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Abstract

The problem of maintaining an approximate solution for vertex cover when edges may be inserted and deleted
dynamically is studied. We present a fully dynamic algorithm A; that, in an amortized fashion, efficiently accom-
modates such changes. This algorithm utilizes a special technique, introduced here, of handling the processing of
operations (Inserts and Deletes of edges) in stages consisting of a certain predetermined number of such operations.
Within each stage, each operation is executed in the same style. The style may be either Clean or Dirty, depending

upon the density of the graph at the beginning of the stage. We further provide for a generalization of this method
14+V/1+4(k+1)(2k+3)
and present a family of algorithms Ay, k > 1. The amortized running time of each Ay is ©((v+e) 2(2k+3) )

per Insert/Delete operation, where e denotes the number of edges of the graph G at the time that the operation is
V2

initiated. It follows that this amortized running time may be made arbitrarily close to ©((v+e) 2 ). Each of the algo-

rithms given here is 2-competitive, thereby matching the competitive ratio of the best existing off-line approximation

algorithms for vertex cover.

1 Introduction

Recall that verter cover is a classic problem in combinatorial optimization. The study of vertex cover in
computer science has been diverse: it was one of the original NP-complete problems [20]; it is often used
as a technical tool in performing reductions [13]; various approximation algorithms for vertex cover have
been proposed over the past two decades [2, 3, 5, 7, 14, 15, 16, 24]; and, recently, some results in the
area of structural complexity theory have deepened our understanding of the difficulties in designing better
approximations for vertex cover [4, 22].

Recall also that fully dynamic algorithms are aimed at situations where the problem instance is changing
(slowly) over time. This situation occurs often in interactive design processes, and fully dynamic algorithms
incorporate these incremental changes without any knowledge of the existence and nature of future changes.
The objective of course is to develop fully dynamic algorithms that are “competitive” with existing off-line
algorithms.

Although the bulk of the existing work on fully dynamic algorithms has been directed toward problems
known to be in P, e.g. [1, 6, 8, 9, 10, 11, 12, 17, 18, 23, 25], some recent attention has been paid to
fully dynamic approzimation algorithms for problems that are NP-complete [19, 21]. In this case, being
competitive with off-line algorithms means that the quality of the approximation produced by the fully
dynamic approximation algorithm should be as good as that produced by the off-line algorithms. Further,
the running time per operation (i.e. change) of the fully dynamic algorithm should be as small as possible.

Thus, in this paper, we consider fully dynamic approzimation algorithms for verter cover, where:

e edges are inserted into, and deleted from, the graph in a dynamic fashion, and,

e the vertex cover may be adjusted to accommodate the changes to the instance via insertions and
deletions of edges (i.e. vertices may be added to and removed from the vertex cover).

In the subsections that follow we elaborate both on the vertex cover problem itself and on notions
associated with fully dynamic approximation algorithms.
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1.1 Vertex cover

In the vertex cover problem, an undirected graph G = (V, E), v = |V| and e = |E|, with no multiple edges,
and no self-loops is given. The goal is to find a minimum cardinality vertex cover V'. That is, a subset of
V' that covers all edges in E in the following sense: for each edge uw € E, at least one of u and w belongs
to V.

Vertex cover is well-known as one of the earliest NP-complete problems [20]. And, as mentioned earlier,
vertex cover has a number of polynomial time off-line approzimation algorithms [2, 3, 5, 7, 14, 15, 16, 24].
For such an approximation algorithm A, it will be convenient to define the quotient Q(A4,G) = %,
where A(G) and OPT(G) denote the cardinality of a vertex cover of a graph G produced by A, and the
cardinality of a optimal vertex cover of G. Then, the usual measure of the quality of a solution produced by
a vertex cover approximation algorithm A is its competitive ratio R(A) defined as R(A4) = sup{Q(4,G)}.
In this case, A is said to be R(A)—competitive.

All of the off-line approximation algorithms for vertex cover referenced above are 2—competitive , and
no algorithm developed to date has a smaller competitive ratio. Since it is known that vertex cover is
approximable in polynomial time only up to some fixed competitive ratio [22], it could be the case that 2 is
the best possible competitive ratio (unless, of course P = NP). For quotients, better results are possible.
In particular, an algorithm from [3] achieves the quotient of 2 — %. Although this does not improve the
competitive ratio, it certainly improves the quotient, and hence the quality of approximations, for graphs on
a “small” number of vertices: for graphs with less than 2400, 600000, 10'2 vertices, the quotient is bounded
by 1.75, 1.8, 1.9 respectively [3]. Finally, we note that in regard to running times, the fastest of the above
algorithms, e.g. [14, 24], attain the competitive ratio of 2 in time ©(v + €).

1.2 Fully dynamic algorithms for vertex cover

The focus of this paper is on fully dynamic approximation algorithms for vertex cover, and the development
of fully dynamic algorithms that are competitive with existing off-line methods. We begin this section with
a complete description of fully dynamic vertex cover, and follow with a discussion of competitiveness in this
context.

1.2.1 Fully dynamic vertex cover

Fully dynamic approximation algorithms for vertex cover process a sequence of Inserts and Deletes of edges?.
This is a truly on-line situation, in that the algorithms have no advance knowledge of what future changes
(if any) there may be to graph G. As a consequence, in the course of processing Inserts and Deletes, it may
be necessary to change the current vertex cover both in order to maintain a cover, and to insure that the
cover is of the appropriate quality. Thus, as the algorithm proceeds, the status of a vertex may change as it
is either made part of the cover, or is removed from the cover. Further, such changes may occur arbitrarily
often as edges are inserted and deleted.

An important consideration that arises in the fully dynamic context, is just what internal form a “so-
lution” may take. The intent is that the algorithm maintain a form of the solution that is “useful” to the
outside world. In this sense, it is natural to require that, in addition to processing Insert and Delete oper-
ations, fully dynamic approximation algorithms for vertex cover should also handle “lookup” queries of the
following form:

e size — returns in O(1) time the number of vertices in the current vertex cover,
e cover — returns a list of the vertices in the current vertex cover, in time linear in the size of that cover,
e incover(v) — returns in (1) time the value ¢rue if v is in the current vertex cover, and false otherwise.

These queries may be interspersed in the Insert/Delete sequence in any fashion. Of course, since this is an
on-line situation, the algorithm has no advance knowledge of where such queries may occur.

4Note that the size of the vertex set, v = |V, is fixed.



1.2.2 Competitive fully dynamic approximation algorithms for vertex cover

In this section we discuss the notion of competitiveness in the context of developing fully dynamic approxi-
mation algorithms. We begin by noting that with respect to the definitions of quotient and competitive ratio,
there is no need to make a distinction between fully dynamic and off-line algorithms. In each case, these
measures reflect the size of the vertex covers produced by the algorithm relative to the size of optimal covers.

In this framework, let A be an (off-line) approximation algorithm for vertex cover, and let B be a fully
dynamic approximation algorithm for vertex cover. Then, B is approximation—competitive with A if
R(B) < R(A). Thus, our goal in this paper is to develop fully dynamic approximation algorithms for vertex
cover that are 2-competitive.

Note however, that this goal, by itself, is not particularly interesting: such a fully dynamic B can always
be produced simply by executing A after every change. This is clearly not what is intended nor required in
the incremental context. Rather, the goal is to develop such a B whose running time for any instance G of
vertex cover, and any (valid) change of G, call it 4, is Tr(G, ) = o(Ta(6(G)), where Tr(G, ) denotes the
running time required by B to perform the change § on G, and T'4(6(G)) denotes the running time of A on
0(G), the modified instance.

In the case of vertex cover, since the fastest off-line algorithms require time @(v + e), this translates
into developing approximation—competitive fully dynamic algorithms having a running time that is o(v + €)
per operation. We say that a fully dynamic approximation algorithm B for vertex cover has running time
O(f(v,e)) if the time taken by B to process a change to G on v vertices and e edges is O(f(v,e)). If
O(f(v,e)) is a worst case time bound, then B is uniform. If O(f(v,e)) is an amortized time bound, then
B is amortized.

With the preliminaries concluded, the remainder of the paper is organized as follows: In the next section
we provide a simple algorithm Ag for fully dynamic vertex cover. This algorithm is a straightforward
extension of a maximal matching based off-line approximation algorithm for vertex cover. Algorithm Ay is
2—competitive, and its running time is uniform, ©(v) per operation. However, as we indicate in section 2,
Ag may not offer any savings over total recomputation for very sparse graphs. We remedy this situation in
sections 3 and 4, where we present our main results. We begin in section 3 by giving a fully dynamic 2-

competitive algorithm A; having an O((v + e)#) amortized running time per operation. This algorithm
features a specific technique that has two essential ingredients. First, we utilize two different methods
(Clean and Dirty) for the processing of Insert and Delete operations. Second, we partition the processing
of operations into stages, with a certain number of insertions/deletions handled per stage. Within each
stage, all of the operations are handled in an identical fashion (either Clean or Dirty). The description of
A; and the techniques used therein lead to the result of section 4. There we generalize A; and present a
family of fully dynamic approximation algorithms A, k > 1 for vertex cover. For this family of algorithms,
we show that, at the expense of some additional effort (for Ag, k + 1 “tests”), the asymptotic running time

S vz . .
can be made arbitrarily close to ©((v + €)% ) amortized, per Insert or Delete. Each of these algorithms
is 2-competitive, thereby matching the competitive ratio of the best existing off-line algorithms for vertex
cover. Finally, in section 5 we furnish some concluding remarks.

2 A Simple Algorithm for Incremental Vertex Cover

Motivated by the notion of approximation-competitiveness introduced in the preceding section, a natural
approach to the development of fully dynamic vertex cover algorithms is to try to adapt off-line methods to
a fully dynamic context. Thus, we begin by doing just that.

Specifically, we consider a 2-competitive approximation algorithm for vertex cover that runs in O(v + e)
time, and is based on maximal matching [14]. This algorithm simply computes a maximal matching in the
graph G, and then takes as a vertex cover all of the vertices that are incident to the edges in the matching.

A conversion of this off-line algorithm into a fully dynamic one is given below. The conversion is relatively
straightforward, and not particularly interesting. However, the ideas involved in the design of this algorithm,
as well as an appreciation of the situations where it performs rather slowly, are important factors that guide
the development of the algorithms described in sections 3 and 4.



In what follows we describe both the Insert and Delete operations. In each case, it is assumed that,
immediately before an Insert/Delete is processed, there is an existing maximal matching M of the current
G (i.e. not including the effect of this operation), and that the graph G is represented with adjacency lists.

e Insert(a) — to insert an edge a into G, check whether either of its endpoints is already an endpoint in
M. If so, then the set of vertices incident to the edges of M is also a vertex cover of G + a, and nothing
further needs to be done in this regard. If neither of the endpoints of a is an endpoint of an edge in
M, then a is added to M. Clearly M + a is a maximal matching of G 4 a. In either case, we conclude
by updating the adjacency lists of both endpoints of a (to reflect the inclusion of a in G). All of these
operations can be performed, with a proper implementation, in O(1) time.

o Delete(a) - to delete an edge a from G, check whether a is in M. If it is not, then the set of vertices
incident to the edges of M is a vertex cover of G — a, and nothing further needs to be done in this
regard. If a is in M, then, by deleting a from G, we may “uncover” some edges. These “uncovered”
edges of G are the ones whose endpoints are not adjacent to any endpoints of edges in M, other than
a. To cover all such edges in G — a, the following will be done for each endpoint of a:

1. Let u be an endpoint of a. Then the adjacency list of u is scanned until finding a vertex w that
is not an endpoint of an edge in M, or until the end of the list is encountered.

2. If such a w is found, add edge uw to M. Otherwise, do nothing, since all of the edges incident on
u in G — a are covered by endpoints of edges in M — a.

Clearly, the matching that results from this processing is maximal for G — a.
In either case, the adjacency lists of both endpoints of a are updated to reflect the deletion of a.

Finally, note that the deletion of a non—-matching edge can be performed in (1) time, and the deletion
of a matching edge may involve scanning an entire adjacency list, and hence takes ©(v) time.

Hence, we have the following theorem:

Theorem 1 Ag is a fully dynamic approximation algorithm for vertex cover, and it is approximation—
competitive with the standard off-line algorithm for computing a maximal matching (that is, Ay is 2-
competitive). Further, Insert operations, as well as Delete operations of non—-matching edges, take O(1)
uniform running time, and Delete operations of matching edges take ©(v) uniform running time.

Let us remark on some facts about this simple algorithm: its uniform running time is bounded by ©(v),
incurred only while deleting matching edges. The operations are fast in all the other cases, taking only
constant time per operation in the worst case. A natural question that arises here is whether there is a way
to somehow avoid the undesirably high running time of some Delete operations by a careful manipulation of
the dynamically changing information on G, or perhaps perform an amortized analysis of Ap, and attempt
to charge some of the cost of a deletion of a matching edge to some other operation, some vertex or edge.
Unfortunately, a situation where an edge (whose endpoints have high degree) “toggles” into, and out of, G
and M, a number of times, seems to defeat these ideas.

We do note that for graphs G for which v = o(e), even the use of Ag is a definite improvement over a
total recomputation of a maximal matching after each Insert and Delete. Unfortunately, many important
classes of graphs do not belong to this family, e.g. planar graphs.

An obvious question is whether it is possible to improve upon Ag, and design an algorithm that would
guarantee, for each operation performed by that algorithms, savings over recomputation for any graph. To
illustrate this, consider the application of Ag to a very dense graph with e = ©(v?) edges. The first few
operations Ay performs on this graph will offer generous savings, since the running time will be bounded
by O(v) = O(y/e). However, suppose that this graph is subjected to a sequence of edge deletions, and
eventually becomes quite sparse, with e = O(v) edges. The operations performed by Ay on such a graph
offer (asymptotically) no savings whatever over recomputation.



It would preferable to have it be the case that, no matter what happens with the graph, whether its
number of edges increases towards dense graphs or decreases towards sparse graphs, each and every operation
is going to be much faster than recomputation.

In the next section we present an algorithm that accomplishes just that, albeit with an amortized running
time.

3 An Improved, Amortized Algorithm A,

We begin this section by describing an algorithm B; for fully dynamic vertex cover whose amortized running
time is ©((v+e) %) per Insert/Delete operation. In our discussion of algorithm By, we introduce the technique
of Clean and Dirty stages. The ideas involved in designing B; are then used to obtain another algorithm

Aj, with a slightly sharper amortized running time bound of ©((v + e)%) (roughly O((v + €)%™)).

3.1 What is Clean and what is Dirty?

Here we give an intuitive introduction to our technique. Based on the concepts developed here, we sketch
Bj;. In later sections we build on the ideas from this section, developing more and more efficient algorithms.
All of the forthcoming algorithms are closely related to By, and the description of By given here will provide
for an easy appreciation of Ay, as well as the algorithms Ay, k > 1 described in section 4.

The algorithm B, is also based on the computation of a maximal matching to provide a vertex cover.
For the purposes of fully dynamic approximation of vertex cover, this method is appealing because whether
or not an edge is in the matching depends only on the “local properties” of that edge, i.e. on the status of
the endpoints of the edge under consideration. Here, the status of a vertex is either matched, i.e. being an
endpoint of some matching edge, or non—matched, i.e. not being an endpoint of some matching edge in the
current maximal matching.

We proceed by reiterating the difficulties encountered in attempting to speed up Ag. The weak spot
of this algorithm is that a Delete of a matching edge may involve scanning as many as ©(v) elements of
the adjacency lists of the two endpoints of that edge, searching for an unmatched vertex. This being the
case, it would seem reasonable to do the following: For each vertex u, separate the adjacency list of u into
two sublists, with one sublist containing the matched neighbors of u, and the other sublist containing the
non-matched neighbors of u. Such a partition would make it trivial to locate an unmatched neighbor of w.
Unfortunately, the maintenance of such a partition is quite costly. In particular, the sequence of Inserts and
Deletes may be such that a vertex of high degree “toggles” between being and not being an endpoint of a
matching edge. This forces each neighbor w of that vertex to continually register these changes by moving
the vertex between the two parts of the adjacency list of w. If such vertices have as many as ©(v) neighbors,
there are ©(v) changes to be performed per operation.

3.1.1 The Dirty strategy

Despite the difficulties just discussed, the idea of separating adjacency lists into two sublists in order to
facilitate the location of unmatched neighbors is an appealing one, and is one that we utilize, in a modified
form, in all of the remaining algorithms of this paper. To attempt to deal with the “toggling” problem
discussed above, we relax the stringent condition that all of the changes of status be recorded immediately.
The idea is to proceed with the computation, with the awareness that some of the information about the
status of the neighbors of a vertex may be false. Thus, the algorithm tolerates some “inaccuracy” in the
sublists. To make this work, there needs to be an efficient mechanism for testing whether the information
read from the adjacency list (two sublists) is actually correct. This can be easily done in O(1) uniform
running time: in a record associated with each vertex, one bit of information will suffice to record whether
or not that vertex is an endpoint in the current maximal matching; and, each entry of an adjacency list (two
sublists) may have an additional pointer that points to the record associated with the respective vertex.

It is also critical that there be a bound on the number of operations that the algorithm performs while
tolerating inaccuracy. After this number of operations, call it s, the algorithm “cleans up” all of the inaccurate



information, and then again proceeds in the described fashion until the next “clean—up”, and so on. The
“clean—up” may take longer than © (v + e), but if it is performed rather rarely, the cost may be amortized by
charging to the operations performed between the two successive “clean—ups”. Insert and Delete operations
between two successive “clean—ups” may require ©(s) time in order to deal with O(s) inaccurate information
that may be present.

This is the essence of the Dirty strategy. As will be seen later, if G is sparse, the Dirty strategy provides
significant savings; whereas, if G is dense, then the Dirty strategy will not be beneficial.

3.1.2 The Clean strategy

The Clean strategy performs Insert and Delete operations in precisely the manner described in the discussion
of Ay, along with the additional requirement that, for each vertex, both adjacency sublists are maintained
correctly from operation to operation. As noted before, Ag provides generous savings if G is dense.

3.2 Incorporating both strategies

Recall that our goal is to offer savings over recomputation, regardless of whether G is dense or sparse. And,
as noted earlier, the density of G may change in the course of performing many operations. Thus performing
only one of the two strategies will not do, since a dense graph may well become sparse and vice versa.
Therefore, in the algorithms that follow, we incorporate a certain level of supervision, such that, from time
to time, the algorithm will pause and determine whether the next several operations will be performed in
the Clean or Dirty way. This algorithm operates in stages, processing a stream of on-line requests for
Inserts/Deletes and queries (size, cover, incover(u)).
We now proceed with a description of B;. Here, we define a stage in the execution of B; as:

e the execution of two tests that will determine whether all of the Insert and Delete operations in that
stage will be done in the Clean or Dirty manner;

e the execution of v*, a = % Insert/Delete operations, in an on-line fashion;

e in case the chosen strategy was Dirty, the “clean—up” of the inaccurate information in the adjacency
sublists.

Next, we give the details of the tests performed at the beginning of each stage, and give a thorough
description of the Clean and Dirty modes of operation.

o Tests — two tests are performed. If either of the two tests succeeds, then the Clean strategy will be
used. Conversely, if both tests fail, then the Dirty strategy will be used.

1. The first test asks whether there are at least v*2, by = % vertices of degree at least v°2, ¢y = %
If so, the Clean strategy should be used throughout the stage (i.e. for the processing of v@,
a= % Insert/Delete operations). While performing this test, label the vertices meeting the degree
requirement as high, and the other vertices as low. These labels will, in case both tests fail and
the Dirty strategy is adopted, provide the information needed to properly execute the slightly
inaccurate operations and the “clean—up”.

2. The second test asks whether there are at least v*1, b; = % vertices of degree at least v°!, ¢; = 5.

6
If so, then the Clean strategy should be used throughout the stage.

These tests may be implemented in time ©(v). This does not increase the running time of the algorithm
in either the Clean or Dirty mode of operation.

e Clean - as noted before, we perform the operations in a manner almost identical to that of Ag, with
one exception: since each vertex now has two adjacency sublists, recording the neighbors currently in
the matching and not in the matching respectively, this information needs to be maintained rigorously,
and upon the completion of each operation it should be correct. Note that the running time is ©(v) per



Insert/Delete operation, but in the case of Clean, this is permissible: O(v) = ©(e?). In addition, the
relatively small number of operations in the stage cannot significantly change the fact that G contains
a relatively high number of edges: in case the first test succeeded, v® < v*2+¢2 ie. O(vb2te2 £ ¢%) =
O(vb2F°2) (similar reasoning for the second test). The remaining issue of accounting for the running
time required to perform the test(s) is easily resolved by assigning the entire cost (O(v)) to the first
operation in the stage.

¢ Dirty — the very fact that Dirty is being executed implies that both tests failed. This provides some
useful information. In particular, consider the following classification of vertices of G at the beginning
of such a stage:

— Vertices of degree at least v°*. We call the set of such vertices XL (extra large), and note that there
are fewer than v such vertices at the beginning of the stage. While performing the amortized
analysis we will conservatively assume that at the end of the stage, all XL vertices are of degree
.

— Vertices with degree at least v°2, but less than v°*. We call the set of such vertices L (large), and
note that there are less than v2 such vertices® at the beginning of the stage. While performing
the amortized analysis we will conservatively assume that at the end of this stage, all L vertices
are of degree v°! + v* = ©(v°!).

Note that the XL and L vertices are precisely the vertices that are labeled as high while performing
the first test.

— All other vertices. We call the set of such vertices S (small), and note that these are vertices with
degree less than v°2 at the beginning of the stage, thus labeled as low. Note that the degree of
such vertices may grow within the stage to at most O(v®).

With these preliminaries concluded, we proceed with a description of a Dirty stage. As noted, in a
Dirty stage, v* Inserts/Deletes are performed. Both Inserts and Deletes depend upon the information
about the status of the endpoints of an edge. That status (recall: matched/non-matched) is always
maintained correctly in the record associated with each of the endpoints of the edge. The aforemen-
tioned “inaccuracy” pertains to the fact that some elements might belong to the wrong adjacency
sublist.

To simplify our description of a Dirty stage, we divide Inserts and Deletes into two categories:

Operations that do not change the status of any vertices — this category includes both the Inserts of edges
having at least one endpoint in the current maximal matching, and Deletes of non-matching edges.
Since our goal is simply to maintain a maximal matching, in these cases no vertices should change
their status. It follows that we need only add (for Inserts) or remove (for Deletes) one endpoint, call it
u, to/from the other endpoint’s, call it w, adjacency sublists and vice versa. In the case of insertion,
u should be added into the appropriate sublist according to the status of w. This needs to be done
in a specific way: if u is a high vertex, the algorithm insists that u should be added at the front of
the appropriate sublist (matched/non—matched); if u is a low vertex, and it needs to be added to the
non—-matched sublist of w, then u is added at the front of the sublist; whereas if it needs to be added to
the matched sublist of w, then the algorithm insists that u should be added at the end of the sublist.

In addition, we maintain an update list (doubly linked), for each vertex z, that identifies of all the
occurrences of z in the adjacency lists throughout G. So, before completing the Inserts and Deletes in
this category, the algorithm will add the newly created adjacency list entries to (remove the deleted
adjacency list entries from) u’s and v’s respective update lists.

All of these actions may be performed in constant time.

5Note that this a very loose bound, since we did not exclude the XL vertices. It will turn out that this generosity does not
affect the analysis, and we chose to keep matters simple.



Operations that change the status of one or more vertices (at most two vertices per operation) — this
category includes both the Inserts of edges neither of whose endpoints are in the current maximal
matching, and Deletes of matching edges.

First, we consider the Insert of an edge h neither of whose endpoints (u and w) is in the current maximal
matching. Hence, h needs to be added to the matching. To reflect the inclusion of h in G, u and w are
added into each other’s adjacency sublists, and update lists. We do not however necessarily update
the entries for v and w in their neighbor’s sublists (to reflect that h is now in the matching). This is
the essence of the Dirty technique: first for » and then for w, the algorithm checks whether u (w) is
labeled low. If so, the entire update list associated with u (w) is scanned, and the status information
at all of the neighbors’ adjacency sublists is updated. If, on the other hand, u (w) is labeled high, the
sublists of the neighbors of u (w) will not be updated. This inaccuracy in some adjacency sublists is
the essential ingredient that leads to a reduced running time per operation. Finally, it follows from the
vertex degrees that an Insert requires ©(v®) time.

Next, we consider a Delete of a matching edge f. Similarly to above, the adjacency sublists, and the
update lists of u and w (the endpoints of f) are updated to reflect the deletion of f from G. In addition,
in order to maintain the matching, up to two edges may need to be added to the matching, and, of
course, f needs to be removed. To do this we first check if any of the remaining edges incident to u
and w can be added to the matching. Checking for such edges is a somewhat involved, since adjacency
sublists may contain some inaccurate information. Thus, let x be first u and then w. The algorithm
scans the adjacency sublists of z. Since the goal is to locate a non—-matched vertex adjacent to z, the
sublist of x containing non—-matched vertices is scanned first. This scan proceeds until a vertex y is
found that both claims to be, and truthfully is, a non—matched vertex. Note that when scanning z’s
non—-matched sublist, the only “liars” are high vertices, because low vertices are updated after each
operation. It follows that one of two cases will occur: either a truthfully non-matched neighbor of z
will be found after scanning O(v*) elements of the non—matched sublist of x, or the scanning of the
entire non—matched sublist of z will not yield a non—matched neighbor. Note that, in the latter case,
the sublist is rather short (O(v*)). However, this does not mean that there is not a non—-matched
neighbor of z. There could be such a neighbor who is sitting in the matched sublist of z, but is a
“liar”. Here, our discipline for inserting high and low vertices into adjacency sublists comes to the
rescue: high vertices are at the front of the matched sublist. Thus, the algorithm proceeds by scanning
the matched sublist until either a “liar” is found, or a low vertex is encountered, or the entire sublist
is scanned. It follows that no more than O(v®) elements in both sublists need to be scanned until
either a non—-matched vertex has been found, or until it becomes certain that there is no non—matched
neighbor of z.

If a non—matched neighbor y of x is located, then the edge zy needs to be added to the matching by
updating the status of x and y. This is done precisely as described above for dealing with the insertion
of an edge, neither of whose endpoints is in the matching. This means that if z (y) is a low vertex,
then a full update of the appropriate sublists is performed, and if z (y) is a high vertex, then nothing
further is done. Therefore, the total running time for operations of this kind is bounded by ©(v?).

We conclude our description of the processing in a Dirty stage, by considering the “clean—up” to
be done at the end of the stage. Recall, that in the process of executing the operations, accurate
information was always maintained for low vertices (i.e. some pains were taken to always have a low
vertex on the appropriate sublists). Therefore, the only “clean—up” that needs to be done in this regard
is associated with high vertices. This “clean—up” is simple: for each high vertex wu, it suffices to scan
the update list of u, and using the entries on that list, to place u in the appropriate sublist of each of
its neighbors (placed at either the front or end of the sublist according to the status and the degree of
u). The time required is proportional to the degree of u.

The overall time for this “clean-—up” is thus: |[XL|O(v) + |L|O(v°t) < v*1O(w) + v*2 O (ve1) = O(v??).
There is yet another “clean—up” that needs to be performed. Namely, in the process of executing

insertions and deletions within a stage, a certain number of vertices (O(v*)) may, although initially
labeled as low, actually become of high degree, and should be labeled as high. While this is going to



happen at the beginning of the next stage, the resulting data structure may become degenerate: recall
that the algorithm insists upon a very particular arrangement of high and low vertices in matching
sublists. Thus, this needs to be rectified by “cleaning—up”, i.e. placing the transient (low — high)
vertices at the appropriate end of all the matched sublists where they occur. There can be O(v®) such
vertices. The situation is analogous for vertices that started initially as high, and eventually had their
degree reduced to low. The overall time required for this “clean—up” in a Dirty stage® is again O(v2?).

Note that we can charge the time required to perform the tests by simply adding it to the time for
“clean—up”, since 2a > 1, i.e. O(v?* +v) = O(v2?).

The cost of the “clean—up”, i.e. the incurred running time, can be charged to the preceding v®
Insert/Delete operations, allocating a charge of O(v*) to each operation, so the amortized running
time of each operation in a Dirty stage of By is O(v®).

Summarizing, each operation in a Clean stage requires ©(v) time, which is, due to the large number of
edges, Q(e*), a = 3. Also, each operation in a Dirty stage requires amortized time ©(v®), a = 2. Hence,
operations performed in both Clean and Dirty fashion achieve significant savings over recomputation. The
same will be true of all the subsequent algorithms. Thus we have the following theorem:

Theorem 2 Bj is a 2-competitive fully dynamic approzimation algorithm for vertex cover (thus, it is
approzimation—competitive with the standard off-line algorithm). Further, both Insert and Delete operations
require ©((v + €)7) amortized running time.

3.3 A slight improvement — Algorithm A;

Our description of B; involved the constants a, by, ¢1, ba, and ¢5. The values of these constants were carefully
chosen to produce a time bound of ©(v®). In this section we describe algorithm A;, a variation of By, that
achieves a slightly improved running time through a different selection of the values of those constants.
Further, we can show that this particular choice of the values of the constants is the best possible. That
is, there are no other values of the constants that produce a superior running time. In some sense this says
that A; is “the best in its class””.

Due to space constraints, we furnish without proof:

Theorem 3 A; is a 2-competitive fully dynamic approzimation algorithm for vertex cover (thus, it is
approzimation—competitive with the standard off-line algorithm). Further, Insert operations, as well as Delete

. . 1+v4l , , , . . . Va1
operations require ©((v + e) 10 ) amortized running time. The choice of constants in Ay, i.e. a = 1+1041,
bi=2a—1,¢ = %, by = %, and ¢ = a, is optimal in the sense that no other choice of a, ... , co can

improve the running time.

4 Further Improvements — Algorithms A,

In this section we develop a family of fully dynamic algorithms Ay, k > 1, each of which improves upon the
running time of the basic algorithm A;.

The difference between A; and any Ay, k > 1, is only in the number of tests performed prior to the
execution of a stage. In general, Ay will perform k + 1 tests of the form, k+ 1> i > 1:

Are there at least v% vertices of degree at least v ?

As before, an affirmative answer to any of the k + 1 questions implies the execution of a Clean stage,
whereas a negative answer to all of the questions implies the execution of a Dirty stage. As in A;, during

8Note that this “clean—up” is not necessary in a Clean stage, since there is sufficient time to perform the updates of this
nature within each Insert/Delete operation.

"Note that this does not at all suggest that A; is the best among all algorithms. In the next section, we present a family of
algorithms Ay, k > 1, all of which, except of course A; itself, are superior to Aj.



the computation of the first test, each vertex is labeled high/low. Aside from the use of the additional tests,
each of these algorithms proceeds in a manner identical to that of A;.
Our results are summarized in the following theorem:

Theorem 4 For each integer k > 0, Ay, is a 2-competitive fully dynamic approximation algorithm for vertex

cover (thus, it is approzimation—competitive with the standard off-line algorithm). Further, Insert operations,
1+4/1+4(k+1)(2k+3)

as well as Delete operations performed by Ay require ©((v+e) 2(2k+3) ) amortized running time. The

choice of constants in Ay, is optimal in the sense that no other choice of a, ... , ck+1 can improve the running

144/1+4(k+1)(2k+3) by

2(2k+3)

time. Here, the constants are a =
equations:

., Cr+1, where b;’s and c;’s satisfy the following

1
b1+01:...:bk+1+ck+1za, bpr1+ck=br+ck—1=...=b1+1=2a, and cp41=a.

Before giving a brief sketch of the proof, we provide an example: For As, the value of a is a = 1+1\1{g =
0.73, so the amortized running time of As is bounded by roughly ©((v + €)*"). The three tests are
performed with the following values: by =2a—1=10.46,¢; =1+ 1/a—2a =0.91; b =4a—1—-1/a = 0.55,
ca=1+2/a—4a=0.82; and b3 =6a —1—2/a = 0.64, cg = a = 0.73.

Sketch of proof: We first note that cp41 may not exceed a, for otherwise cxy1 would dominate the
running time. To see this, we set cxy1 = a — €. We now solve the outlined system of equations. By a
standard inductive argument, we obtain that the value of a is:

(1+e)++/(A+e2+4(k+1)(2k +3)
2(2k + 3)

Clearly, the value of a is minimized for € = 0. This gives the stated value of a and finishes the proof.
O

Corollary 1 For any a, ‘/Ti < « there is an amortized fully dynamic approzimation algorithm C, for vertex
cover that is 2-competitive. Further, Insert and Delete operations performed by C, require O((v + e)%)
amortized running time.

5 Conclusion

We have studied the problem of maintaining an approximate solution for vertex cover when edges may
arrive and depart dynamically. The main result of our paper is the family of fully dynamic 2—competitive
approximation algorithms for vertex cover Ay, k > 1.

Algorithms A;, feature appealing theoretical running time bounds, and achieve significant savings over
recomputation: for example, Ay (a = 0.7212) needs to look into at most (roughly) 146 entries in the
adjacency lists of a graph on 1000 vertices, 767 entries for graphs on 10000 vertices, 4037 entries for graphs
on 10° vertices, and 12885 entries for graphs on 5-10° vertices. Furthermore, the algorithms do not employ
complicated data structures, and should perform very well in practice.

The unresolved issues are whether there exist efficient uniform fully dynamic algorithms for maximal
matching, and whether the running time bound can be further improved for amortized fully dynamic ap-
proximation algorithms for maximal matching. One possibility might be to consider a variety of Dirty
approaches that would represent a scale of strategies, each one employed in the case of a certain density of
G, for a certain number of operations, not necessarily identical for all the Dirty strategies.

Finally, the major unresolved issue is whether there are efficient fully dynamic (uniform and/or amortized)
algorithms for vertex cover that are not based on maximal matching, and whose running time improves upon
those of the family of algorithms Ay.
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