
Telecommun Syst (2008) 37: 109–125
DOI 10.1007/s11235-008-9069-1

Efficient probe selection algorithms for fault diagnosis

Maitreya Natu · Adarshpal S. Sethi · Errol L. Lloyd

Published online: 16 April 2008
© Springer Science+Business Media, LLC 2008

Abstract Increase in the network usage for more and more
performance critical applications has caused a demand for
tools that can monitor network health with minimum man-
agement traffic. Adaptive probing has the potential to pro-
vide effective tools for end-to-end monitoring and fault di-
agnosis over a network. Adaptive probing based algorithms
adapt the probe set to localize faults in the network by send-
ing less probes in healthy areas and more probes in the sus-
pected areas of failure. In this paper we present adaptive
probing tools that meet the requirements to provide an ef-
fective and efficient solution for fault diagnosis for modern
communication systems. We present a system architecture
for adaptive probing based fault diagnosis tool and propose
algorithms for probe selection to perform failure detection
and fault localization. We compare the performance and ef-
ficiency of the proposed algorithms through simulation re-
sults.

Keywords Adaptive probing · Probe selection · Network
monitoring · Failure detection · Fault localization

Prepared through collaborative participation in the Communications
and Networks Consortium sponsored by the US Army Research
Laboratory under the Collaborative Technology Alliance Program,
Cooperative Agreement DAAD19-01-2-0011. The US Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

M. Natu (�) · A.S. Sethi · E.L. Lloyd
Department of Computer and Information Sciences, University of
Delaware, Newark, DE 19716, USA
e-mail: natu@cis.udel.edu

A.S. Sethi
e-mail: sethi@cis.udel.edu

E.L. Lloyd
e-mail: elloyd@cis.udel.edu

1 Introduction

Fault diagnosis is the process of detecting a failure and lo-
calizing the cause of the failure from observed failure indi-
cations. With the widespread usage of computer networks
in e-commerce, telecommuting, web services, grid services,
etc., fault diagnosis has become a vital task for network ad-
ministrators. Furthermore, increasing advances in develop-
ing performance critical applications, increasing importance
on quality of service, and growth of large and complex sys-
tems make quick detection and isolation of faults essential
for robustness, reliability, and system accessibility.

A promising approach to fault diagnosis is probing,
which is based on actively sending out probes in the network
to infer the health of network components. Probes are test
transactions whose success or failure depends on the health
of the probed network components. Probing is typically used
to obtain end-to-end statistics such as latency, throughput,
loss, and route availability. For instance, a probe could be
a ping to collect information about connectivity of nodes.
More sophisticated probes could be a train of probe packets
of various sizes to collect information about the total band-
width, or available bandwidth [17, 20, 28]. Probes could also
be HTTP requests to specific servers to collect information
about the response time statistics for fault diagnosis [14].
Besides generating traffic between selected points of inter-
est to obtain desired end-to-end statistics, probing provides
other advantages. Probing provides flexibility in the design
of probe streams with particular properties to match mea-
surement requirements. For example, after localizing a fault
to a particular network point by measuring quantities such as
average delay and loss on a route, finer probes can be sent
to identify the bottleneck and available bandwidth [18, 28],
or to estimate cross traffic [27]. Another application of this

http://dx.doi.org/10.1007/s11235-008-9069-1
mailto:natu@cis.udel.edu
mailto:sethi@cis.udel.edu
mailto:elloyd@cis.udel.edu

110 M. Natu et al.

Fig. 1 Example of preplanned
and adaptive probing to localize
one node failure. Nodes P1 and
P2 are probe station nodes.
(a) Network nodes probed by a
large preplanned set of probes
such that any node failure can
be diagnosed from the probe
results. (b) Network nodes
probed using adaptive probing,
where first a small set of probes
is sent to detect a failure in the
network. On observing a failure
on the path from P1 to N5,
additional probes are sent for
localizing the failed node on this
path

feature of probing is to localize a bottleneck node through
probes, and then send specialized probes to further diagnose
the exact cause of failure at a finer level such as the system
or middleware level within the node. A drawback of probing
is its invasive character. Probes may modify route conditions
and perturb the very traffic being monitored (a phenomenon
known as artifact). To minimize artifact, it is essential to use
probe streams of low average bandwidth, and to optimize the
probe traffic.

Probing has been used broadly in two ways: preplanned
probing and adaptive probing. Preplanned probing [5, 6] in-
volves offline selection of a set of probes which are selected
such that all possible failures can be diagnosed by observ-
ing the probe results. These probes are periodically sent out
over the network. Then a passive data mining phase infers
the network state by analyzing the probe results. A major
drawback of this approach is the large amount of manage-
ment traffic sent out over the network, a large part of which
might be wasteful as not all failures occur all the time. Other
drawbacks of this approach include the difficulty involved in
envisaging such a probe set, and the delay involved in send-
ing a large set of probes, and collecting the probe results.
These drawbacks lead to inaccuracies and increased local-
ization time.

One promising approach to effective and efficient fault

diagnosis is adaptive probing, where a probe set is adapted

to the observed network conditions by sending fewer probes

in healthy areas and more probes in suspicious areas. In-

stead of sending probes to localize all potential failures, a

small set of probes is first sent to monitor the health of all

network components. These probes detect the presence of a

failure, but they are not comprehensive enough to identify

the failure’s exact location. Based on the probe results, sus-

pected areas of failure are identified, and additional probes

are selected that further help to localize the exact cause of

failure. Figure 1 shows an example of probes sent using pre-

planned probing and adaptive probing to localize one node

failure in the network. Figure 1a shows an example of pre-

planned probing where a large number of probes are sent

over the network to localize any node failure in the network.

Figure 1b shows probes sent in an adaptive manner where

first a small set of probes is sent to detect any node failure

in the network. On observing a failed probe path (path P1

to N5), additional probes are sent over this failed probe path

for further diagnosis.

Efficient probe selection algorithms for fault diagnosis 111

Fig. 2 System architecture for
fault diagnosis using adaptive
probing

2 System architecture

In this section, we present a system architecture for an
adaptive-probing-based fault diagnosis methodology. Fig-
ure 2 presents the components of the proposed system ar-
chitecture. Below we describe these components:

• Probe Station Selection: This component determines the
locations in the network where probe stations should be
deployed. A minimum requirement is that probe stations
should be deployed such that probes could be sent from
these locations to monitor the entire network for faults
even in the presence of multiple failures.

• Probe Selection: Once probe stations are selected, out of
all available probes that can be sent from these probe
stations, the Probe Selection component selects suitable
probes to be sent over the network. Using adaptive prob-
ing, we divide the probing task into two sub-tasks which
we call Failure Detection and Fault Localization.
– The Failure Detection module periodically sends a

small number of probes such that the failure of any
managed component can be detected. These probes are
few in number, and are designed to only detect the pres-
ence of a failure in the network. They might be unable
to exactly localize a failure.

– Once a failure is detected in a network, the Fault Local-
ization component analyzes probe results, and selects
additional probes that provide maximum information
about the suspected area of the network. This process
of probe analysis and selection is performed to localize
the exact cause of failure. Figure 1b presents an exam-
ple of probes sent for failure detection and fault local-
ization.

• Topology Discovery Agents: The Probe Station Selection
and Probe Selection modules of the architecture use de-
pendencies between probes and nodes on the probe path.
The dependency information between probes and nodes

is obtained through Topology Discovery Agents, and is
stored in a dependency model. The collection of depen-
dency information could be done in a variety of ways. For
instance, the dependency between the end-to-end network
probe path and the network nodes can be obtained using
traceroutes or the topology tables of the underlying net-
work layer.

• Dependency Model: This model stores the relationships
between probes and nodes. In particular, it maintains in-
formation about the nodes that are visited by the probes,
so that the health of nodes can be inferred from the suc-
cess or failure of the probes. The dependency model could
be deterministic when complete and accurate information
is available about the probe paths. For situations in which
complete and accurate information about the probe paths
is unavailable, a probabilistic model is used where the de-
pendency between probe paths and nodes is represented
using the probability of causal implication of a node fail-
ure on a probe failure.

• Inferred Network State: The Failure Detection and Fault
Localization components of the architecture store inter-
mediate diagnosis results in the Inferred Network State.
These results are refined by the Fault Localization com-
ponent by sending and analyzing additional probes.

3 Related work

Various approaches have been proposed for probing a net-
work to measure different performance metrics. Probing
tools proposed in the past consist of connectivity, latency
and bandwidth measurement tools such as pathchar [13],
Cprobe [8], Skitter [19], pathrate [12], PathChirp [29], Net-
Timer [21] etc. These tools measure end-to-end network per-
formance metrics by sending probes in the network. For in-
stance, PathChirp [29] is a probing tool for estimating avail-
able bandwidth on a communication network path. Based

112 M. Natu et al.

on the concept of self-induced congestion, PathChirp fea-
tures an exponential flight pattern of probes, called chirp.
Skitter [19] sends a sequence of probes to a set of destina-
tions and measures the latency of a link as the difference in
round-trip times of the two probes to link end-points.

Probes have also been used in overlay networks. Accurate
monitoring systems in overlays can detect loss, link stress,
path outages, and periods of degraded performance facilitat-
ing management of distributed systems. In order to create
a good overlay topology in dynamic environments, probes
have been used by overlay nodes to periodically monitor
the quality of paths from overlay nodes to other nodes.
Narada [16] and RON [2] employ a straight-forward ap-
proach of pair-wise probing. This approach causes a signifi-
cant probing overhead and can incur high link stress. Several
methods have been proposed in the past to reduce probing
overhead in overlay networks. Most of these approaches re-
duce probing overhead at the cost of probing completeness.
In structured peer-to-peer systems, a node maintains connec-
tions to O(log(n)) [31, 35] or O(n1/d) [26] neighbors. Scal-
able multicast systems such as NICE [3] and HMTP [34]
organize nodes in a hierarchy based on their distances to
each other. Each node periodically selects a particular set
of nodes to probe, usually keeping the overall probing over-
head constant. In [9, 10], a basis set of paths is selected to
monitor loss rates and is used to infer loss rates of all end-
to-end paths from this basis set. An approach proposed in
[32] also trades probing overhead for estimation accuracy.
It uses network-level path composition information to infer
path quality without full-scale probing.

Various criteria have been used in the past for probe se-
lection. Li and Thotten [22] propose to use source routed
probes to measure end-to-end performance metrics. Be-
jarano and Rastogi [4] propose a probe selection algorithm
for monitoring network links based on a greedy heuristic
of selecting a probe that covers maximum number of un-
covered network components. Ozmutlu et al. [25] propose
to identify zones in topologies using end-to-end delay data
and common occurrences of high delays on paths and then
selecting a subset of paths to probe to identify each zone
uniquely. The methodology proposed in [7] relies on active
perturbation of the system to identify dependencies and the
use of statistical modeling to compute dependency strengths.
Active Integrated fault Reasoning (AIR) proposed in [33],
integrates the advantages of both passive and active mon-
itoring into one framework. The AIR framework uses ac-
tive probing to discover critical symptoms when passive rea-
soning is insufficient to explain the problem. It proposes a
greedy algorithm to select probes that provide maximum
coverage. On similar lines, both offline and online tools are
used in [15] to analyze the dependency relationship among
various software components. If the offline transaction log

analysis cannot pinpoint the root cause of error, [15] pro-
poses to run more transactions to collect sufficient symp-
toms for localizing the root cause. The transactions are cho-
sen such that maximum information can be gained from the
transaction result. Al-Shaer and Tang [1] propose a mon-
itoring framework called SMRM (SNMP-based Multicast
Reachability Monitoring), for actively monitoring the health
and quality of service of multicast networks. The SMRM
framework can be used to generate directed multicast traf-
fic and collect real-time reports about the reachability and
quality of the multicast delivery at any point or segment in
enterprise networks.

In the past, some work has been done in optimizing the
probe set to be used for monitoring purposes. Optimization
of probes by using an interactive approach of adaptive prob-
ing has been proposed by I. Rish, M. Brodie and their col-
leagues [6, 30]. Brodie et al. [5, 6] proposed some general
approaches to be used for probe set selection for both failure
detection and fault localization. These approaches attempt
to find a small set of probes using certain heuristics. In [5],
a subtractive search has been proposed that starts with all
probes, considers each probe in turn, and discards a probe if
it does not add to the diagnostic capability of the probe set.
The effectiveness of this approach in finding the minimal set
depends on the order in which probes are explored. Another
approach proposed in [5] is additive search, where at each
step the probe giving the most informative decomposition is
added to the probe set. In [30], Rish et al. have proposed an
adaptive probing approach for fault localization. Optimized
monitoring strategies have been proposed by Ozmutlu et al.
[24] by formulating a graph-theoretic Constrained Cover-
age Problem to optimally select a subset of traceroute like
probes to monitor the network. They propose a heuristic al-
gorithm to efficiently approximate the probe selection solu-
tion in polynomial time.

Most of the probe selection work proposed in the past
suffers from the following main limitations:

• A preplanned approach is used to build a probe set to
localize all possible failures in the network. Besides the
high probe traffic, analysis of these probes might take
considerable time before diagnosing the problem. An
adaptive approach is more suitable in terms of gener-
ated probe traffic, management overhead, and localization
time.

• The existing algorithms suffer from efficiency issues.

An important contribution of this paper is an adaptive
probing based algorithm for localizing faults. We demon-
strate the efficiency and effectiveness of adaptive probing
over preplanned probing through experimental evaluation.

Efficient probe selection algorithms for fault diagnosis 113

4 Failure detection

In this section, we introduce a probe selection algorithm to
perform failure detection. We use this algorithm together
with the fault localization algorithms presented in Sect. 5
to develop a complete fault diagnosis tool.

Probes for failure detection should be selected such that,
in the presence of a fault in the network, some of the selected
probes should fail, causing the detection of the failure by
the network manager. As the probes for failure detection are
sent at periodic intervals, they should be optimized to pre-
vent overwhelming the network resources and affecting the
performance of other applications using the network. Ideally
the aim is to find a minimal set of probes that can detect the
health of all the managed components such that if any com-
ponent fails, at least one of the probes should report failure.
Informally, the probe set selection for failure detection prob-
lem is:

Given a set of probes and given the dependency in-
formation between the probes and the network nodes,
select a smallest set of probes such that every node in
the network is covered by some probe.

In this section, we first prove that probe set selection for
failure detection is NP-Complete. We then present an ap-
proximation algorithm for the selection of such a probe set.

4.1 Probe set selection for failure detection is
NP-Complete

Consider a set of nodes N , each of which can be either up
(functioning correctly), or down (functioning incorrectly).
Consider a set of probes P . The set of nodes visited by a
probe p ∈ P is denoted by S(p) ⊆ N . A probe either suc-
ceeds or fails. A successful probe indicates that every node
visited by the probe is healthy. On the other hand, if a node
fails, then every probe visiting this node fails.

In this context then the probe set selection for failure de-
tection problem is to select a smallest set of probes Q ⊆ P

such that every node n ∈ N is visited by at least one of these
probes. We refer to this probe set as the detection set.

In what follows, we prove the NP-Completeness of the
MFDPS problem by reducing the Minimum Set Cover prob-
lem [11] to MFDPS. As per standard practice, we use the de-
cision versions of the MFDPS and the Minimum Set Cover
problem in the following proof. We extend the definition of
detection set to refer to a probe set Q ⊆ P of size k such that
every node n ∈ N is visited.

4.1.1 Definition of problem instances

• MFDPS problem:

Instance: A set of nodes N , a set of probes P , a
set S(p) ⊆ N for each probe p indicating the nodes
visited by probe p ∈ P , and an integer k.
Question: Does there exist a detection set of size
k? That is, does there exist a set of k probes
Q ⊆ P , such that every node in N is visited by
at least one of the probes in Q? In other words,⋃

q∈Q S(q) = N .

• Set cover problem:

Instance: A finite set of elements E, a collection C

of subsets of E, and an integer k.
Question: Does there exist a subset C′ ⊆ C of size
k such that every element in E is covered by at least
one set in C′?

4.1.2 MFDPS is in NP

In this section, we prove that the MFDPS problem is in NP,
by showing that a certificate for the problem can be verified
in polynomial time. Here a certificate consists of a set of
probes Q ⊆ P .

Verification that |Q| ≤ k, can be done in O(k) operations.
To check if Q provides the detection set, we compute a set
R as follows:

R =
⋃

q∈Q

S(q)

If R = N , then Q is the detection set for the MFDPS prob-
lem. The computation and verification of the set R can be
done in O(|N|) operations.

Since a certificate can be verified in polynomial time, it
follows that MFDPS is in NP.

4.1.3 Reduction

To complete the proof of the NP-Completeness of the
MFDPS problem, we provide a reduction from Minimum
Set Cover to MFDPS such that there exists a set cover of size
k for the Minimum Set Cover instance if and only if there
exists a detection set of size k for the MFDPS instance.

Construction Given an instance of Minimum Set Cover
problem (set of elements E, collection C of subsets of E,
integer k), create an instance of MFDPS as follows:

• Create a set of nodes N such that there is one node in N
for each element in E.

• Create a set of probes P such that there is one probe in P

for each set in C.
• For probe p ∈ P corresponding to a set Cj ∈ C, construct

a set S(p) ⊆ N such that a node Ni ∈ S(p) if the corre-
sponding element Ei ∈ Cj . Thus a probe p visits a node
n if the set corresponding to probe p covers the element
corresponding to node n.

114 M. Natu et al.

Algorithm GFD: Greedy algorithm for probe set selection for fail-
ure detection

input : N : The set of nodes. PS: The set of probe stations.
AvailableProbes: Set of probes that can be sent from
probe stations to other nodes in the network.

output : Probe set for failure detection
Initialize a set NonProbedNodes to all non-probe station nodes,1
i.e., N − PS;
while ((NonProbedNodes �= Null)&(AvailableProbes �= Null))2
do

Select a node m from NonProbedNodes, that is probed by3
least number of probes;
Out of all the probes in AvailableProbes probing node m,4
select a probe q that probes largest number of
NonProbedNodes;
Remove all nodes probed by probe q from5
NonProbedNodes;
Remove probe q from AvailableProbes;6
Add probe q to SelectedProbes;7

end8
if NonProbedNodes = Null then9

Return the SelectedProbes;10
end11
else12

Report “Insufficient probes”;13
end14

Given a finite collection C and a finite set of elements E,
the complexity of the construction is O(|C| ∗ |E|).

Proof Forward (MSC implies MFDPS): Here we prove
that if there is a solution to the Minimum Set Cover instance
then there must be a solution to the MFDPS instance.

A solution to Minimum Set Cover consists of a collec-
tion C′ of k sets such that every element in E is covered by
some set of C′. As explained in the construction, if a set Cj

covers an element Ei , then the probe corresponding to the
set Cj will visit the node corresponding to the element Ei .
Thus, as k sets in C′ cover every element in E, the k probes
representing the sets in C′ will visit every node in N . The
probes representing the sets in C′ thus form a detection set
of size k.

Reverse (MFDPS implies MSC): Here we prove that if
there is a solution to the MFDPS instance then there must
be a solution to the Minimum Set Cover instance.

A solution to MFDPS consists of a detection set of size k

which is a set of k probes such that every node in the set N is
visited by these probes. As explained in the construction, a
node n is visited by a probe p if the element corresponding
to node n is covered by the set corresponding to probe p.
Thus if k probes in the detection set visit all nodes then the k

sets corresponding to these k probes will cover all elements
represented by the nodes.

Thus the MFDPS problem is NP-Complete.

4.2 Heuristic-based algorithm for probe set selection for
failure detection

In this section, we present a heuristic-based algorithm to se-
lect probes for failure detection. Different nodes are probed
by different numbers of probes, depending on the routes
used by the probes. Nodes that are probed by fewer probes
narrow down the search space for probe selection. Consider
the case where a node n is probed by only one probe. In this
case, the only probe probing node n must always be selected,
irrespective of the number of nodes it covers. Consider an-
other case, where only two probes pass through a node n.
Then one of the two probes must be selected to cover node n.
Amongst the two probes, the probe covering a larger number
of uncovered nodes is the better choice.

Algorithm GFD describes a Greedy approximation algo-
rithm that explores the information contained in the depen-
dencies between probes and network components. The algo-
rithm selects the network element n which is probed by the
least number of probes, using the dependency information
between probes and probed elements. Out of all the probes
probing element n, the algorithm selects the probe which
goes through a maximum number of nodes that are not yet
probed.

As an example, consider a dependency graph represented
by the matrix in Fig. 3, where rows represent probes and
columns represent nodes. Cell(i, j) = 1 indicates that probe
i probes node j . In this matrix, node 1 is probed by only
one probe, i.e., probe C. Thus probe C must be selected.
Nodes 1 and 5 are probed by probe C. Out of the remaining
nodes (i.e., nodes 2, 3, and 4), node 2 is probed by the least
number of probes (probes A and B). Thus next probe should
be selected to probe node 2. Probe A covers 2 non-probed
nodes while probe B covers 3 non-probed nodes. Thus probe
B is a better choice. Since all nodes are now covered, the
algorithm ends with probes B and C as the final solution.

Considering the total number of nodes equals N and
the total number of probes equals P , the algorithm per-
forms O(N) operations to choose a node to probe and O(P)

operations to select a probe in each iteration. The algo-
rithm performs O(N) iterations to select probes to cover
all the nodes, making the total complexity of the algorithm
O(N ∗ (N + P)). Assuming an upper limit s on the number
of probe stations, the total number of probes P is O(s ∗ N)

with each of the s probe stations sending probes to reach
other non-probe-station nodes. This makes the complexity
of the algorithm O(N2). In Sect. 6 we provide simulation
results that include an analysis of the performance of our
algorithm GFD in comparison with an algorithm from [5].

5 Fault localization

In this section we present algorithms for probe selection for
fault localization. We first describe the preplanned approach

Efficient probe selection algorithms for fault diagnosis 115

Fig. 3 Matrix representing dependencies between probes and nodes such that cell(i, j) = 1 implies that probe i probes node j ; (a) Selection of
Probe C to probe Node 1; (b) Selection of Probe B to probe Node 2 on the reduced matrix; (c) No more uncovered nodes left in the matrix

for probe selection for fault localization and show that the
problem of selecting such a probe set is NP-Complete. We
then present adaptive probing algorithms for fault localiza-
tion based on different heuristics.

5.1 Preplanned-probing-based fault localization

Preplanned probing proposes to select a set of probes such
that any node failure can be uniquely diagnosed. To build
such a probe set, the dependency matrix is used that con-
tains dependencies between the probes represented by the
rows and the nodes represented by the columns. Based on
the dependencies, a scenario of node failure produces a spe-
cific pattern of probe outcomes. Thus each node failure rep-
resented by a column can be represented by a vector of probe
outcomes. Assuming that each node failure is uniquely diag-
nosable from the probe outcomes, the failed node can be de-
duced by observing the vector of probe outcomes. However,
there might not be the need to send all probes to perform
such a diagnosis, as many probe outcomes might give re-
dundant information and thus might not be needed for the
unique diagnosis of node failures. Informally the probe set
selection for fault localization problem is:

Given a set of probes and the dependencies between
probes and node failure states, select the smallest set
of probes such that every node failure state can be
uniquely diagnosed.

In this section, we prove that probe set selection for fault lo-
calization is NP-Complete. In the proof provided below we
assume that the goal is localization of a single node failure.
It follows immediately that the more general problem of lo-
calizing an arbitrary number of simultaneous node failures
is also NP-complete.

5.1.1 Probe set selection for fault localization is
NP-Complete

Consider a set of nodes N , each of which can either be up
(functioning correctly), or down (functioning incorrectly).
Consider a set of probes P . Each probe is represented by a
binary string of length |N|. If a probe visits a node Nj ∈ N,
then the string contains a 1 at position j , and a 0 otherwise.
This defines a 0–1 dependency matrix D of size |P| ∗ |N|
with rows representing probes and columns representing
nodes, such that D[i, j] = 1 if probe i visits node j and
0 otherwise.

A probe either succeeds or fails. A successful probe indi-
cates that every node it visits is healthy. On the other hand, if
a node fails, then every probe visiting this node fails. Thus,
the outcome of a set of r probes results in a binary string
of length r with each digit indicating the success or fail-
ure of a probe. We refer to this binary string of probe re-
sults as a probe result vector. A node failure that generates
a unique probe result vector relative to the probe result vec-
tors of other nodes can be diagnosed unambiguously from
the observed probe result vector. Here, we assume a single
node failure at a given time.

In this context then the probe set selection for fault local-
ization problem is to select a smallest set of probes Q ⊆ P
such that every node failure produces a unique probe result
vector for the selected probes. We refer to this set of probes
as the localization set.

In what follows, we prove the NP-Completeness of the
MFLPS problem by reducing the Minimum Test Collection
problem to MFLPS. As per standard practice, we use the de-
cision versions of the MFLPS and the Minimum Test Col-
lection problems. We extend the definition of localization
set to refer to a probe set Q ⊆ P of size k such that there
exists a unique probe result vector for every node n ∈ N .

Definition of problem instances

• MFLPS problem:

116 M. Natu et al.

Instance: A set of nodes N , a set of probes P , a 0–1
dependency matrix D, where D[i, j] = 1 if probe i

visits node j , and 0 otherwise, and an integer k.
Question: Does there exist a localization set of
size k? That is, does there exist a set of k probes
Q ⊆ P, such that for the k probes there exists a
unique probe result vector for every node?

• Minimum Test Collection problem:

Instance: A finite set of elements E, a collection C

of subsets of E, and an integer k.
Question: Does there exist a collection C′ ⊆ C of
k sets such that for each pair of distinct elements
Ei,Ej ∈ E, there is some set c ∈ C′ that covers ex-
actly one of Ei or Ej ?

MFLPS is in NP

We now prove that the MFLPS problem is in NP by
showing that a certificate for the problem can be verified
in polynomial time. Here a certificate consists of a set of
probes Q ⊆ P .

Verification that |Q| ≤ k, can be done in O(k) operations.
The set Q generates |N | probe result vectors each of size k.
To check if Q provides the localization set, we verify that
the |N | probe result vectors are unique. This can be done in
O(k|N |2) operations.

Since a certificate can be verified in polynomial time, it
follows that MFLPS is in NP.

Reduction

To complete the proof of the NP-Completeness of the
MFLPS problem, we provide a reduction from Minimum
Test Collection to MFLPS such that there exists a test col-
lection of size k for the Minimum Test Collection instance
if and only if there exists a localization set of size k for the
MFLPS instance.

Construction Given an instance of the Minimum Test Col-
lection problem (set of elements E, collection C of subsets
of E, integer k), create an instance of MFLPS as follows:

• Create a set of nodes N such that there is one node in N
for each element in E.

• Create a set of probes P such that there is one probe in P

for each set in C.
• Build a dependency matrix such that if set Ci covers an

element Ej , then the probe corresponding to set Ci visits
the node corresponding to element Ej . Thus, create a 0–1
dependency matrix D, such that D[i, j] = 1 if Ej ∈ Ci ,
and D[i, j] = 0 otherwise.

Given a finite collection C and a finite set of ele-
ments E, the complexity of matrix creation and population
is O(|C| ∗ |E|).

Proof Forward (MTC implies MFLPS): Here we prove
that if there is a solution to the Minimum Test Collection
(MTC) instance then there must be a solution to the MFLPS
instance.

A solution to MTC consists of a collection C′ of k sets
such that for every two elements Ei,Ej ∈ E there is some
set in C′ that covers exactly one of Ei and Ej .

As explained in the construction, if a set Ci covers an ele-
ment Ej , then D[i, j] = 1, and D[i, j] = 0 otherwise. Thus,
if for each pair of elements there exists a set that covers ex-
actly one of the two, then for each pair of nodes in the de-
pendency matrix D, there must exist some probe entry that
is different for the two nodes (1 for one node and 0 for the
other). This makes the probe set corresponding to the so-
lution of the MTC instance provide a unique probe result
vector for each node, making the probe set the localization
set for the MFLPS instance.

Reverse (MFLPS implies MTC): Here we prove that if
there is a solution to the MFLPS instance then there must be
a solution to the Minimum Test Collection instance.

A solution to MFLPS consists of a localization set of k

probes such that every node in the set N produces a unique
probe result vector for the k probes. If k probes in the lo-
calization set generate unique probe result vectors for each
node, then for each pair of nodes, there must exist at least
one probe in the localization set that provides different val-
ues to the probe result vector of the two nodes. Thus, for
each pair of nodes, there must exist at least one probe that
visits exactly one of the two nodes, thus providing ‘0’ for
one node and ‘1’ for the other node’s probe result vector.

As explained in the construction, a node n visited by a
probe p corresponds to inclusion of the element correspond-
ing to the node n in the set corresponding to the probe p.
Thus, a 1 entry in a D[i, j] corresponds to inclusion of the
node j in the set i. If for a pair of nodes, there exists a probe
p that visits exactly one of the two nodes, then for the corre-
sponding pair of elements in the MTC instance the set cor-
responding to the probe p will cover exactly one of the two
elements.

If k probes have the property that for every pair of nodes
there exists a probe that visits exactly one of the two nodes,
then the corresponding k sets in the MTC problem instance
will hold the property that for every pair of elements, there
exists a set that covers exactly one of the two elements.

Thus the MFLPS problem is NP-Complete.
In the past, heuristic-based algorithms have been pro-

posed [5] for probe set selection for preplanned probing.
In Sect. 6 we compare the adaptive probing algorithms
presented in this paper with the preplanned probing algo-
rithm presented in [5] and show that adaptive probing per-
forms fault localization using significantly smaller number
of probes than preplanned probing.

Efficient probe selection algorithms for fault diagnosis 117

5.2 Adaptive-probing-based fault localization

We now present an adaptive probing approach for fault lo-
calization. The fault localization process is triggered when
a failure in the network is detected by the failure of one or
more detection probes. This failure indicates the presence
of one or more faults over the failed probe paths. However
these probes might not be able to locate the exact cause of
failure. Hence additional probes must be sent over the iden-
tified problem areas to localize the fault. In this section, we
present various approaches to select additional probes for
localization to a finer granularity.

The probes for fault localization need to be sent such that
the health of all the nodes on the failed probe paths can
be determined. It should be noted that the presence of fail-
ures may cause certain nodes to be unreachable from certain
probe paths. This is demonstrated by the example shown in
Fig. 4. Figure 4 shows probe paths from probe stations 1
and 9 to other nodes in the network. Consider the probe path
9 → 7 → 5. Failure of node 7 makes node 5 unreachable
for the probe station node 9. Also, as certain node failures
are identified, probe paths need to be selected to probe the
rest of the nodes such that the probes do not pass through
the already identified failed nodes. In this section we first
present an approach to analyze probe results for inferring
node health and then present various ways to select appro-
priate probes for localization. We compare the number of

Fig. 4 Example shows probe
station nodes 1 and 9 and probes
sent from nodes 1 and 9 to other
nodes. Failure of node 7 makes
node 5 unreachable from probe
station node 9

probes and time required by each of these methods to local-
ize the faults in the network in Sect. 6.

5.2.1 Probe analysis

The sets of failed, passed, and suspected nodes are main-
tained for analysis of the health of network nodes. The set
of suspected nodes contains the nodes whose health needs
to be determined. This suspected node set is initialized to all
nodes that are present on the failed probe paths. The suc-
cess and failure of the probes sent affect the sets of failed,
passed, and suspected nodes. The nodes lying on the paths
of successful probes are added to the set of passed nodes
and removed from the set of suspected nodes. A node n is
declared as failed and added to the failed nodes set when a
failed probe goes through a set of nodes such that all nodes
other than node n on that path have already been found to
have good health. In other words, no other node on that path
is present in the suspected node set. In each iteration, the
algorithm builds a probe set to be sent over the network to
determine the health of the remaining suspected nodes.

Figure 5 shows how the sets of suspected nodes, failed
nodes, and passed nodes are maintained with the observed
success and failure of probes. Figure 5 shows a network with
nodes 1 and 7 as probe station nodes. Failure of probe 1 → 8
brings nodes 4, 5, 6, and 8 into the suspected node set. On
observing success of probe 7 → 4, nodes 4 and 5 are re-
moved from the set of suspected nodes and put into the set
of passed nodes. Failure of probe 1 → 6, together with the
information about the good health of nodes 4 and 5, narrows
down the failure to node 6. Thus node 6 is removed from the
set of suspected nodes and put into the set of failed nodes.
Success of probe 7 → 8 brings node 8 in the set of passed
nodes. Thus the probes classify the suspected nodes into the
set of passed and failed nodes.

Fig. 5 Analysis of probe
success and failure to classify
suspected nodes into passed and
failed nodes

118 M. Natu et al.

Algorithm NM: Network Monitoring Algorithm (Algorithm to
send probes for monitoring network health and localizing causes
of failure)

Input : NetworkNodes, ProbeSet
Output: FailedNodes
FDProbes ← Failure Detection Probes (from Algorithm 1);1
while no failure do2

Send FDProbes; Wait for t time units;3
end4
Identify the PassedProbes, FailedProbes;5
FailedNodes ← NULL; PassedNodes ← NULL;6
while |FailedProbes| �= NULL do7

(FLProbes, FailedNodes, PassedNodes) ←8
GFL(FailedProbes, PassedProbes, FailedNodes,
PassedNodes, ProbeSet);
Send FLProbes and identify PassedProbes and FailedProbes;9
Remove probes ∈ FLProbes from ProbeSet;10

end11
Return FailedNodes and exit;12

Algorithm GFL: Greedy Fault Localization Algorithm (Probe
selection for fault localization in the network)

Input : FailedProbes, PassedProbes, FailedNodes,
PassedNodes, ProbeSet

Output: Probe set for further fault localization, FailedNodes,
PassedNodes

Add nodes on the passed probe paths to PassedNodes;1
Initialize a set SuspectedNodes to nodes that lie on failed probe2
paths and are not present in the PassedNodes set and are not the
ProbeStationNodes;
foreach probe p ∈ FailedProbes do3

PathSuspectedNodes ← ProbePathNodes(p) ∩4
SuspectedNodes;
if |PathSuspectedNodes| = 1 then5

add PathSuspectedNodes to the FailedNodes;6
end7

end8
Remove nodes ∈ FailedNodes from SuspectedNodes;9
Build a set AvailableProbes to the probes from ProbeSet that10
pass through SuspectedNodes and do not pass through
FailedNodes;
FLProbes ← SelectFLProbes (SuspectedNodes,11
AvailableProbes);
return FLProbes, FailedNodes, PassedNodes;12

5.2.2 Greedy algorithm

In this section we present algorithms based on the Greedy
approach to build a probe set for fault localization. We first
present Algorithm NM that describes the operations per-
formed by the network manager. The network manager first
sends the probe set for failure detection. If no failure is ob-
served on these probes, the manager waits for some time
and then resends the same probe set for failure detection.
However, if a failure is observed, the manager performs
deeper diagnosis of failed probe paths by executing Algo-
rithm GFL (Greedy Fault Localization). Algorithm GFL re-
ceives the information about the passed and failed probes

Procedure SelectFLProbes(SuspectedNodes,
AvailableProbes) {Probe selection using Max search}

begin
LocalizationProbes ← NULL;
TargetNodes ← SuspectedNodes;
ProbeSpace ← AvailableProbes;
while |TargetNodes| �= NULL do

NextProbe ← Probe ∈ ProbeSpace that covers
maximum number of TargetNodes;
Add NextProbe to LocalizationProbes;
Remove NextProbe from ProbeSpace;
Remove ProbedNodes(NextProbe) from TargetNodes;

end
return LocalizationProbes;

end

Procedure SelectFLProbes(SuspectedNodes,
AvailableProbes) {Probe selection using Min search}

LocalizationProbes ← NULL;
TargetNodes ← SuspectedNodes;
ProbeSpace ← AvailableProbes;
foreach node n ∈ TargetNodes do

NextProbe ← Probe that passes through node n and through
minimum number of other TargetNodes;
Add NextProbe to the LocalizationProbes;
Remove NextProbe from ProbeSpace;
Remove ProbedNodes(NextProbe) from TargetNodes;

end
Return LocalizationProbes;

and any already collected information about the passed and
failed nodes. The algorithm then updates the passed and
failed nodes sets by analyzing the received information. The
algorithm computes a set of probes to be sent for further
analysis of nodes whose health is yet undetermined. The net-
work manager sends these additional probes and repeats the
same process of probe result analysis and new probe selec-
tion until the health of all nodes is determined.

We present two approaches to select the probes for prob-
ing the nodes in the suspected node set. One approach is to
iteratively select a probe that covers a maximum number of
suspected nodes as shown in Fig. 6b. The success of such
a probe gives a large amount of information by removing
all the nodes on that probe path from the suspected node
set. However if the probe fails then the probe does not give
much information to significantly narrow the search space
of a failed node. For instance, in Fig. 7a success of probe
1 → 8 gives information about good health of nodes 4, 5,
6, and 8, while its failure does not narrow down the set of
suspected nodes. The suspected nodes set would need more
probes for further diagnosis. Hence another approach could
be to select a probe for each suspected node such that it goes
through the least number of other suspected nodes as shown
in Fig. 6c. The success of such a probe gives the informa-
tion about good health of a small number of nodes, reducing

Efficient probe selection algorithms for fault diagnosis 119

Fig. 6 (a) Network with nodes 7 and 8 as probe stations; (b) Nodes probed by a small set of long probes; (c) Nodes probed by a large set of short
probes

Fig. 7 (1) Successful probes give more information in Max search; (2) Failed probes give more information in Min search

the suspected node set only by a small amount. However,
the failure of such a probe narrows down the search space
significantly. For instance, in Fig. 7b success of a smaller
probe 1 → 2 gives little information indicating good health
of the single node 2, but failure of this probe narrows the
fault localization to a single node, node 2. This set requires
no additional probes for fault localization.

Based on these concepts we first present two algorithms
to select probes for fault localization. The basic algorithm
presented in Algorithm GFL stays the same for the two ap-
proaches. The two approaches differ in the probe selection
procedure. The procedure SelectFLProbes() in Algorithm
GFL selects probes from the set of available probes to di-
agnose the suspected nodes. We present two approaches to
select this probe set, namely Max Search and Min Search.
Thus we present two different implementations of the Se-
lectFLProbes procedure based on the Max search and Min
search to present a Greedy Fault Localization Algorithm
with Max search and Min Search.

• Max search: As explained above, the Max search ap-
proach selects a probe that covers a maximum number
of suspected nodes. In this implementation, the proce-
dure SelectFLProbes() returns a set of probes from the
available probes by iteratively selecting probes that cover
a maximum number of uncovered nodes till all the sus-
pected nodes are covered.

• Min search: The Min search approach works on the con-
cept of selecting a probe for each suspected node set such
that the selected probe goes through a minimum num-
ber of other nodes in the suspected node set. For imple-
menting the Min search approach, the procedure Select-
FLProbes() returns a set of probes for fault localization
using this approach.

Considering the total number of nodes equals N and the
total number of probes equals P , the for loop in Algorithm
GFL performs O(N) operations in each iteration in building
the PathSuspectedNodes. The for loop runs for each failed

120 M. Natu et al.

Algorithm BSFL: Binary Search Fault Localization Algo-
rithm (Probe selection for fault localization in the network)

input : Nodes, ProbeSet
output: FailedNodes
FDProbes = FDetection (Nodes, ProbeSet) (from Algorithm 1);1
Send FDProbes;2
if no probe failed then3

Declare FailedNodes and return;4
end5
SuspectedNodes ← NULL;6
foreach failed probe p = (n1 → n2 → ·· · → nm) do7

n ← BinarySearch (n1, n1, nm);8
Add n to FailedNodes;9
Add all nodes following n on the path10
(n1 → n2 → ·· · → nm) to SuspectedNodes;
Remove probes passing through node n from the ProbeSet;11

end12
BSFL (SuspectedNodes, ProbeSet);13

probe. The total number of probes chosen by Algorithm
GFL to be sent is at most N as at most N nodes can fail
and the algorithm can select at most N probes one for each
suspected node. Thus the complexity of the for loop in Al-
gorithm GFL is O(N2). The operation of building the probe
AvailableProbes set performs O(P) operations.

In the SelectFLProbes function using Max search ap-
proach, the while loop runs at most N times. The probe
selection operation in the loop is an O(P) operation and
updating the TargetNodes data structure is an O(N) op-
eration, making the total complexity of the function to be
O(N ∗ (N + P)). Thus the computational complexity of
Algorithm GFL using Max search is O(N ∗ (N + P)). As-
suming an upper limit s on the maximum number of probes
stations that can be deployed, the probe set size will be
O(s ∗ N), assuming one probe from each of the s probe sta-
tions to O(N) non-probe station nodes. Thus the probe set
size of O(P) can be considered to be O(s ∗ N). This makes
the O(N ∗ (N + P)) complexity of Algorithm GFL using
Max search become O(N2).

The for loop in the SelectFLProbes function using the
Min search approach, performs O(P) operations to choose
a probe and O(N) operations to update the TargetNodes
data structure. Thus one iteration of this for loop performs
O(N + P) operations. As explained above P equals s ∗ N

making the complexity of one iteration to be O(N). The
for loop runs an iteration for each suspected node thus run-
ning at most O(N) times. This makes the complexity of
the SelectFLProbes function implementing Min search to be
O(N2).

5.2.3 Binary search

In this section, we present another approach for selecting
probes for fault localization. The Greedy approach does not
diagnose each probe path independently. Instead, it builds

Procedure BinarySearch(StationNode,
StartNodePosition, EndNodePosition)

if StartNodePosition = EndNodePosition then
return StartNodePosition;

end
TargetPosition ← �(StartNodePosition + EndNodePosition)/2�;
Send probe from StationNode to node at position TargetPosition;
if probe fails then

BinarySearch (StationNode, StartNodePosition,
TargetPosition);

end
else

BinarySearch (StationNode, TargetPosition,
EndNodePosition);

end

a single set of suspected nodes consisting of nodes on all
failed probe paths. In the Binary search approach, we pro-
pose to diagnose each failed probe path independently. On
each failed probe path, additional probes are sent till one
failure on that path is diagnosed. We propose to send these
probes in a binary search fashion. On a failed probe path, a
probe is first sent from the probe station to the node that is
half way on the probe path. If this probe fails, further diag-
nosis is done on the first half of the probe path. On the other
hand, if this probe succeeds, then the later half of the probe
path is diagnosed in similar fashion. Figure 8 shows an ex-
ample of how probes are sent in a binary search fashion to
identify a failed node on the probe path. In this figure, probes
are sent from probe station node 7. Consider that node 5 has
failed and that the failure was detected on observing a failure
of probe 7 → 3. Binary search probe selection then analyzes
first half of this path by sending probe 7 → 10. On observ-
ing success on this path, nodes 6 and 10 are inferred to be
in good health, and the second half of the probe path is ana-
lyzed focusing on nodes 5 and 3. Continuing probe selection
in the binary search fashion, probe 7→5 is sent. Failure of
this probe together with information about good health of
nodes 6 and 10 indicates a failure of node 5.

This process identifies one failed node on each probe
path. On each of these probe paths the health of the nodes
behind the identified failed node might still be unknown.
Hence a suspected node set is again created that consists
of the unidentified nodes that lie behind the failed nodes on
the probe paths. The nodes that are already known to be in
good health or failed, are removed from this set. The similar
fault localization process is repeated for this newly formed
suspected node set. The process is repeated till the health of
all the nodes is determined. Algorithm BSFL presents the
Binary Search Fault Localization Algorithm.

Algorithm BSFL executes the Greedy algorithm to se-
lect probes for failure detection which performs O(N2) op-
erations as shown in Sect. 4. An iteration of the for loop
in Algorithm BSFL executes the BinarySearch procedure

Efficient probe selection algorithms for fault diagnosis 121

Fig. 8 Probes sent in a binary
search fashion on a failed probe
path 7 → 3 to identify failed
node on the path

Fig. 9 Comparison of the probe
set size and execution time of
GFD and Additive algorithms
for probe selection for failure
detection in networks with
different sizes and an average
node degree of 8

which performs O(log(n)) operations as discussed later in
this section. The operation of updating the probe set is of
O(P) complexity. Thus one iteration of the for loop per-
forms O(log(N) + P) operations. The for loop runs one
iteration for each failed probe. Algorithm BSFL sends the
probe set that covers all suspected nodes. This probe set
can at most be of size N assuming sending one probe for
each suspected node. In practice, the number of suspected
nodes is much less than N and the number of probes to cover
suspected nodes is much less than the total number of sus-
pected nodes. Thus we can consider the number of failed
probes and hence the for-loop iterations to be of O(N).
Hence, the computational complexity of Algorithm BSFL
is O(N ∗ (P + log(N))). As discussed earlier, assuming at
most s probe stations, the probe set size P is O(k ∗ N),
making the complexity of Algorithm BSFL to be O(N2).

6 Experimental evaluation

In this section, we present experimental evaluation via sim-
ulation of the algorithms proposed in this paper.

6.1 Simulation model

In this section we present the simulation model used for the
experiment results presented in this paper. We simulated var-
ious network topologies with different network sizes and

average node degrees. Let MD, AD, and N represent the
maximum node degree, average node degree, and the total
number of nodes in the network respectively. Given these
three parameters, we create a network of N nodes, randomly
introducing N ∗ AD links such that no node has a degree
greater than MD, and also ensuring that the network is con-
nected. Each point plotted on the graphs is an average of 20
experiment runs where each experiment was run on a dif-
ferent network topology. We also plot the 95% confidence
intervals. We present results to localize node failures in the
network. We build a deterministic dependency model to rep-
resent the dependencies between the nodes and probes. For
each probe selection experiment, we first ran a probe station
selection algorithm (Algorithm SNR) [23]. This identified a
set of nodes as probe stations from where probes can be sent
to monitor the network. We used the probes that can be sent
from these probe stations to build the set of available probes.

6.2 Simulation results

6.2.1 Failure detection

In this section we present results to show the effectiveness
of Algorithm GFD in computing the probe set for failure
detection. We compared Algorithm GFD with the Additive
algorithm presented in [5] for network sizes varying from 50
to 500 nodes, with an average node degree of 8. The com-
parison of the two algorithms is shown in Fig. 9. Figure 9

122 M. Natu et al.

Fig. 10 Comparison of the
probe set size computed and the
localization time taken by Min,
Max and Binary search for fault
localization on networks with
different sizes and with average
node degrees 8 and 10. Time is
measured in terms of probe trips
where a probe trip time is the
average time taken to send a set
of probes and get back the probe
results

shows that execution time of the Greedy algorithm is smaller
than that of the Additive algorithm; while the probe set sizes
computed by the Greedy algorithm are close to those com-
puted by the Additive algorithm.

6.2.2 Fault localization

In this section, we present experimental evaluation of the
proposed probe selection algorithms for fault localization.
We randomly introduced three node failures and ran Algo-
rithm BSFL and Algorithm NM using Min Search and Max
Search approaches for probe selection. We calculated the
number of probes used by the three algorithms and the time
required by the three algorithms in terms of probe trip times.
We consider the average time taken to send a set of probes
and get back the probe results as one probe trip time. Using
this metric, we compare the time taken by the three algo-
rithms in localizing the introduced failures. We ran the three
algorithms on network sizes ranging from 50 to 500 nodes
with average node degrees of 8 and 10.

Figure 10 presents graphs for the probe set size computed
and localization time taken by the Min search, Max search,
and Binary search for fault localization. Figure 10 shows
that Max search requires more probes than Min search and
Binary search. Figure 10 also compares the time required
by the three algorithms in localizing the failure where the
time is measured in terms of probe trips. We also observe

that Max search takes a longer time to localize the fault than
Min search and Binary search.

Max search requires more probes for localization because
of the use of long probes which are more likely to fail
in the presence of failed nodes. A failed long probe gives
less information to localize the fault. A failed long probe
thus results in a need for more probes to perform diagno-
sis and increased number of iterations for fault diagnosis.
Min search diagnoses all suspected nodes in parallel. More-
over, the small probe size leads to quicker diagnosis of node
health. Binary search also operates in parallel on all probe
paths leading to a faster diagnosis. Unlike Min search, Max
search does not treat each suspected node in parallel but uses
probes of larger lengths to cover all suspected nodes result-
ing in a larger number of iterations. However, the perfor-
mance of Max search improves as the average node degree
increases. With the increase in the average node degree, the
average probe length decreases. A shorter probe is less likely
to pass through the failed node, and hence more probes sent
by Max search succeed, giving more information about the
network health.

Next we compare adaptive probing with preplanned
probing based probe selection algorithms proposed in the
earlier work [5]. As explained in Sect. 1, preplanned prob-
ing computes a set of probes that is capable of diagnosing all
possible failure scenarios of interest and sends this probe set
periodically over the network. We compare the number of

Efficient probe selection algorithms for fault diagnosis 123

Fig. 11 (a) Number of probes sent per interval; (b) Total number of probes sent in 20 intervals by Adaptive and Preplanned approaches to localize
4 faults in a network of 20 nodes

Fig. 12 (a) Number of probes sent per interval; (b) Total number of probes sent in 20 intervals by Adaptive and Preplanned approaches to localize
4 faults in networks with different network sizes

probes sent by adaptive and preplanned algorithms to per-
form fault localization in various scenarios. We first com-
pare the number of probes sent by adaptive and preplanned
probing on a network of 20 nodes to localize 4 faults in the
network. We consider a scenario where both adaptive and
preplanned approaches probe the network periodically and
a failure is introduced at the 20th interval. We compare the
number of probes sent by both approaches to localize the
introduced failure. Figure 11a shows the number of probes
sent per interval by adaptive and preplanned approaches.
Preplanned probing sends out a fixed probe set for all 20
intervals. Adaptive probing on the other hand, first sends a
probe set for failure detection for first 20 intervals and then
sends the probes for fault localization on detecting failure at

the 20th interval. Figure 11b compares the total number of

probes sent by the two approaches in this scenario. From the

figure we can see that adaptive probing sends a significantly

smaller number of probes that preplanned probing.

Figure 12 shows the number of probes sent by the two

approaches to localize 4 faults in networks with different

sizes. It can be seen that the difference in the number of

probes sent by adaptive and preplanned probing increases

with the increase in network size. Figure 13 compares the

number of probes sent by the two approaches in a network

of 20 nodes to localize different number of faults in the net-

work. We can see that as the number of faults to localize

increases, the difference between the number of probes used

124 M. Natu et al.

Fig. 13 (a) Number of probes sent per interval; (b) Total number of probes sent in 20 intervals by Adaptive and Preplanned approaches to localize
different number of faults in a network of 20 nodes

by the two approaches increases, making adaptive probing
significantly more efficient than preplanned probing.

7 Conclusion and future work

In this paper, we presented an adaptive probing based ap-
proach to perform fault localization in networks. We pro-
posed fault localization algorithms to adapt the probe set
to the observed network conditions and send probes in an
interactive manner to perform the diagnosis. We presented
three algorithms to select probes for fault localization in
an adaptive manner and presented the performance evalua-
tion of these algorithms. We also compared adaptive probing
with preplanned probing and showed that adaptive probing
performs localization using significantly smaller number of
probes than preplanned probing. The end-to-end nature of
probes and optimized traffic overhead makes adaptive prob-
ing a promising tool for various monitoring applications.

As part of future research, we aim to consider node mo-
bility and scenarios with incomplete or inaccurate depen-
dency information while selecting probes for fault localiza-
tion. We also aim to develop a probe station communication
protocol and build a decentralized fault localization system.

Acknowledgements The views and conclusions contained in this
document are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied of the Army
Research Laboratory or the US Government.

References

1. Al-Shaer, E., & Tang, Y. (2002). QoS path monitoring for mul-
ticast networks. Journal of Network and Systems Management,
10(3), 357–381.

2. Andersen, D. G., Balakrishnan, H., Kaashoek, M. F., & Morris, R.
(2001). Resilient overlay networks. In Symposium on operating
systems principles (pp. 131–145). Chateau Lake Louise, Banff,
Canada.

3. Banerjee, S., Bhattacharjee, B., & Kommareddy, C. (2002).
Scalable application layer multicast. In ACM SIGCOMM 2002
(pp. 205–217). Pittsburgh, PA.

4. Bejerano, Y., & Rastogi, R. (2003). Robust monitoring of link
delays and faults in IP networks. In IEEE INFOCOM 2003
(pp. 1092–1103). San Francisco, CA.

5. Brodie, M., Rish, I., & Ma, S. (2001). Optimizing probe selection
for fault localization. In IFIP/IEEE international workshop on dis-
tributed systems: operations and management (pp. 1147–1157).
Nancy, France.

6. Brodie, M., Rish, I., Ma, S., Grabarnik, G., & Odintsova, N.
(2002). Active probing (Technical report). IBM.

7. Brown, A., & Patterson, D. (2001). An active approach to char-
acterizing dynamic dependencies for problem determination in a
distributed environment. In IFIP/IEEE international symposium
on integrated network management (pp. 377–390). Seattle, WA.

8. Carter, R. L., & Crovella, M. E. (1997). Server selection using
dynamic path characterization in wide-area networks. In IEEE IN-
FOCOM, 1999 (pp. 1014–1021). Kobe, Japan.

9. Chen, Y., Bindel, D., & Katz, R. H. (2003). Tomography-based
overlay network monitoring. In ACM SIGCOMM conference on
Internet measurement, 2003 (pp. 216–231). Miami, FL.

10. Chen, Y., Bindel, D., Song, H., & Katz, R. H. (2004). An algebraic
approach to practical and scalable overlay network monitoring. In
ACM SIGCOMM 2004 (pp. 55–66).

11. Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001).
Introduction to algorithms. New York: McGraw-Hill.

12. Dovrolis, C., Ramanathan, P., & Moore, D. (2001). What do
packet dispersion techniques measure? In IEEE INFOCOM 2001
(pp. 905–914). Anchorage, Alaska.

13. Downey, A. B. (1999). Using Pathchar to estimate Internet link
characteristics. In ACM SIGCOMM 1999 (pp. 241–250). Cam-
bridge, MA.

14. Frenkiel, A., & Lee, H. (1999). EPP: A framework for measuring
the end-to-end performance of distributed applications. In Perfor-
mance engineering ‘best practices’ conference. IBM Academy of
Technology.

15. Gao, J., Kar, G., & Kermani, P. (2004). Approaches to build-
ing self-healing systems using dependency analysis. In IEEE/IFIP

Efficient probe selection algorithms for fault diagnosis 125

network operations and management symposium (pp. 119–132).
Seoul, Korea.

16. Chu, Y. H., Rao, S. G., Seshan, S., & Zhang, H. (2002). A case of
end system multicast. IEEE Journal on Selected Areas in Commu-
nications, 1456–1471.

17. Hu, N., & Steenkiste, P. (2003). Evaluation and characterization
of available bandwidth probing techniques. IEEE Journal on Se-
lected Areas in Communications, 21(6), 879–894. Special issue in
Internet and WWW measurement, mapping and modeling.

18. Hu, N., & Steenkiste, P. (2003). Towards tunable measurement
techniques for available bandwidth. In Bandwidth estimation
workshop (BEst03). San Diego, CA.

19. Huffaker, B., Plummer, D., Moore, D., & Claffy, K. (2002). Topol-
ogy discovery by active probing. In Symposium on applications
and the Internet (pp. 90–96). Nara, Japan.

20. Jain, M., & Dovrolis, C. (2002). End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with TCP
throughput. In ACM SIGCOMM 2002 (pp. 537–549). Pittsburgh,
PA.

21. Lai, K., & Baker, M. (1999). Measuring bandwidth. In IEEE IN-
FOCOM 1999 (pp. 235–245). New York, NY.

22. Li, F., & Thottan, M. (2006). End-to-end service quality mea-
surement using source-routed probes. In IEEE INFOCOM 2006
(pp. 1–12). Barcelona, Spain.

23. Natu, M., & Sethi, A. S. (2008, to appear). Probe station place-
ment for robust monitoring of networks. Journal of Network and
Systems Management.

24. Ozmutlu, H. C., Gautam, N., & Barton, R. (2002). Managing end-
to-end network performance via optimized monitoring strategies.
Journal of Network and Systems Management, 10(1), 107–126.

25. Ozmutlu, H. C., Gautam, N., & Barton, R. R. (2002). Zone recov-
ery methodology for probe-subset selection in end-to-end network
monitoring. In IEEE/IFIP network operations and management
symposium (pp. 451–464). Florence, Italy.

26. Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Schenker, S.
(2001). A scalable content-addressable network. In ACM SIG-
COMM 2001 (pp. 161–172). San Diego, CA.

27. Ribeiro, V., Coates, M., Riedi, R., & Sarvotham, S. (2000). Multi-
fractional cross-traffic estimation. In ITC specialist seminar on IP
traffic measurement, modeling and management 2000. Monterey,
CA.

28. Ribeiro, V. J., Riedi, R. H., & Baraniuk, R. G. (2004). Spatio-
temporal available bandwidth estimation with STAB. In ACM
SIGMETRICS 2004 (pp. 394–395). New York, NY.

29. Ribeiro, V. J., Riedi, R. H., Baraniuk, R. G., Navratil, J., & Cot-
trell, L. (2003). pathChirp: Efficient available bandwidth estima-
tion for network paths. In Passive and active measurement work-
shop. La Jolla, CA.

30. Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A.,
Grabarnik, G., & Hernandez, K. (2005). Adaptive diagnosis in
distributed systems. IEEE Transactions on Neural Networks, 6(5),
1088–1109.

31. Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems. In Lecture notes in computer science (Vol. 2218, pp. 329–
350). Berlin: Springer.

32. Tang, C., & McKinley, P. (2003). On the cost-quality tradeoff in
topology-aware overlay path probing. In IEEE international con-
ference on network protocols, 2003 (pp. 268–179). Atlanta, GA.

33. Tang, Y., Al-Shaer, E. S., & Boutaba, R. (2005). Active integrated
fault localization in communication networks. In IFIP/IEEE inter-

national symposium on integrated network management (pp. 543–
556). Nice, France.

34. Zhang, B., Jamin, S., & Zhang, L. (2002). Host multicast: A
framework for delivering multicast to end users. In IEEE INFO-
COM 2002 (pp. 1366–1375). New York, NY.

35. Zhao, B. Y., Kubiatowicz, J. D., & Joseph, A. D. (2001). Tapestry:
An infrastructure for fault-tolerant wide-area location and routing
(Technical report). University of California at Berkeley, Berkeley,
CA, USA.

Maitreya Natu received M.S. degree and Ph.D.
degree in Computer and Information Sciences
from the University of Delaware. His research
interests include fault localization for wired and
wireless networks, probing techniques for net-
work monitoring and management, and network
security problems like intrusions and denial of
service attacks. He will be joining Tata Re-
search Design and Development Center, Pune,
India in February 2008.

Adarshpal S. Sethi is a Professor in the Depart-
ment of Computer & Information Sciences at
the University of Delaware, Newark, Delaware,
USA. He has an M.Tech. degree in Electrical
Engineering and a Ph.D. in Computer Science,
both from the Indian Institute of Technology,
Kanpur, India. He has served on the faculty at
IIT Kanpur, was a visiting faculty at Washing-
ton State University, Pullman, WA, and Visiting
Scientist at IBM Research Laboratories, Zurich,

Switzerland, and at the US Army Research Laboratory, Aberdeen, MD.
Dr. Sethi is on the editorial boards of the IEEE Transactions on Net-
work and Service Management, International Journal of Network Man-
agement, and Electronic Commerce Research Journal. He is also ac-
tive on the program committees of numerous conferences. Dr. Sethi’s
research interests include architectures and protocols for network man-
agement, fault management, quality-of-service and resource manage-
ment, and management of wireless networks.

Errol L. Lloyd is a Professor of Computer
and Information Sciences at the University of
Delaware. Previously he served as a faculty
member at the University of Pittsburgh and as
Program Director for Computer and Computa-
tion Theory at the National Science Foundation.
From 1994 to 1999 he was Chair of the Depart-
ment of Computer and Information Sciences at
the University of Delaware. Concurrently, from
1997 to 1999 he was Interim Director of the

University of Delaware Center for Applied Science and Engineering
in Rehabilitation. Professor Lloyd received undergraduate degrees in
both Computer Science and Mathematics from Penn State University,
and a PhD in Computer Science from the Massachusetts Institute of
Technology. His research expertise is in the design and analysis of al-
gorithms, with a particular concentration on approximation algorithms.
In 1989 Professor Lloyd received an NSF Outstanding Performance
Award, and in 1994 he received the University of Delaware Faculty
Excellence in Teaching Award.

	Efficient probe selection algorithms for fault diagnosis
	Abstract
	Introduction
	System architecture
	Related work
	Failure detection
	Probe set selection for failure detection is NP-Complete
	Definition of problem instances
	MFDPS is in NP
	Reduction
	Construction
	Proof

	Heuristic-based algorithm for probe set selection for failure detection

	Fault localization
	Preplanned-probing-based fault localization
	Probe set selection for fault localization is NP-Complete
	Construction
	Proof

	Adaptive-probing-based fault localization
	Probe analysis
	Greedy algorithm
	Binary search

	Experimental evaluation
	Simulation model
	Simulation results
	Failure detection
	Fault localization

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

