for constant-order time slot [tk−1, tk] we

have G
pm

k−1

k−1 (V ) and the MinMax edge for Gk−1. For
[tk, tk+1], we update these two items as follows.

Let ex and ey be the two edges that define the
slicing point at tk

13. It follows that sorted lists of
the edges during [tk−1, tk] and during [tk, tk+1] differ
only in that ex and ey interchange their positions,
since they define a slicing point at tk. Note that ex

and ey are adjacent in both sorted edge lists.

Assume |ex| < |ey| in (tk−1, tk). Since every time

slot is a constant-order time slot, G
pm

k−1

k−1 (V ) for

[tk−1, tk] differs from G
pm

k

k (V ) of [tk, tk+1] only in
whether or not ex and ey are present. To see this
clearly, we consider three cases.

Case 1: Let emk−1
be a MinMax edge for [tk−1, tk]. If

|ex| and |ey| are both less than or both greater than
|emk−1

| in [tk−1, tk], then emk−1
is also a MinMax edge

for [tk, tk+1]. That is emk
= emk−1

, hence G
pm

k

k (V ) =

G
pm

k−1

k−1 (V ).

Case 2: If |ex| is less than |emk−1
| and |ey| is equal to

|emk−1
| (i.e., ey is a MinMax edge) in [tk−1, tk], then

G
pm

k−1

k−1 (V ) is updated to obtain G
pm

k

k (V ) as follows:
delete ex and check whether the resulting graph G′

is connected. If so, ey is a MinMax edge for [tk, tk+1]

and G
pm

k

k (V ) = G′. If G′ is not connected, then ex

is inserted into G′. The resulting graph is G
pm

k

k (V )
and ex is a MinMax edge for [tk, tk+1].

Case 3: If |ex| is equal to |emk−1
| (i.e., ex is a MinMax

edge) in [tk−1, tk], then |ey| is greater than |emk−1
|

in [tk−1, tk], in which case G
pm

k−1

k−1 (V ) is updated to

obtain G
pm

k

k (V ) as follows: delete ex, insert ey, and

13Note that when there are identical threshold functions,
multiple pairs of edges might define the same slicing points.
In that case, the procedure described in the remainder of the
proof is carried out for each such pair of edges.
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Input: An instance N of CRMN , and P is Con-
nected.

Output: The minimum power pmin such that N
achieves Connected under pmin.

Steps:

1. {Tk : 1 ≤ k ≤ w} ← TimeSlicing(N ).

2. Let t′1 be an interior time instant in T1, and con-
struct a threshold graph G1 = (V, E) at t′1.

3. pm1 ← MinMaxGraphForP(G1).
Construct G

pm1
1 (V ), the graph induced from

G1 by pm1 . Select from G1 an edge em1 =
(Vm1 , Vm′

1
) such that π(Vm1 , Vm′

1
)[t′1] = pm1 .

Let pm1 ← π(Vm1 , Vm′

1
)[t1, t2].

4. P ← {pm1}.

5. For k from 2 to w do,

(a) Update(Tk, emk−1
, G

pm
k−1

k−1 (V )), which re-

turns emk
and G

pm
k

k (V ).

(b) pmk
← π(Vmk

, Vm′

k
)[tk, tk+1], where emk

=
(Vmk

, Vm′

k
).

(c) P ← P ∪ {pmk
}.

6. pmin ← the largest value in P .

7. Return pmin.

Figure 8: Algorithm 5 for 〈CRMN, Connected,
MaxP〉 — MINMAXCRMNFORCONN

check whether the resulting graph G′ is connected. If
so, ey is a MinMax edge for [tk, tk+1] and G

pm
k

k (V ) =
G′. If G′ is not connected, then ex is inserted into G′.
The resulting graph is G

pm
k

k (V ) and ex is a MinMax
edge for [tk, tk+1].

The improved algorithm is presented as Algo-
rithm 5 in Figure 8. The steps described above in
cases 1, 2 and 3 are assumed to be carried out by
a procedure Update which takes as parameters Tk,
emk−1

and G
pm

k−1

k−1 (V ) and which returns emk
and

G
pm

k

k (V ).

Steps 2 - 5 of Algorithm 5 correspond to step 2
of Framework 4. Our approach for these steps is to
utilize dynamic graph algorithms to construct the in-
duced graphs G

pm
k

k (V ). Specifically, steps 2 - 4 in
Algorithm 5 provide the initial data structures and
step 5 provides the incremental construction.

Since Algorithm 5 finds the MinMax edges for all
constant-order time slots, we have:

Theorem 4.11 The value pmin returned by Algo-
rithm 5 is such that network N achieves Connected
under power pmin, and pmin is the minimum such
power.

Finally, we consider the running time of Algo-
rithm 5.

Theorem 4.12 Algorithm 5 runs in worst case time
O(n4 log2 n).

Proof: From Lemma 4.9, step 1 requires O(n4 log n)
time. Step 2 constructs a threshold graph in a
straightforward fashion in O(n2). Since P is Con-
nected, step 3 takes time O(n2 log n) for the call to
MinMaxGraphForConn and time O(n2) to con-
struct G

pm1
1 (V ) and find edge em1 . For step 5, there

are O(n4) iterations. In each iteration, step 5.a dom-
inates the running time. By using dynamic graph
algorithms, step 5.a is completed in time O(log2 n).
Specifically, for Connected, in each iteration of
that step, the Update procedure does at most two
edge insertions/deletions and one query of connectiv-
ity in constructing Gpmk

k (V ) from G
pm(k−1)

k−1 (V ). Re-
call that the algorithm of Holm et al. [10] utilizes
O(log2 n) amortized time per insertion/deletion and
O(log n/ log log n) time per connectivity query. Since
there are totally O(n4) constant-order time slots, the
total running time of step 5 over all iterations is
O(n4 log2 n). The theorem follows.

More generally, for any property P for which there
exists a dynamic graph algorithm, we have:

Theorem 4.13 If MinMaxGraphForP runs
in time Ro and Update runs in time Ru,
then Algorithm 5 runs in worst case time
O(max(n4 log n, n4Ru, Ro)).

Since the dynamic graph algorithm in [10] can also
deal with the properties 2-Node-Connected and
2-Edge-Connected, in O(log5 n) and O(log4 n) re-
spectively, it follows that:

Corollary 4.14 When monotone property P is spec-
ified as 2-Node/Edge-Connected, Algorithm 5
runs in worst case time O(n4 log5 n) for 2-
Node-Connected, and runs in worst case time
O(n4 log4 n) for 2-Edge-Connected.

Using a result of [21] for dynamic graph con-
nectivity in which connectivity queries require
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O(log n/ log log log n) time while updates require
O(log n(log log n)3) expected amortized time, it fol-
lows that:

Corollary 4.15 Algorithm 5 runs in expected time
O(n4 log n(log log n)3).

4.5 Example Problems

To gain some perspective on the various CRMN re-
sults, in this subsection we summarize the worst case
running times for solving the decision and optimiza-
tion CRMN problems for sample monotone prop-
erties: (1) Connected, (2) 2-Node-Connected,
(3) Minimum Degree Constraint of ld, and (4)
Bounded Diameter of 2. Since there are multi-
ple algorithms and frameworks proposed in Section 4,
we list the fastest running time for each property.
Note that for the decision problems, when a fast dy-
namic graph algorithm is applicable in Framework 2,
the resulting algorithm typically runs faster than the
straightforward implementation. Likewise, for the
optimization problems, when there is a fast dynamic
graph algorithm for the property, Algorithm 5 typi-
cally runs faster than Framework 4.

Property Decision Optimization

Connected O(n2 log2 n) O(n4 log2 n)

2-Node-Connected O(n2 log5 n) O(n4 log5 n)

Minimum Degree Constraint O(n2 log n) O(n4 log n)

Bounded Diameter of 2 O(n5) O(n7 log n)

Since Connected, 2-Node-Connected, and
Minimum Degree Constraint of ld can be com-
puted incrementally by using dynamic graph algo-
rithms, the algorithms introduced in [10] are used.
Specifically, we use an O(log2 n) Update algorithm
for Connected and an O(log5 n) Update algo-
rithm for 2-Node-Connected. According to Theo-
rem 4.12 and Theorem 4.14, the running times of the
optimization algorithms for rows 1 and 2 are given.
Similarly, by using dynamic graph algorithms, the
running times of the decision algorithms for rows 1
and 2 are derived in a manner that is virtually iden-
tical to that for the optimization algorithms. In par-
ticular, the running time of the decision algorithm for
row 1 is given by Corollary 4.6.

The dynamic graph algorithm for Minimum De-
gree Constraint was not presented in [10]. Re-
call however from Section 4.2 that its Update algo-
rithm can be easily implemented in time O(1). It
follows that the running times O(n2 log n) for the de-
cision algorithm and O(n4 log n) for the optimization
algorithm are determined by sorting the constant-
connectivity or constant-order time slots. Specif-
ically, the running time of the decision algorithm

for row 3 is derived analogously to that for Con-
nected from Corollary 4.6 by using dynamic graph
algorithms, and the running time of the optimization
algorithm for row 3 is given by Theorem 4.13.

Since there is no known algorithm for incrementally
implementing Bounded Diameter of 2, the run-
ning times for row 4 are determined by Framework 2
and Framework 4. Since the naive decision algorithm
for row 4 in stationary networks runs in time O(n3),
according to Theorem 4.5, the running time of the
decision algorithm for row 4 is O(n5). Likewise, since
the naive optimization algorithm for row 4 in station-
ary networks runs in time O(n3 log n), according to
Theorem 4.10, the running time of the optimization
algorithm for row 4 is O(n7 log n).

5 Related Work

Recall that there are no previous theoretical results
on topology control when there are moving nodes. In
this section, we provide a brief overview for stationary
networks.

As noted in Section 3.2, the general form of
topology control considered in this paper was first
proposed by Ramanathan and Rosales-Hain [18].
They presented efficient algorithms for the problems
〈Undir, Connected, MaxP〉 and 〈Undir, 2-Node
Connected, MaxP〉. In addition, they presented
efficient distributed heuristics for those problems.
Subsequently, [15] provided a general polynomial al-
gorithm for minimizing maximum power for a range
of properties.

Considerable work has been reported in the liter-
ature on a variety of other topology control prob-
lems. For instance, several groups of researchers have
studied 〈Undir, Connected, TotalP〉, 〈Undir, 2-
Node Connected, TotalP〉 and 〈Undir, Diame-
ter K, MaxP〉 [15, 14]. Here, TotalP is the op-
timization objective for minimizing the total power
used by the nodes. Likewise, work on the 〈Dir,
Strongly Connected, TotalP〉 problem may be
found in [6, 13, 8]. In most instances, the problems
are shown to be NP-hard and the focus is on the de-
velopment of approximation algorithms having either
O(log n) or constant approximation ratios. Further,
two new approximation algorithms for 〈Undir, 2-
Node Connected, TotalP〉 and 〈Undir, 2-Edge
Connected, TotalP〉 with an asymptotic approx-
imation ratio of 8 are presented in [15]. Both of
the approximation ratios are improved to 4 in [4].
References [2, 3] show the NP-hardness of 〈Undir,
Connected, TotalP〉 and [3] presents a (1 + ln 2)-
approximation algorithm for that problem. The ap-
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proximation ratio is improved to 5/3 in a journal sub-
mission of [3]. There are many other results using
the TotalP objective and the reader is referred to
[14, 17] for a thorough discussion.

6 Conclusions

In this paper, we described a simple model called
CRMN for incorporating mobility into topology con-
trol problems for MANETs. In this model, for every
node we are given the starting and ending positions,
the moving rate, and direction of movement. Our fo-
cus was on finding the minimum power that can be
assigned to all nodes such that the network achieves
a monotone property under such power. Under the
CRMN model, we developed polynomial time frame-
works for solving both decision and optimization
versions of topology control problems for monotone
properties. For some specific monotone properties
(e.g. Connected, 2-Node/Edge-Connected) we
presented faster algorithms using results from fully
dynamic graph algorithms.

The work reported in this paper provides a foun-
dation for the development of distributed algorithms
for the topology control problems in mobile ad hoc
networks. A possible approach for developing dis-
tributed heuristics is to let each node v collect infor-
mation about the speed and direction of the nodes
which are within a small number of hops from v and
use that information and our centralized algorithms
to compute an optimal power value for an appropriate
subnetwork. The computed values for various sub-
networks must then be combined in a careful manner
to obtain a power value which ensures that the net-
work has the desired properties and the computed
power value is reasonably close to the optimal value.
Clearly, the key challenge in such an approach is the
development of techniques needed to combine the in-
formation from various subnetworks in a distributed
manner. The ideas developed in the context of cen-
tralized algorithms presented in this paper may be
further helpful in achieving that goal.

Since this paper is among the first group of theo-
retical results for topology control incorporating mo-
bility, there are many other directions for further re-
search. A second direction for future work is the de-
velopment of algorithms and frameworks for topol-
ogy control problems under more general versions of
CRMN. A third direction is to study topology con-
trol problems for minimizing the total power objec-
tive under the CRMN model and its generalizations.
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