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Abstract

A wireless sensor network consists of many low-cost, low-power sensor nodes, which can perform sensing,

simple computation, and transmission of sensed information. Long distance transmission by sensor nodes is not

energy efficient, since energy consumption is a superlinear function of the transmission distance. One approach to

prolong network lifetime while preserving network connectivity is to deploy a small number of costly, but more

powerful, relay nodes whose main task is communication with other sensor or relay nodes. In this paper, we assume

that sensor nodes have communication range r > 0 while relay nodes have communication range R ≥ r, and study

two versions of relay node placement problems. In the first version, we want to deploy the minimum number

of relay nodes so that between each pair of sensor nodes, there is a connecting path consisting of relay and/or

sensor nodes. In the second version, we want to deploy the minimum number of relay nodes so that between each

pair of sensor nodes, there is a connecting path consisting solely of relay nodes. We present a polynomial time

7-approximation algorithm for the first problem, and a polynomial time (5 + ε)-approximation algorithm for the

second problem, where ε > 0 can be any given constant.

1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number of low-cost, low-power sensor nodes,

which can perform sensing, simple computation, and communication over short distances [1], [6]. Since

sensors are powered by batteries and are usually deployed outdoors in harsh environments, extensive

research has been focused on energy aware routing [4], [11], [13], network lifetime [10], [16], and

survivability [9], [15], [18].

∗Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716. Email: elloyd@udel.edu. The work
described here was initiated while this author was visiting Arizona State University. Prepared through collaborative participation in the
Communications and Networks Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and distribute reprints for
Government purposes not withstanding any copyright notation thereon.

†Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-8809. Email: xue@asu.edu. The research
of this author was supported in part by by ARO grant W911NF-04-1-0385 and NSF grant CCF-0431167. The U.S. Government is authorized
to reproduce and distribute reprints for government purposes not withstanding any copyright notation thereon. The information reported here
does not reflect the position or the policy of the federal government.



2

With the current technology, long distance transmission in WSNs is very costly, since energy consump-

tion is proportional to dκ for transmitting over distance d, where κ is a constant in the interval [2, 4],

depending on the media. One approach to prolonging the network lifetime while preserving network

connectivity is to deploy a small number of costly, but more powerful relay nodes whose main task is

communication with the sensor nodes and with other relay nodes. This is the general topic addressed in

this paper.

A. Earlier work on relay node placement

Cheng et. al [3] proposed to deploy a minimum number of relay nodes in a WSN so that between

every pair of sensor nodes, there is a connecting path consisting of relay and/or sensor nodes and such

that each hop of the path is no longer than the common transmission range of the sensor nodes and the

relay nodes. This problem is exactly the Steiner minimum tree with minimum number of Steiner points

and bounded edge length problem (SMT-MSPBEL) defined by Lin and Xue in the study of amplifier

placement in wide area optical networks [14]. Lin and Xue [14] proved that the SMT-MSPBEL problem

is NP-hard and presented a simple minimum spanning tree (MST) based 5-approximation algorithm1.

In [2], Chen et. al proved that the Lin-Xue algorithm is actually a 4-approximation algorithm. They

also presented a 3-approximation algorithm for this problem. In [3], Cheng et. al presented a faster 3-

approximation algorithm, and a randomized algorithm2 with an approximation ratio of 2.5.

In [16], Pan et. al studied a two-tiered network model where the sensor nodes are grouped into clusters

each covered by an application node. The sensor nodes transmit sensed information to the application

node which then processes the received information and sends the processed information to the base-

station. In [9], [19], relay node placement was studied in a two-tiered WSN under the assumption that

the sensor nodes have a communication range r > 0 and the relay nodes have a communication range

1An algorithm solving a minimization problem is an α-approximation algorithm (or have approximation ratio α), if the solution provided
by the algorithm is no more than α times the optimal solution [8]. Additional details are given in Section 2.

2A randomized algorithm with an approximation ratio of α for a minimization problem is an algorithm that provides a solution no more
than α times the optimal solution with a positive probability. Additional details are given in Section 2.
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R ≥ 4r. They studied two problems. For the connected relay node single cover (CRNSC) problem, they

aimed to deploy a minimum number of relay nodes so that (1) every sensor node is within distance r of

a relay node and that (2) between every pair of relay nodes, there is a connecting path consisting of relay

nodes such that each hop of the path is not longer than R. For the 2-connected relay node double cover

problem, they aimed to deploy a minimum number of relay nodes so that (1) every sensor node is within

distance r of two relay nodes and that (2) between every pair of relay nodes, there are two node-disjoint

connecting paths consisting of relay nodes such that each hop of the paths is not longer than R. Under

the assumption that the sensor nodes are uniformly distributed in the playing field and that R ≥ 4r, the

authors of [19] presented 4.5-approximation algorithms for both problems.

B. The problems we study

In this paper, we study two versions of relay node placement when sensor and relay nodes have different

communication ranges.

• The single-tiered relay node placement problem is a generalization of the SMT-MSPBEL problem

where the sensor nodes have communication range r and the relay nodes have communication range

R ≥ r. That is, we seek to deploy a minimum number of relay nodes such that between every pair

of sensor nodes, there is a path consisting of relay and/or sensor nodes, where consecutive nodes

on that path are within distance R if both are relay nodes, and within distance r otherwise. For this

NP-hard problem [8], [14], we present a polynomial time 7-approximation algorithm.

• The two-tiered relay node placement problem is the general case of the CRNSC problem (i.e. without

the sensor distribution and the R ≥ 4r constraints). That is, we seek to deploy a minimum number

of relay nodes such that between every pair of sensor nodes, there is a path consisting solely of

relay nodes, where the sensor nodes on either end of that path are within distance r of the adjacent

relay node on the path, and successive relay nodes on the path are within distance R of one another.

For this problem we present a general framework which combines any α-approximation algorithm
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for the minimum geometric disk cover problem [12] and any β-approximation algorithm for the

SMT-MSPBEL problem to obtain a (2α+β)-approximation algorithm for this two-tiered relay node

placement problem. Using the currently best known values for α and β, our framework provides a

(5+ ε)-approximation algorithm and a randomized (4.5+ ε)-approximation algorithm, where ε is any

given positive constant.

Our work on single-tiered relay node placement is different from previous works because the problem

studied in previous works [14], [2], [3] is a special case (R = r) of the problem studied in this paper.

Our work on two-tiered relay node placement is different from previous works because we do not make

any assumption on sensor node distribution and do not require the condition R ≥ 4r as in [9], [19].

The remainder of this paper is organized as follows. In Section 2, we formally define the problems to

be studied, as well as some related problems and notations that will be used in this paper. In Section 3, we

present our approximation algorithm for the single-tiered relay node placement problem. In Section 4, we

present our approximation framework and subsequent approximation algorithm for the two-tiered relay

node placement problem. We conclude this paper in Section 5 with some future research directions.

2. PROBLEM FORMULATIONS AND BACKGROUND

In this section, we formally define the problems and notations that will be used throughout the paper.

We refer readers to [5] for graph theoretic notations not defined here, and to [8], [5] for definitions such

as “NP-hard” and other concepts in complexity theory that are not defined here.

A. Complexity related definitions

A polynomial time α-approximation algorithm for a minimization problem is an algorithm A that, for

any instance of the problem, computes a solution that is at most α times the optimal solution of the

instance, in time bounded by a polynomial in the input size of the instance [5]. In this case, we also say

that A has an approximation ratio of α. Aε is a polynomial time approximation scheme (PTAS) for a
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minimization problem, if for any fixed ε > 0, Aε is a polynomial time (1 + ε)-approximation algorithm

with ε treated as a constant.

A randomized α-approximation algorithm for a minimization problem is an algorithm A that, for any

instance of the problem, with probability greater than a positive constant, computes a solution that is at

most α times the optimal solution of the instance. Although the algorithm does not necessarily guarantee

providing such a solution, by repeated application the probability can be made arbitrarily close to 1.

B. Relay node terminology and preliminaries

The general class of problems that we consider is as follows. We are given two positive real constants

r > 0 and R ≥ r, where r is the communication range of a sensor node and R is the communication range

of a relay node. In addition, we are given a set X = {x1, x2, . . . , xn} of n sensor nodes on the Euclidean

plane, and the goal is to deploy sufficiently many relay nodes so as to ensure network connectivity. Without

confusion, we will also use xi to denote the location of sensor node xi, i = 1, 2, . . . , n.

We utilize the following notation and terminology. Let p and q be two points in the plane, then [p, q]

denotes the line segment connecting p and q, and ‖p q‖ denotes the Euclidean distance between p and q.

Two sensor nodes xi and xj can communicate with each other if ‖xixj‖ ≤ r. A sensor node xi and a relay

node yj can communicate with each other if ‖xi yj‖ ≤ r. Two relay nodes yi and yj can communicate

with each other if ‖yi yj‖ ≤ R. Two nodes are said to be neighbors if they can communicate with each

other.

We study relay node placement in two kinds of WSNs. In the first, named single-tiered WSN, both

sensor nodes and relay nodes can receive packets from a neighbor node and forward packets to a neighbor

node. In the second, named two-tiered WSN, relay nodes can receive and forward packets, while sensor

nodes do not forward packets they receive (they only transmit sensed information to the relay nodes).

Correspondingly, we study two kinds of relay node placement problems. Before defining these relay node

placement problems, we will first define a variant of the well-known Euclidean Steiner tree problem [8].

This problem and related terminology will be extensively used in our definitions and proofs.
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Definition 2.1 (Constrained Steiner Trees): Let X = {x1, x2, . . . , xn} be a set of n target points in

the Euclidean plane. Let R ≥ r > 0 be two positive real constants. A (r, R)-constrained Steiner tree of X

is a tree T spanning the set X of target points and an additional set Steiner(T ) of Steiner points such that

(1) each edge connecting a target point with a target/Steiner point has length no more than r, and, (2) each

edge connecting a Steiner point with another Steiner point has length no more than R. For each Steiner

point u of T , the Steiner degree of u in T (denoted by ds(u)) is the number of Steiner points incident

with u, and the target degree of u in T (denoted by dt(u)) is the number of target points incident with u.

The size of a (r, R)-constrained Steiner tree T is the number of Steiner points in T , namely |Steiner(T )|.

The Steiner length of a (r, R)-constrained Steiner tree T is the sum of edge lengths over all Steiner-

target and Steiner-Steiner edges. Note that target-target edges do not contribute to the Steiner length.

A (r, R)-constrained Steiner tree of X with the minimum size is called a minimum (r, R)-constrained

Steiner tree of X (denoted by MCST(X , r, R)). A shortest minimum (r, R)-constrained Steiner tree of

X is a minimum (r, R)-constrained Steiner tree of X with the shortest Steiner length. Note that finding

a minimum (r, R)-constrained Steiner tree of X is an extension of the SMT-MSPBEL problem to two

edge lengths. 2

C. Single and two tired RNPs

Now we are ready to define the two kinds of relay node placement problems studied in this paper.

Definition 2.2 (Single-Tiered Relay Node Placement): Let X = {x1, x2, . . . , xn} be a set of sensor

nodes with known locations. Let r > 0 and R ≥ r be the communication ranges for sensor nodes and

relay nodes, respectively. A set of relay nodes Y = {y1, y2, . . . , ym} is said to be a feasible single-tiered

relay node placement (F1tRNP) for (X , r, R) if Y is the set of Steiner points of a (r, R)-constrained

Steiner tree T of X , (i.e., Y = Steiner(T )). The size of the corresponding F1tRNP is |Y|. An F1tRNP

is said to be a minimum single-tiered relay node placement (M1tRNP) for (X , r, R) (also denoted by

M1tRNP(X , r, R)) if it has the minimum size among all F1tRNPs for (X , r, R). The single-tiered relay

node placement problem for (X , r, R), denoted by 1tRNP(X , r, R), seeks a minimum single-tiered relay
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node placement for (X , r, R). 2

Definition 2.3 (Two-Tiered Relay Node Placement): Let X = {x1, x2, . . . , xn} be a set of sensor

nodes with known locations. Let r > 0 and R ≥ r be the communication ranges for sensor nodes and

relay nodes, respectively. A set of relay nodes Y = {y1, y2, . . . , ym} is said to be a feasible two-tiered

relay node placement (F2tRNP) for (X , r, R) if

1) for each sensor node xi ∈ X , there is a relay node yj ∈ Y such that ‖xi yj‖ ≤ r;

2) the undirected graph G(Y , R) is connected, where the vertex set of G is V = Y and the edge set

of G is E = {(yi, yj)|yi, yj ∈ Y , ‖yi yj‖ ≤ R}.

We call |Y| the size of the corresponding F2tRNP. An F2tRNP is said to be a minimum two-tiered relay

node placement (M2tRNP) for (X , r, R) (also denoted by M2tRNP(X , r, R)) if it has the minimum size

among all F2tRNPs for (X , r, R). The two-tiered relay node placement problem for (X , r, R), denoted

by 2tRNP(X , r, R), seeks a minimum two-tiered relay node placement for (X , r, R). 2

D. The complexity of relay node placement

The problem 1tRNP(X , r, R) is easily seen to be NP-hard by noting that when r = R, 1tRNP(X , r, R)

is identical to the SMT-MSPBEL problem [14] which is a known NP-hard problem [14]. The best known

polynomial time approximation algorithm for SMT-MSPBEL has an approximation ratio of 3 [2], [3].

Cheng et. al [3] presented a randomized algorithm for SMT-MSPBEL with an approximation ratio of

2.5. Obviously, those same bounds hold for 1tRNP(X , R,R). However, to the best of our knowledge,

there is no constant ratio approximation algorithm for the general 1tRNP(X , r, R) problem.

The NP-hardness of 2tRNP(X , r, R) can be established using the following problem which was shown

to be NP-hard in [7].

Definition 2.4 (Geometric Disk Cover): Let X = {x1, x2, . . . , xn} be a set of points in the Euclidean

plane, and let r > 0 be a positive constant. The minimum geometric disk cover problem for (X , r) (denoted

by DCover(X , r)) seeks a minimum cardinality set of points C = {c1, c2, . . . , cm} with the property that
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for each point xi ∈ X , there exists a point cj ∈ C such that ‖xi cj‖ ≤ r. We call C an optimal solution

to DCover(X , r), and use MDCover(X , r) to denote ‖C‖. A set of points C = {c1, c2, . . . , ck} is said to

be a feasible solution to DCover(X , r) if for each point xi ∈ X there exists a point cj ∈ C such that

‖xi cj‖ ≤ r. 2

With this definition in hand, the following is a straight forward reduction from DCover(X , r) to

2tRNP(X , r, R). Let an instance I1 of DCover(X , r) be given by X = {x1, x2, . . . , xn} and r > 0.

Construct an instance I2 of 2tRNP(X , r, R) by setting R = 2r + max1≤i<j≤n ‖xi xj‖. It is easily seen

that a set of points in the plane is an optimal solution to I1 if and only if it is an optimal solution to

I2. Therefore 2tRNP(X , r, R) is NP-hard. Tang et. al in [19] presented a 4.5-approximation algorithm

for 2tRNP(X , r, R) under the constraints that R ≥ 4r and that the sensor nodes X are uniformly

distributed. To the best of our knowledge, there is no constant ratio approximation algorithm for the general

2tRNP(X , r, R) problem. For the DCover(X , r) problem, there exists a polynomial time approximation

scheme (PTAS) due to Hochbaum and Maass [12].

3. SINGLE-TIERED RELAY NODE PLACEMENT

In this section, we present a simple minimum spanning tree (MST) based approximation algorithm

for 1tRNP and prove that the number of relay nodes generated by this algorithm is no more than

7 × |M1tRNP(X , r, R)|, where M1tRNP(X , r, R) is any minimum single-tiered relay node placement.

Therefore we have a 7-approximation algorithm for 1tRNP.

Given a set of sensor nodes X = {x1, x2, . . . , xn}, and constants r > 0 and R ≥ r as the sensor node

communication range and relay node communication range, respectively, our MST based algorithm first

computes an MST of X , denoted by Tmst. It then steinerizes [14] that MST to obtain a (r, R)-constrained

Steiner tree of X (hence, an F1tRNP for (X , r, R)) by placing relay nodes on the line segment [xi, xj]

for each edge e = (xi, xj) in Tmst. The complete algorithm is formally presented as Algorithm 1.

Note that in Algorithm 1, since Tmst is an MST of G and the set Y is obtained by steinerizing Tmst,

it follows that in step 3, the algorithm implicitly computes an (r, R)-constrained Steiner tree T A of X ,
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Algorithm 1 MST-1tRNP
INPUT: A set of n sensor nodes X = {x1, x2, . . . , xn} in the Euclidean plane and positive real constants

r > 0 and R ≥ r representing the communication ranges of sensor nodes and relay nodes,
respectively.

OUTPUT: A set Y = {y1, . . . , yk} of relay nodes.

step 1 Let V = {x1, x2, . . . , xn}. Let G = G(V,E,w) be an undirected edge-weighted complete graph
on the vertices in V , where for 1 ≤ i < j ≤ n, the weight of edge (xi, xj) is w(xi, xj) = ‖xi xj‖.

step 2 Compute a minimum spanning tree Tmst of G. Set k := 0.

step 3 for each edge (xi, xj) ∈ Tmst do
if (r < ‖xi xj‖ ≤ 2r) then

k := k + 1. Place a relay node yk at the midpoint of the line segment [xi, xj].
elseif (2r < ‖xi xj‖) then

Place two relay nodes on the line segment [xi, xj]: yk+1 with distance r to xi, and yk+2

with distance r to xj .
Place d‖xi xj‖−2r

R
e − 1 relay nodes yk+3, yk+4, . . . , y

k+d
‖xi xj‖−2r

R
e+1

on the line segment

[yk+1, yk+2], separating the line segment [yk+1, yk+2] into d‖xi xj‖−2r

R
e equal parts.

k := k + 2 + d‖xi xj‖−2r

R
e − 1.

endif
endfor

step 4 Output Y = {y1, y2, . . . , yk}

with Y = Steiner(T A). In the proof that follows we will find it convenient to refer directly to T A and to

Steiner(T A), rather than to Y .

Theorem 3.1: The (r, R)-constrained Steiner tree T A computed in Algorithm 1 is such that |Y | =

|Steiner(T A)| ≤ 7 × |MCST(X , r, R)| = 7 × |M1tRNP|. 2

We need to prove a sequence of lemmas before proving Theorem 3.1. Note that in T A, every Steiner

point u has degree (measured as dt(u) + ds(u)) exactly 2.

Lemma 3.1: Let T be a (r, R)-constrained Steiner tree of X such that every Steiner point has degree

exactly equal to 2. Then |Steiner(T )| ≥ |Steiner(T A)|. 2

PROOF. A path π in T or T A is called a super-edge if the two end nodes of π are both target points

and every interior node of π (if any) is a Steiner point. From the definition of (r, R)-constrained Steiner

tree we have the following facts. If a super-edge contains η ≤ 1 Steiner points, the Euclidean distance

between its two end nodes is no more than (η + 1)r. If a super-edge contains η ≥ 2 Steiner points, the

Euclidean distance between its two end nodes is no more than 2r + (η − 1)R. Note that the minimum
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number of Steiner points required on a super-edge is a non-decreasing function of the Euclidean distance

between the two end nodes of the super-edge.

Let T (T A) be a spanning tree of X containing exactly those edges (xi, xj) such that there is a path

in T (T A) from xi to xj where all of the interior nodes are Steiner points. Note that T A = Tmst is a

minimum spanning tree of X . From the (matroid) property of minimum spanning trees, we know that

T A can be obtained from T by a sequence of operations in each of which we replace an edge e in T

by an edge eA in T A such that the length of e (the Euclidean distance between its two end nodes) is no

less than the length of eA. Since the minimum number of Steiner points on a super-edge is monotonically

non-decreasing in the length of a super-edge, we have |Steiner(T )| ≥ |Steiner(T A)|.

Lemma 3.2: Let T be any (r, R)-constrained Steiner tree of X . Then the sum of Steiner degrees over

all Steiner points of T is no more than 2k − 2, where k = |Steiner(T )|. 2

PROOF. Since there are k Steiner points in T , there are at most k − 1 Steiner-Steiner edges (edges

connecting two Steiner points) in T . Each Steiner edge contributes exactly 2 Steiner degrees. Therefore

the sum of Steiner degrees over all Steiner points of T is no more than 2k − 2.

Next, we say that an M1tRNP is a shortest minimum single-tiered relay node placement for (X , r, R)

if it is the set of Steiner points of a shortest minimum (r, R)-constrained Steiner tree T of X .

Lemma 3.3: Let T be any shortest minimum (r, R)-constrained Steiner tree of X . Then

1) Let u be a Steiner point of T . Let xi and xj be two target points incident with u in T . Then

6 xiuxj > 60o.

2) Every Steiner point u of T has target degree no more than 5. 2

PROOF. To prove 1), note that if 6 xiuxj ≤ 60o, we have ‖xi xj‖ ≤ max{‖u xi‖, ‖u xj‖} ≤ r. Therefore

we can replace (u, xi) by (xi, xj) to obtain a minimum (r, R)-constrained Steiner tree of X with a shorter

Steiner length, contradicting the assumption of T .

That every Steiner point u of T has target degree no more than 5 follows from 1).

Lemma 3.4: There exists an (r, R)-constrained Steiner tree T of X such that
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1) |Steiner(T )| ≤ 7 × |MCST(X , r, R)|;

2) Each Steiner point of T has degree exactly 2. 2

PROOF. Let T opt be a shortest minimum (r, R)-constrained Steiner tree of X such that each Steiner point

has target degree at most 5. Since every tree is a planar graph, we consider a layout of T opt in the plane.

Starting from a leaf node of the tree and taking a clockwise walk of the tree, we obtain an Eulerian tour.

Note that each Steiner point u of T opt is used exactly dt(u) + ds(u) times by this Eulerian tour. Define a

graph whose vertices are the target points, and where there is an edge between vertices xi and xj if there

is a super-edge between xi and xj in the Eulerian tour. Since the graph is induced from the Eulerian tour,

it is connected. Therefore we can obtain a spanning tree of this graph, which spans all of the target points.

By replacing each edge of this tree with the corresponding super-edge from the Eulerian tour, we obtain

an (r, R)-constrained Steiner tree of X , with no more than
∑

u∈Steiner(T opt)(dt(u) + ds(u)) Steiner points.

It follows from Lemma 3.2, that
∑

u∈Steiner(T opt) ds(u) ≤ 2 × |Steiner(T opt)|. It follows from Lemma 3.3,

that
∑

u∈Steiner(T opt) dt(u) ≤ 5 × |Steiner(T opt)|. Together, these two facts prove the lemma.

PROOF OF THEOREM 3.1:

Combining Lemma 3.1 and Lemma 3.4, it follows directly that |Steiner(T A)| ≤ 7 × |MCST(X , r, R)|,

from which the theorem follows.

Theorem 3.1 shows that 7 is an upperbound of the approximation ratio of Algorithm 1. The following

example shows that 6 is a lower bound of the approximation ratio of Algorithm 1. Assume that R ≥ 5r.

Let K be any positive integer, for each value of k = 1, ..., K, we place five sensor nodes evenly distributed

on the circle of radius r with center (kR, 0). There is a feasible solution with K relay nodes, by placing

the kth relay node at (kR, 0). Using Algorithm 1, we would place 4K +2(K − 1) = 6K − 2 relay nodes.

This shows that 6 is a lower bound of the approximation ratio of our algorithm.

In regard to the running time of Algorithm 1, we note step 2 takes O(n log n) time to compute the MST

Tmst using the method of Shamos and Hoey [17] while step 3 takes O(|Steiner(T A)|) time to steinerize

Tmst. Therefore the worst-case time complexity of Algorithm 1 is O(n log n + |MCST(X , r, R)|).
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4. TWO-TIERED RELAY NODE PLACEMENT

In this section, we present a general framework that combines any approximation algorithm for DCover

and any approximation algorithm for SMT-MSPBEL to obtain an approximation for 2tRNP. The general

framework is presented as Algorithm 2.

Algorithm 2 A General Framework for 2tRNP

INPUT: A set of n sensor nodes X = {x1, x2, . . . , xn} in the Euclidean plane and positive real constants
r > 0 and R ≥ r representing the communication ranges of sensor nodes and relay nodes,
respectively, an approximation algorithm A for DCover, an approximation algorithm B for
SMT-MSPBEL.

OUTPUT: A set R = {r1, . . . , rk} of relay nodes.

step 1 Apply algorithm A to X to obtain a set of points C = {c1, c2, . . . , cm} that is a feasible solution
to DCover(X , r). Without loss of generality, we assume that C is minimal, meaning that no proper
subset of C is a feasible solution for DCover(X , r).

step 2 Construct a set D ⊆ X such that for each ci ∈ C, there is exactly one dj ∈ D such that ‖dj ci‖ ≤ r.
and, for each point dj ∈ D, there is exactly one point ci ∈ C such that ‖dj ci‖ ≤ r.

step 3 Apply B to obtain a set of relay nodes Y = {y1, y2, . . . , yl} that is an F1tRNP for (D, R,R).

step 4 Output R = C ∪ D ∪ Y .

Theorem 4.1: The set of relay nodes R produced by Algorithm 2 is an F2tRNP for (X , r, R). In

addition, |R| ≤ (2α+β)×|M2tRNP(X , r, R)|, where M2tRNP(X , r, R) is any minimum two-tiered relay

node placement for (X , r, R), α is the approximation ratio of A for DCover, and β is the approximation

ratio of B for SMT-MSPBEL. 2

PROOF. We begin by noting that each step in Algorithm 2 is well defined, other than possibly step 2.

In that step, to see that the set D must exist, consider any ci ∈ C, and suppose to the contrary of the

second condition that for every point dj ∈ X with ‖dj ci‖ ≤ r, that there exists a second point in C within

distance r of dj . In that case, ci could be removed from C and the resulting set would also be a feasible

solution to DCover(X , r). This would contradict the assumption that C is minimal.

To see that R is an F2tRNP for (X , r, R), note first that from step 1 of Algorithm 2 each sensor node

is within distance r of some relay node in C, and that from step 2 each relay node in C is within distance

R ≥ r of some relay node in D. Further, from step 3, for any two relay nodes in D, there is a path

consisting of relay nodes in Y such that each hop of the path is not longer than R. It follows that the set
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of relay nodes R produced by Algorithm 2 is an F2tRNP for (X , r, R).

To establish the approximation ratio, we begin by letting M2tRNP be a minimum two-tiered relay node

placement for (X , r, R). We will prove a two part lower bound on |M2tRNP(X , r, R)|. First, note that

each sensor node in X must be within distance r of some relay node in M2tRNP(X , r, R). Therefore

|M2tRNP(X , r, R)| ≥ |C|, where C is any optimal solution to DCover(X , r). Since the approximation

ratio of algorithm A for DCover is α, we have that |C| ≤ α|C|, hence

|M2tRNP(X , r, R)| ≥
|C|

α
. (4.1)

Second, since M2tRNP(X , r, R) is a feasible solution for 2tRNP(X , r, R) and since D ⊆ X , it follows

that M2tRNP(X , r, R) is a feasible solution to 2tRNP(D, r, R) and therefore a feasible solution to

2tRNP(D, R,R), which is a feasible solution to 1tRNP(D, R,R). This implies that

|M2tRNP(X , r, R)| ≥ |W |, (4.2)

where W is an M1tRNP to 1tRNP(D, R,R). Combining (4.1) and (4.2), we obtain the lower bound

|M2tRNP(X , r, R)| ≥ max{
|C|

α
, |W |}. (4.3)

Since |D| = |C| and since |Y| ≤ β × |W |, where β is the approximation ratio of algorithm B for

SMT-MSPBEL, we have

|R|

|M2tRNP(X , r, R)|
=

|C| + |D| + |Y|

|M2tRNP(X , r, R)|
≤

2 × |C| + β × W

max{ |C|
α

,W}
. (4.4)

When |C|
α

≥ W , we have

2 × |C| + β × W

max{ |C|
α

,W}
≤

2 × |C| + β × |C|
α

|C|
α

≤ 2 × α + β. (4.5)
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When |C|
α

≤ W , we have

2 × |C| + β × W

max{ |C|
α

,W}
≤

2 × α × W + β × W

W
≤ 2 × α + β. (4.6)

Therefore in both cases, we have

|R|

|M2tRNP(X , r, R)|
≤ 2 × α + β. (4.7)

This completes the proof of the theorem.

The best approximation ratio emerging from this framework combines the best approximation algorithms

for the DCover and SMT-MSPBEL problems. Specifically, for the DCover problem, there is a polynomial

time approximation scheme Aε, which, for any given positive constant ε > 0, produces an (1 + ε)-

approximation of the optimal solution [12]. For the SMT-MSPBEL problem, there is a polynomial time

3-approximation algorithm B [2], [3], as well as a randomized 2.5-approximation algorithm [3]. Therefore

we have the following theorem.

Theorem 4.2: Let ε > 0 be any given positive constant. There is a polynomial time approximation

algorithm for 2tRNP with an approximation ratio of 5 + ε. There is also a polynomial time randomized

approximation algorithm for 2tRNP with an approximation ratio of 4.5 + ε. 2

5. CONCLUSIONS

In this paper, we have studied the single-tiered relay node placement problem and the two-tiered

relay node placement problem in a wireless sensor network. For the first problem, we have presented a

polynomial time approximation algorithm whose approximation ratio is between 6 and 7. For the second

problem, we have presented a general framework, combining an approximation algorithm for the minimum

geometric disk cover problem and an approximation algorithm for the Steiner minimum tree with minimum

number of Steiner points and bounded edge length problem. Using the best known algorithm for each

of the problems, the framework gives a (5 + ε)-approximation algorithm, where ε can be any positive
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constant, and a randomized (4.5 + ε)-approximation algorithm. Future research directions include tighter

analysis of the algorithms presented here and design of better algorithms for these problems.
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