SIAM J. COMPUT. (© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 574-611

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING: BEING
(MOSTLY) MYOPIC HELPS*

ZORAN IVKOVIC! AND ERROL L. LLOYD/

Abstract. The problem of maintaining an approximate solution for one-dimensional bin packing
when items may arrive and depart dynamically is studied. In accordance with various work on fully
dynamic algorithms, and in contrast to prior work on bin packing, it is assumed that the packing
may be arbitrarily rearranged to accommodate arriving and departing items. In this context our
main result is a fully dynamic approximation algorithm for bin packing MMP that is g—competitive
and requires ©(log n) time per operation (i.e., for an Insert or a Delete of an item). This competitive

ratio of % is nearly as good as that of the best practical off-line algorithms. Our algorithm utilizes

the technique (introduced here) whereby the packing of an item is done with a total disregard for
already packed items of a smaller size. This myopic packing of an item may then cause several
smaller items to be repacked (in a similar fashion). With a bit of additional sophistication to avoid
certain “bad” cases, the number of items (either individual items or “bundles” of very small items
treated as a whole) that needs to be repacked is bounded by a constant.

Key words. bin packing, fully dynamic algorithm
AMS subject classifications. 68P05, 68Q25, 68R05

PII. S0097539794276749

1. Introduction. In the (one-dimensional) bin packing problem, a list L =
(a1, az, ..., a,) of items of size size(a;) in the interval (0,1] is given. The goal is to find
the minimum & such that all of the items a; can be packed into k£ unit-size bins. Bin
packing was shown to be NP-complete in [15].

For the past quarter century, bin packing has been a central area of research
activity in the algorithms and operations research communities (see [3, 7]). Despite
its advanced age, bin packing has retained its appeal by being a fertile ground for the
study of approximation algorithms (more than a decade ago, bin packing was labeled
“the problem that wouldn’t go away” [3]). In this paper, we consider fully dynamic
bin packing, where

e items may arrive and depart from the packing dynamically, and
e items may be moved from bin to bin as the packing is adjusted to accommo-
date arriving and departing items.

In general, fully dynamic algorithms are aimed at situations where the problem in-
stance is changing over time. Fully dynamic algorithms incorporate these incremental
changes without any knowledge of the existence and nature of future changes.

Each of the earlier works on on-line and dynamic bin packing differ from this
notion of fully dynamic bin packing in either of two ways: either they do not allow
an item to be moved from a bin (of course, this has a predictably bad effect on the
achievable quality of the packing), or they restrict themselves to dynamic arrivals of
items—there are no departures.

*Received by the editors November 7, 1994; accepted for publication (in revised form) September
10, 1996; published electronically July 28, 1998. This research was partially supported by National
Science Foundation grant CCR-9120731.

http://www.siam.org/journals/sicomp/28-2/27674.html

fSchool of Management, Yale University, 135 Prospect Street, New Haven, CT 06520 (ivkovich@
isis.som.yale.edu).

*Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716
(elloyd@cis.udel.edu).

574

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 575

Although most of the existing work on fully dynamic algorithms has been directed
toward problems known to be in P, some recent attention has been paid to fully
dynamic approzimation algorithms for problems that are NP-complete [9, 16].

In this paper we develop a fully dynamic approximation algorithm for bin packing
that is “competitive” with existing off-line algorithms. In this case, being competitive
with off-line algorithms means that the quality of the approximation produced by the
fully dynamic approximation algorithm should be as good as that produced by the
off-line algorithms. Further, the running time per operation (i.e., change) of the fully
dynamic algorithm should be as small as possible.

1.1. Bin packing—Existing results. The usual measure of the quality of a
solution produced by a bin packing algorithm A is its competitive ratio R(A) defined
as

. A(L)
RA) =l 5w OPT(L)
where A(L) and OPT(L) denote, respectively, the number of bins used for packing
of the list L by A and some optimal packing of L. Here, we say that A is R(A)-
competitive.

In the domain of off-line algorithms, the value of R has been successively im-
proved [3, 19, 5, 13, 4]. Indeed, it has been shown that for any value of R > 1,
there is an O(nlogn)-time algorithm with that competitive ratio [14]. Unfortunately,
the running times for these algorithms involve exceedingly large constants (actually,
these “constants” depend on how close R is to 1). Among algorithms of practical
importance, the best result is an O(nlogn) algorithm for which R is 21 [13].

With respect to on-line bin packing, the problem has been defined strictly in
terms of arrivals (Inserts)—items never depart from the packing (i.e., there are no
Deletes). Further, most on-line algorithms have operated under the restriction that
each item must be packed into some bin, and it should remain in that bin permanently.
In this context, it is shown that for every on-line linear time algorithm A, R(A) >
1.536... [3]. Further, the upper bound has been improved over the years to roughly
1.6 [10, 11, 12, 17, 18].

The work reported in [6] focused on a variant of on-line bin packing, again sup-
porting Inserts only, in which each item may be moved a constant number of times
(from one bin to another). Two algorithms were provided: one with a linear running
time (linear in n, the number of Inserts, which is also the number of items) and a
competitive ratio of 1.5, and one with an O(nlogn) running time and a competitive
ratio of 3.

Another notion that is related to, but distinct from, fully dynamic bin packing
is dynamic bin packing of [2], where each item is associated with not only its size,
but also with an arrival time and a departure time (interpreted in the natural way).
Here, again (and unlike [6]), items cannot be moved once they are assigned to some
bin, unless they depart from the system permanently (at their departure time). This
variant differs from fully dynamic bin packing in that items are not allowed to be
moved once they are assigned to a bin and through the departure time information.
It was shown in [2] that for any such algorithm A, R(A) > 2.5, and that for their
dynamic first fit (FF), 2.770 < R(FF) < 2.898.

1.2. Competitive ratio and running time for fully dynamic approxi-
mation algorithms. In this section we discuss the notions of competitiveness and
running time in the context of developing fully dynamic approximation algorithms.

576 ZORAN IVKOVIC AND ERROL L. LLOYD

We begin by noting that with respect to the definition of competitive ratio there
is no need to make a distinction between fully dynamic and off-line algorithms. In
each case, these measures reflect the size of the packing produced by the algorithm
relative to the size of optimal packing.

With respect to running times, we say that a fully dynamic approximation algo-
rithm B for bin packing has running time O(f(n)) if the time taken by B to process
a change (an Insert or Delete) to an instance of n items is O(f(n)). If O(f(n)) is a
worst-case time bound, then B is uniform. If O(f(n)) is an amortized time bound,
then B is amortized.

Our general goal in developing fully dynamic approximation algorithms for bin
packing is to design algorithms with competitive ratios close to those of the best off-
line algorithms such that the changes are processed quickly. Of particular interest
are algorithms that are, in a sense, the best possible relative to the existing off-line
methods. For bin packing the best known off-line algorithms require time ©(nlogn).
Thus, a fully dynamic algorithm that runs in time ©(logn) per operation is, in that
sense, the best possible. Indeed, the fully dynamic algorithm MMP that we give in
this paper runs in precisely this time per operation.

The algorithms that we present process a sequence of Inserts (arrivals) and Deletes
(departures) of items. Further, our algorithm is designed to handle “lookup” queries
of the following form:

e size—returns in O(1) time the number of bins in the current packing;

e packing—returns a description of the packing in the form of a list of pairs
(z,Bin(x)), where Bin(z) denotes the bin into which an item x is packed, in
time linear in the number of items in the current instance.

These queries may be interspersed in the Insert/Delete sequence as follows.

1.3. What’s to come. The main result of this paper is a fully dynamic algo-
rithm MMP that is g—competitive and requires ©(logn) time per operation. Relative
to the best off-line algorithms, MMP has a running time that is best possible, and
it has a competitive ratio that is nearly the equal of the best practical off-line algo-
rithms. This is a surprising result even in terms of off-line bin packing, since it is
the first practical bin packing algorithm that has a competitive ratio of less than %
that does not rely on packing the items in sorted order (as discussed in section 2,
dynamically maintaining a packing based on a sorted list is problematic). That the
algorithm is fully dynamic is all the more remarkable.

With the preliminaries concluded, the remainder of the paper is organized as fol-
lows. In the next section we review the basic definitions and define two key properties
of MMP packing: LLS-maximality and M-thoroughness. We further provide a sketch
of MMP’s Insert and Delete operations, and we focus on the techniques MMP utilizes
to maintain the above properties: myopic packing, bundles, and LLS-coalitions.

In section 3 we describe the (rather complex) data structure, and the details of
MMP. In section 4 we prove the competitive ratio of % and the uniform logarith-
mic running time per Insert/Delete operation. Finally, in section 5 we furnish some
concluding remarks.

2. Toward full dynamization of bin packing. Motivated by the notions
of competitiveness introduced in the preceding section, a natural approach to the
development of fully dynamic bin packing algorithms is to adapt existing methods to
work in the fully dynamic situation. Unfortunately, this is easier said than done. The
difficulty is that most of the off-line algorithms perform bin packing in two distinct
stages. First, there is a preprocessing stage in which the items are organized in some

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 577

fashion (this reorganization should have a positive effect on the resulting packing).
This is followed by a packing stage where the actual packing is accomplished. In the
off-line situation, this two stage approach is quite natural since the entire list of items
is available at the outset. However, in a dynamic environment a two-stage process
becomes awkward. Consider, for example, the algorithm first fit decreasing (FFD),
which is %—competitive. This algorithm first sorts the items and then packs them
in order of decreasing size using the FF packing rule.! What about a fully dynamic
version of FFD? There is, of course, no difficulty in maintaining a sorted list of the
elements. But there is great difficulty in maintaining the packing based on that sorted
list, since the insertion (or deletion) of a single item can result in a large number of
changes to that packing. It would seem that the packing induced by the sorted list of
items is “too specific” to be maintained dynamically, and that perhaps a less specific
rule might be of use. Indeed, in this paper we utilize a weaker notion: Johnson’s

grouping [10, 11].

2.1. Some definitions. Before proceeding, we require a few definitions that will
be used throughout the remainder of the paper. In particular, for a bin B, level(B) is
the sum of the sizes of the items packed in B; gap(B) is 1 —level(B), i.e., the amount
of empty space in B; and content(B) is the set of items packed in B.

We can assume that the bins are numbered in such a way that every bin has
a unique number with the property that, for any two bins, the bin with the lower
number is placed “to the left” of the bin with the higher number. In other words, we
assume that, for conceptual purposes, the bins are numbered in increasing order from
left to right.

Following Johnson’s grouping [10, 11], we partition the items according to their
respective sizes. In particular, an item a is a B-item (big) if size(a) € (3,1], an
L-item (large) if size(a) € (3, 3], an S-item (small) if size(a) € (3, 3], a T-item (tiny)
if size(a) € (+, 1], and an M-item (miniscule) if size(a) € (0, £].

Let B, £, S, 7, and M denote the number of B-items, L-items, S-items, T-items,
and M-items in L, respectively.

When the meaning is otherwise clear, the fact that a is a B-item (L-item, S-item,
T-item, M-item) will be abbreviated as a € B (L,S,T,M). A bin is a B-bin (L-bin,
S-bin, T-bin, M-bin) if its largest item is a B-item (L-item, S-item, T-item, M-item).
There are several types of B-bins: bins containing one B-item and one L-item, and
no more B-items, L-items, S-items, or T-items will be called bins of type BL; bins of
type BST, BS, BTT, BT, and B are defined analogously. Likewise, there are several
types of L-bins, several types of S-bins, and several types of T-bins. The possible
types of B-bins, L-bins, S-bins, and T-bins are illustrated in Figure 1. Note that
we did not take into consideration the M-items: while it is certainly the case that
bins may contain M-items, accounting for them will have no substantive effect on the
competitive ratio of MMP.

By way of preliminaries, we introduce a binary relation of superiority over types
of bins. First, all of the types of B-bins, L-bins, S-bins, and T-bins are superior to
M-bins. Second, we consider non-M-bins. Here the following ordering of relevant
types of items is assumed: B < L < S < T < Z, where Z denotes a fictitious item of
size 0. We imagine that each bin contains, on top of its B-items, L-items, S-items,
and T-items (M-items may be present but are being ignored), a fictitious item of type

Hnformally, bins are ordered from left to right, and an item is packed into the leftmost bin into
which it will fit.

578 ZORAN IVKOVIC AND ERROL L. LLOYD

T T T
S
L S T
B B B B B B

typel:BL type2:BST type3:BS typed:BTT type5: BT type 6: B

s T — s 1 =T
L L - S s s
L L L L L L

type7:LLS type8: LLT type9:LL typelO: LSS typell: LSTT typel12: LST

| — |
. LT | [T
S T T T
T S
L L L L L S

type13: LS typeld: LTTT typel5: LTT typel6: LT typel7:L type18: SSST

[

= . [T
'
S

S S

n|lo/HH
» |44

type 19: SSS type 20: SSTT type21: SST type22:SS type 23: STTT type24: STT

- T
T T
T T T T
S S T T T T

type25: ST type26:S type27: TTTT type28: TTT type29: TT type30: T

F1G. 1. Possible types of bins in MMP.

Z (zero), of size 0. Zero items are introduced solely for technical convenience, as their
presence will enable us to impose the desired ordering on the types of bins. Thus,
in view of the introduction of Z-items, the types of bins are BLZ, BSTZ, BSZ, ...,
TTZ, and TZ. For these types of bins, the relation of superiority is defined as the
lexicographical ordering over the types of bins. For example, a bin of type BLZ is
superior to a bin of type BSTZ. In the remainder of this paper, we omit Z from the
notation describing the types of bins.? Finally, we will sometimes find it convenient to
refer to these types of bins according to their canonical index in this lexicographical
ordering, as depicted in Figure 1: a bin of type 1 is a bin of type BL, a bin of type 2
is a bin of type BST, ..., a bin of type 30 is a bin of type T. We assert naturally that
if B; is superior to B;, then B; is inferior to B;.

The allowed types of bins in the packings produced by MMP are BL, BST, BS,
BTT, BT, B, LLS, LLT, LL, SSST, SSS, and TTTT, and, of course, M-bins. This
restriction may result in at most six unpacked items: one L-item, two S-items, and

2Although Z is omitted, it is needed to ensure that, e.g., BLZ is superior to BZ. The reader
should keep in mind that the relation of superiority relies on the presence of Z in each non-M-bin.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 579

three T-items. Clearly, these items could be packed into at most two additional bins
(a bin of type LTT and a bin of type SST). MMP will utilize the regular packing,
consisting at all times only of bins of the allowed types, and the auxiliary storage,
containing the items that are not (currently) packed into a bin from the regular
packing.

2.2. LLS-maximality and M-thoroughness. We next define the properties
of packings that play a key role for the competitive ratio of MMP. We first define the
thoroughness property. Next, we define the LLS-maximality property, a property that
is similar to, and (much) stronger than, the thoroughness property. Finally, we define
the M-thoroughness property aimed at the M-items and their role in the packing.
Intuitively, maintaining the LLS-maximality property leads to the competitive ratio
of g for packings of lists of non-M-items; maintaining LLS-maximality and the M-
thoroughness property leads to the competitive ratio of % for packings of arbitrary
lists. We begin with two definitions.

DEFINITION 1. Let Pp.1.s,7 be a set of packings of B-items, L-items, S-items,
and T-items such that each packing P € Pp 1 s consists only of the allowed types
of bins (BL, BST, BS, BTT, BT, B, LLS, LLT, LL, SSST, SSS, and TTTT), where
all of the bins of type BL are to the left of all the non-BL-bins, all of the bins of type
BST are to the left of all the non-BL-bins and non-BST-bins, etc.

DEFINITION 2. Let a packing P € Pp.r.s7. Then

1. Bins of type BL are thorough in P iff there does not exist a B-item b and
an L-item [such that size(b) + size(l) < 1, and item b is either in a bin of
type inferior to BL in the packing P or in the auxiliary storage, and item [
is either in a bin of type inferior to BL in the packing P or in the auxiliary
storage, i.e., iff it is not possible to pack a B-item from a bin of type inferior
to BL or from the auziliary storage, and an L-item from a bin of type inferior
to BL or from the auxiliary storage into a bin.

2. Bins of type BST are thorough in P iff there does not exist a bin B of type
BS in P, where b and s are the B-item and the S-item packed into B, and a
T-item t such that size(b) + size(s) + size(t) < 1, and the item t is in a bin of
type inferior to BST in the packing P or the auxiliary storage.

3. Bins of type BS are thorough in P iff there does not exist a B-item b and
an S-item s such that size(b) + size(s) < 1, and the item b is either in a bin
of type inferior to BS in the packing P or in the auziliary storage, and the
item s is in a bin of type inferior to BS in the packing P or in the auxiliary
storage.

4. Bins of type BTT are thorough in P iff there does not exist a bin B of type
BT in P, where b and t1 are the B-item and the T-item packed into B, and
a T-item to such that size(b) + size(t1) + size(ts) < 1, and the item ts is in a
bin of type inferior to BTT in the packing P or in the auziliary storage.

5. Bins of type BT are thorough in P iff there does not exist a B-item b and
a T-item t such that size(b) + size(t) < 1, and the item b is either in a bin
of type inferior to BS in the packing P or in the auziliary storage, and the
item t is in a bin of type inferior to BT in the packing P or in the auxiliary
storage.

6. Bins of type LLS are thorough in P iff there does not exist a bin B of type
LLT or LL in P, where l; and ly are the L-items packed into B, and an
S-item s such that size(ly) + size(l2) + size(s) < 1, and the item s is either in
a bin of type inferior to LLS in the packing P or in the auxiliary storage.

580 ZORAN IVKOVIC AND ERROL L. LLOYD

i=1,..,N N/3

% - (N+2)e % - (N+1)e

% +(N+2-i)e % - (N+1)e
1 +ie N (N+1)e
3 3

Fic. 2. An example of a thorough but not LLS-maximal packing. In the packing above, N is
an arbitrary integer. The bottom L-item a1 from the first bin (i = 1), size(a1) = % + €, and the
top L-item ag from the second bin (i = 2), size(az) = % + Ne can fit together with an S-item (all
S-items have the size of % — (N+1)e). The same is true of the bottom L-item from the second bin
(¢ = 2) and the top L-item from the third bin (i = 3), ..., the bottom L-item from the (N — 1)st bin
and the top L-item from the Nth bin. Thus, although the packing above is thorough, it is far from
LLS-mazimal, since many bins of type LLS could be packed from the items in the packing, and all
of the items are packed into bins of type inferior to LLS.

7. Bins of type LLT are thorough in P iff there does not exist a bin B of type
LL in P, where ly and ly are the L-items packed into B, and a T-item t such
that size(ly) + size(ls) + size(t) < 1, and the item t is either in a bin of type
inferior to LLT in the packing P or in the auziliary storage.
8. Bins of type SSST are thorough in P iff there does not exist a bin B of type
SSS in P, where s1, sa, and s3 are the S-items packed into B, and a T-item
t such that size(s1) + size(sa) + size(s3) + size(t) < 1, and the item t is either
in a bin of type inferior to SSST in the packing P or in the auxiliary storage.
Finally, a packing P € Pp .51 is thorough iff all of the above types of bins are
thorough in P.

LLS-maximality. MMP will take some pains to be guaranteed of packing a
certain portion of certain L-items and S-items into bins of type LLS (we will call this
endeavor “seeking LLS-coalitions”). Leading toward this guarantee, we define LLS-
mazimality. LLS-maximality strengthens thoroughness: maintenance of thoroughness
does not require LLS-coalitions, and the absence of coalitions leads to a competitive
ratio of at least 3 (see the lower bound example for FFG in [10]).

DEFINITION 3. Let a packing P € Pp . sr. Then P is LLS-mazimal iff P is
thorough and bins of type LLS are LLS-maximal in P; i.e., there does not exist an
L-item l1, another L-item la, and an S-item s such that size(ly)+ size(lo)+ size(s) < 1,
and the item 1y is either in a bin of type inferior to LLS in the packing P or in the
auziliary storage, and the item ly is in a bin of type inferior to LLS in the packing P
or in the auziliary storage, and s is in a bin of type inferior to LLS in the packing P
or in the auxiliary storage.

Note that LLS-maximality is a (much) stronger property than thoroughness: there
might be packings that are thorough but not maximal. In Figure 2 we give an example,
a variant of the lower bound example for FFG from [10], of a packing that is thorough
but not maximal.

The key factor that distinguishes between thoroughness and LLS-maximality is
that when considering whether or not it is possible to pack two L-items and an S-item
from bins of type inferior to LLS or the auxiliary storage into a bin, LLS-maximality,
unlike thoroughness, does not insist that the two L-items must come from the same
bin. We note that it can be shown that the maintenance of thoroughness, but not

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 581

10000000000 00000

type 1. BL type2: BST type3:BS type4: BTT type27: TTTT M-bins

Fic. 3. A sketch of the 2-3 tree of bins in MMP. Note that it contains only the allowed types
of bins.

LLS-maximality, leads to a simpler algorithm that also runs in uniform logarithmic
time per Insert/Delete operation, and is 3-competitive (see [8]).

M-thoroughness. M-thoroughness is the third property we require. It pertains
to the role of M-items in the MMP packings. Ideally, we would like to be able to
develop a method that would enable MMP to pack as many M-items into non-M-
bins as possible. However, this is not necessary, as it turns out that maintaining
M-thoroughness (a much weaker goal), coupled with LLS-maximality, of course, is
quite sufficient to guarantee a competitive ratio of %. Later in this section we show
that MMP maintains the M-thoroughness property.

DEFINITION 4. A packing P is M-thorough iff precisely one of the following two
conditions is satisfied:

1. there are no M-bins in P, or
2. there is at least one M-bin in P, and all of the mon-M-bins have a level
exceeding % (i.e., a gap less than %), and all of the M-bins, except for possibly

the rightmost bin in the packing, also have a level exceeding %.

2.3. A sketch of Insert and Delete. In the next section we describe the data
structure of MMP in detail. Here we briefly note that all of the bins in the packing
will be stored at the leaves of the 2-3 tree of bins, with the bins of type BL placed
in the leftmost leaves of the 2-3 tree of bins, with the bins of type BST placed in the
leftmost remaining leaves (those not holding bins of type BL) of the 2-3 tree of bins,
etc. for all of the other allowed types of bins, and, finally, with the M-bins placed in
the rightmost leaves of the 2-3 tree of bins,® as depicted in Figure 3.

We now consider, somewhat informally, how to Insert/Delete an item. This is
done using three major ideas: myopic packing, bundles, and LLS-coalitions.

Insert and Delete of non-M-items. We first consider how MMP Inserts an
item a € BULUS. We begin by explaining how myopic packing is used to maintain
thoroughness. Based on Johnson’s grouping [10, 11], when an item a is being packed,
a should be more insensitive to previously packed items of “smaller” types than the
type of a. Thus, what would a “see” in the bins? Only the items of its own type or
of “larger” type. In this sense, a K-item (K is B, L, S, or T) is myopic in that it can
“see” relatively large items (K-items or larger), and it cannot “see” relatively small
ones (smaller than K-items). Based on that view of the packing, a is packed in an FF

3Recall that the bins are numbered in increasing order from left to right. A numbering of bins
that ranges 1,..., MMP(L) corresponds to the graph theoretic notion of a preorder numbering of
leaves of the 2-3 tree of bins.

582 ZORAN IVKOVIC AND ERROL L. LLOYD

fashion (in a’s “K or larger” world) using the information stored in the internal nodes
and leaves of the 2-3 tree of bins.* Let B be the bin into which a was packed. This
packing of a results in a forceful eviction of items of smaller types from B, if there are
such items at all. The evicted items will be temporarily “set aside” into the auxiliary
storage and will eventually be reinserted. Next, an attempt is made to restore the
thoroughness of the packing by trying to pack additional items into B, starting from
the available items of the largest type that are smaller than K, i.e., the items of the
largest type that are smaller than K from the auxiliary storage and from the bins that
are inferior to the type of bin the algorithm is trying to reconstruct for B. This effort
continues until there are no more available items of that type that can fit with the
current bin content. Next, MMP continues with the available items (auxiliary storage
or inferior bins) of the next largest type, until there are no more available items of
that type that would fit into the bin, etc. Here, if an item is taken from some bin,
that bin is deleted from the packing, and its contents, except for the item that was
taken, are temporarily moved into the auxiliary storage. Upon completing the filling
of B and inserting B into the packing, MMP reinserts the items from the auxiliary
storage into the packing. Their reinsertion may, of course, disturb some other bins
and move their contents to the auxiliary storage for later reinsertion. Eventually,
all of the items from the auxiliary storage (except perhaps at most one L-item, two
S-items, and/or three T-items, of course) are reinserted into the packing, and that
packing is thorough.

In addition to thoroughness, MMP maintains LLS-maximality. This is done by
using LLS-coalitions. To avoid the situation of a list that is thorough but far from
LLS-maximal (see Figure 2), an amendment is made to the myopic discipline outlined
above. Namely, the insertion of an L-item a is carried out as follows: first, packing
a into a B-bin is attempted in a standard myopic fashion. If this attempt fails, a is
authorized to try to form an LLS-coalition with another L-item and an S-item. The
latter two can each be sought in any, and not necessarily the same, bin whose type
is inferior to LLS or in the auxiliary storage. If such a coalition is possible, a and
the two items are packed into a bin of type LLS, and that bin is inserted into the
regular packing. The bins that yielded some or all of these two items need to be
deleted, and their remaining content will eventually be reinserted. If the coalition is
not possible, the packing of a is completed by resuming the standard myopic steps.
Similarly, insertion of an S-item a would involve first packing a into a B-bin in a
standard myopic fashion. If this fails, a will seek two L-items coming from any, and
not necessarily the same, bins whose type is inferior to LLS or from the auxiliary
storage. If two such items are found, an LLS-coalition is formed, and the bin of type
LLS is inserted into the regular packing. If not, the packing of a is completed by
resuming the standard myopic steps. A careful implementation can guarantee that
the added complexity of this mostly myopic discipline does not asymptotically add to
the running time.

Deletes are implemented as follows: the bin in which a (the item that needs to be
deleted) resides is emptied and is deleted. Upon discarding a, the remaining contents
of the deleted bin are temporarily moved to the auxiliary storage, from which they
are reinserted into the packing as a part of this Delete operation.

We show later that Inserts and Deletes can be carried out in O(logn) uniform
running time, since the number of bins inserted and deleted by an Insert/Delete

4Note that we do not provide for all the details here. A more detailed description of the data
structure and the algorithm MMP will be furnished in the coming sections.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 583

operation is bounded by a fixed constant. Intuitively, the discipline of “touching”
only the inferior types of bins provides for the desired running time.

Handling M-items. We now consider how MMP packs the lists that contain
M-items. The goal here is to utilize bundles to manipulate many M-items at once
within logarithmic uniform running time. At the same time, a proper manipulation
of M-items will be important for the M-thoroughness property.

In general, the simplest approach would be to pack the M-items independently
of the B-items, L-items, S-items, and T-items by packing them into totally separate
bins. This would, however, lead to a competitive ratio greater than %. Rather, the
Me-items need to be packed, whenever possible, into non-M-bins. Thus, MMP inserts
M-items just like any other items, according to their myopic view of the packing (of
course, they actually “see” the entire packing). However, the presence of M-items in
the packing gives rise to several important considerations.

First, upon insertion of an M-item « into a bin no items will be evicted—M-items
are the smallest items! This makes the insertion of an M-item very efficient.

Second, the insertion of B-items, L-items, S-items, and T-items in situations where
the input lists contain M-items needs to be examined very carefully. In particular, if
the algorithm were to follow only the simple logic of myopic packing, its striving to
maintain a thorough packing might require relocation of as many as O(n) M-items,
leading to O(nlogn) time per Insert/Delete operation. This would happen during
both insertions and deletions that require relocation of items from the bins of type
inferior to that of the bin that is currently being filled. Furthermore, the number of
bins that could be inserted and deleted per operation would be huge: it would be
possible, for example, to delete as many as O(n) bins of type BST for the sake of
taking a few M-items from each of them and packing those M-items into a single bin
of type BL. The disaster does not stop here: each of the items from those many bins of
type BST needs to be reinserted, and each reinsertion may again cause an avalanche
of deleted bins.

Third, in case the simple myopic discipline is followed, the deletion of an M-item
would cause the temporary relocation of B-items, L-items, S-items, T-items, and
potentially many M-items into the auxiliary storage. Packing all of these items back
into the bins might be very costly: following the same argument as above, O(nlogn)
time might be required to reinsert a single non-M-item, with many inserted and
deleted bins.

Thus handling M-items in the same manner as the other items will not do. We
solve this apparent difficulty by introducing the technique of bundling (see [1]). The
idea is that the M-items in each bin (in the auxiliary storage) are collected into bundles
gi- All of the bundles in a bin (in the auxiliary storage) have the cumulative size of
15 < size(g;) < &, except for at most one bundle whose cumulative size is < ;. The
former kind of bundles is called closed, while the latter kind is called open.

The purpose of bundles is to allow efficient manipulation of large numbers of M-
items at one time: in response to the need to move M-items from a bin to the auxiliary
storage, or from the auxiliary storage to a bin, the algorithm will only move entire
bundles. During this process, when a bundle is inserted into a bin (or temporarily
stored into auxiliary storage), it is first checked to see whether it could be merged
with the open bundle, if any, from that bin (or from the auxiliary storage), and, if so,
the merging is carried out. While this does not asymptotically increase the running
time required for the insertion of an M-item, it drastically decreases the running time
of other operations involving M-bundles and makes MMP fast (O(log n) running time
per Insert/Delete operation).

584 ZORAN IVKOVIC AND ERROL L. LLOYD

The algorithm will treat bundles of M-items like any other item (except for the
occasional merging of bundles to maintain the property that each bin (auxiliary stor-
age) can have at most one open bundle). Note that a bin can contain at most 10
bundles; hence, we say that no bin can contain more than 10 items. Bundling is one
of the tools used to accomplish M-thoroughness. It is natural to ask whether or not
the technique of bundling is essential for MMP; the answer is in the affirmative, since
it can be shown that moving only a constant number of very small items per In-
sert/Delete operation disallows competitive ratios below %, regardless of the running
time (see [8]).

3. The data structure and the details of MMP.

3.1. The data structure of MMP. In this section we describe the data struc-
ture utilized by MMP. The data structure is rather complex, and it consists of several
components.

1. The regular packing. The regular packing consists of the bins of the allowed
types and some of the information required for the maintenance of an MMP pack-
ing (LLS-maximal and M-thorough). As mentioned before, the regular packing is
maintained via a 2-3 tree. The leaves represent the bins, while the internal nodes
store some of the information required for the proper maintenance of the packing
(LLS-maximal and M-thorough).

Each leaf contains a record with the following information that provides for a full
description of a bin B:

e content(B)—Five doubly linked circular lists are utilized to record the set of
items currently packed in B, one list for the B-items, one for the L-items,
one for the S-items, one for the T-items, and one for the M-bundles packed
in B. The entries of these lists are the individual records associated with the
B-items, L-items, S-items, T-items, and M-bundles that are currently packed
in B. Recall that each bin can contain at most one B-item, two L-items, three
S-items, four T-items, and ten M-bundles (at most nine closed bundles and
at most one open bundle). Thus these lists are very short.

e Each leaf contains a pointer to the open bundle in B, if any.

e Five numbers that record the myopic levels of B include the following: levelg(B)
- ZaEcontent(B)/\aEB SiZﬁ(CL), levely, (B) = EaEcontent(B)/\aEBUL Size(a)’ levels (B)
= a€content(B)Aa€BULUS Size(a’)’ levely (B) = Zaecontent(B)/\aEBULUSUT Size(a)’
and levely (B) = level(B).

e Each leaf contains the type of B.

Each internal node contains the following information about its left, middle, and
right (if present) subtree: (1) the largest gaps in the subtree (gapg = 1 — levels,
gapy, = 1 — levely,, gapg = 1 — levels, gapp = 1 — levely, and gapy; = 1 — levely) and
(2) the most inferior type of bin in the subtree.

2. Inferior trees. One of the consequences of executing an Insert or Delete opera-
tion is that, in order to maintain a packing that is LLS-maximal, the packing of a bin
B may require that some items be removed from bins inferior to B and packed into
B. In order to efficiently search for such items in bins inferior to B, MMP maintains
for each allowed bin type i a set of items of each type of item that appears in a bin
of type i. These sets are each represented by a heap (implemented as a 2-3 tree), and
we call them the inferior trees. To accomplish this efficient search, MMP utilizes 15
min-heaps implemented as 2-3 trees: (1) L-items in bins of type BL, (2) L-items in
bins of type LLS, (3) L-items in bins of type LLT, (4) L-items in bins of type LL,

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 585

(5) S-items in bins of type BST, (6) S-items in bins of type BS, (7) S-items in bins
of type LLS, (8) S-items in bins of type SSST, (9) S-items in bins of type SSS, (10)
T-items in bins of type BST, (11) T-items in bins of type BTT, (12) T-items in bins
of type BT, (13) T-items in bins of type LLT, (14) T-items in bins of type SSST, and
(15) T-items in bins of type TTTT.

For example, if the algorithm attempts to pack a B-item into a bin of type BST,
it needs to search for an S-item and a T-item from bins whose type is inferior to BST.
Thus, an S-item will be searched for in Auz (see below) and in the following inferior
trees: the tree of S-items in bins of type BS, the tree of S-items in bins of type LLS,
the tree of S-items in bins of type SSST, and the tree of S-items in bins of type SSS.
Similarly, a T-item will be searched for in Auz and in the following inferior trees: the
tree of T-items in bins of type BTT, the tree of T-items in bins of type BT, the tree
of T-items in bins of type LLT, the tree of T-items in bins of type SSST, and the tree
of T-items in bins of type TTTT.

In an inferior tree, each leaf contains an item, or more precisely the record associ-
ated with that item, and the internal nodes contain, for left, middle, and (if present)
right subtree, the size of the smallest item in the subtree. This enables an easy search
for the smallest item in that inferior tree.

3. Auz. Admitting only allowed types of bins to the regular packing possibly
results in a few excess items that cannot be packed into the regular packing: at
most one L-item, two S-items, and three T-items. These items are stored in Auz.
In addition, in the course of maintaining an MMP packing, all of the bins that lose
an item(s) a (so that a could be packed into a superior bin), or simply had an item
deleted, need to be deleted from the regular packing, and their content, except for
the lost/deleted item(s), temporarily stored into Auz. The items that are temporarily
stored into Aux within an operation must all, except for at most one L-item, two
S-items, and three T-items, be reinserted into the packing as an integral part of an
Insert/Delete operation. Later in this section we show that the number of items
stored in Auz at any time during the execution of MMP is bounded by a rather small
constant.

Auz is implemented using five min-heaps (again, each heap is implemented as
a 2-3 tree), one for each type of item: Auap for B-items, Auzy, for L-items, Ausg
for S-items, Auzr for T-items, and Auzy for M-bundles. Each leaf contains an item
(bundle), or more precisely the record associated with that item (bundle), and the
internal nodes contain, for left, middle, and (if present) right subtree, the size of the
smallest item in the subtree. This enables an easy search for the smallest B-item,
L-item, S-item, T-item, or M-bundle in Auz.

As it turns out, only closed M-bundles will be stored in the 2-3 tree of M-bundles.
Auz will contain at any time at most one open M-bundle that will be stored separately
from the 2-3 tree of (closed) M-bundles.

4. M-items/bundles. As mentioned earlier, M-items will be collected in bundles.
These bundles may undergo a number of changes in the course of execution of MMP:
M-items may be inserted to/deleted from bundles; two bundles could be merged into
one bundle of M-items; further, there is a need to allow at most one open bundle per
bin (at most one open bundle in Auzx) and to ensure that all of the other bundles in a
bin (in Auz) are closed. Each M-bundle b will be represented by a 2-3 tree of M-items
that are collected into b. With each M-bundle b there will be an associated record
that stores detailed information about b.

2-3 trees are particularly suitable for the maintenance and manipulation of bun-

586 ZORAN IVKOVIC AND ERROL L. LLOYD

dles. Insertions and deletions of individual M-items into/from a bundle correspond
to the operations Insert and Delete, which are supported by 2-3 trees in logarithmic
time. Furthermore, if there is a need to pack a bundle b into a bin B (or store it into
Auz), b can be easily added onto the list of M-bundles in B (inserted into the 2-3 tree
of M-bundles in Auz by means of an Insert operation on that tree in case b is closed or
designated as open and stored into Auzx in case b is open). If there is a need to merge
two bundles, this can be easily accomplished by executing the operation Union, also
supported by 2-3 trees in logarithmic time, on the two 2-3 trees representing the two
bundles.

5. The list of items in L. Each item a will have, for the duration of its presence
in L (i.e., from operation Insert(a) to operation Delete(a)), an associated record that
maintains detailed information about a (size(a) and a few pointers for manipulation
of a in the data structures utilized by MMP). In addition, MMP will maintain L by
storing its items at the leaves of a 2-3 tree of the current items of L. The leaves
of that tree are each associated with an item currently in L. Each leaf stores, next
to the pointers required for the manipulation of the 2-3 tree of the current items, a
unique identifier associated with the item and the pointer to the corresponding record
associated with that item.

When an operation Insert(a) is initiated, the new item a is inserted into the
2-3 tree of items, and its associated record is created. This is followed by other
actions described in subsequent sections. Conversely, the operation Delete(a) involves
certain actions (described in subsequent sections) and, finally, removes a from the 2-3
tree of the current items and destroys a’s associated record. The processing of an
Insert/Delete operation will typically cause changes to the packing and will affect
several items in the packing. None of those changes will, however, have any impact
on the 2-3 tree of the current items.

Finally, we note that, in the course of executing an Insert/Delete of an item a, the
2-3 tree of current items is used to locate the bin in which a is packed (or to realize
that a is in Auz) and, furthermore, if a is an M-item, to locate the bundle b that a
belongs to. Given an identifier associated with a, ©(logn) running time is required
to locate the leaf in the 2-3 tree of current items that is associated with a. Then the
pointer to the corresponding record associated with a is followed to gain access to
that record within O(logn) uniform running time.

3.2. Details of MMP. In this section we furnish the details of MMP. In the
following subsections we will first provide a top level description of MMP and then
furnish the details of clear_Auz, a key function from that description. In the following,
b denotes a B-item, [denotes an L-item, s denotes an S-item, ¢ denotes a T-item, and
m denotes a M-bundle.

3.2.1. Top level description of MMP. We now describe MMP. Simply put,
both Insert(x) and Delete(x) rely heavily on the function clear_Aux. The idea behind
Insert is to insert the item x into Auz and then let clear_Auz complete the insertion
of z in a manner that will maintain LLS-maximality and M-thoroughness. The idea
behind Delete is similar, except that before invoking clear_Auzx, the Delete operation
needs to remove z from all of the data structures utilized by MMP.

In the description below, we utilize the following functions:

o store_Aux(x)—store the item x into Auz.

o store_Aux(X)—store the items and M-bundles from the set X into Auz. Then,
for each L-item, S-item, and T-item from X, delete that item from the inferior tree

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 587

to which it belonged (if any). The set X will be either all of the content of some bin
B or a part of it. In the latter case, adjust the myopic levels of B.

e locate_structure(z)—return a pointer to the structure to which = belongs (either
a bin B or Auz).

o terminate(x,p)—delete x from all of the data structures. A pointer p points to
the structure containing x (either a bin B or Auz). If z is an M-item, then delete
z from the M-bundle m to which x belongs; m is contained in the structure pointed
to by p (either a bin B or Auz). If z is a non-M-item, then (1) delete z from the
structure to which p points (either a bin B or Auz), and then (2) if p points to a bin
B, then delete x from the inferior tree to which x belongs (if any). At the conclusion
of terminate, adjust the myopic levels of B, delete = from L, and delete the record
associated with x.

o remove(B)—delete a bin B from the 2-3 tree representing the regular packing.
Then destroy the record associated with B.

e add(B)—insert a bin B into the 2-3 tree representing the regular packing. Let
TYPE be the type of B. add will insert B immediately after the highest numbered
bin of type superior or equal to TYPE. This is accomplished via the information
stored at the internal nodes (the most inferior type of bin in the left, middle, and
right (if present) subtree). add starts at the root and walks down the tree, always to
the subtree that stores the largest type that is still inferior to TYPE, until a leaf ¢ is
reached, or no subtree with a type that is inferior to TYPE could be found. In the
latter case, B is the most inferior bin in the packing, and it will be inserted as the
rightmost leaf of the 2-3 tree of bins. In the former case, B is inserted immediately
to the left of ¢.

Both remove and add will update the information in the interior nodes on the
path from B to the root of the 2-3 tree representing the regular packing.

e open_new_bin(B)—create a record associated with a new, unpacked bin; call it
B. Initialize content(B) as empty, and B’s myopic levels to 0. Leave the type of B
unspecified.

e pack(B, x1,...,z, TYPE)—pack items/bundles z1,...,z; into B. Set the
type of B to TYPE, if the value of TYPE is one of the allowed bin types (including
M-bins). If TYPE is 0, then pack does not set the type of B. The latter option will be
convenient when packing M-bundles into non-M, nonempty bins. Note that B need
not be empty prior to the execution of the pack operation.

o search-myopic K(z) (K € {L, S, T, M}, z is a K-item)—perform a search for
the leftmost bin into which z can fit, with a myopic “K or larger” view of the packing.
The search utilizes the information on the largest gapk in the left, middle, and right
(if present) subtree stored at the internal nodes of the 2-3 tree representing the regular
packing and searches that tree in an FF fashion. search_myopic_K(x) returns a pointer
p to the bin that can accommodate « (in the myopic sense). In this case we let B,
refer to that bin. If the value of the pointer p is null, then x could not fit into any of
the bins in the (current) regular packing,.

o unload_Auxy (B)—pack the following M-bundles into a bin B for as long as
they fit or until Auxy is empty: (1) the open M-bundle from Auxy, (2) one by one,
the smallest remaining closed M-bundle from Awuxy. unload_Auzy terminates when
either an M-bundle from Auz that cannot fit into B is found or Auxy; is empty.

o top_with-M(B)—fill up a bin B with M-bundles from Auzyg. If Auay is emptied
in the process, the rightmost M-bin B, of the regular packing (if any) is removed from
the regular packing, and all of the M-bundles from B, are inserted into Auz)y, at which
point filling B with M-bundles from Awuz); is resumed.

588 ZORAN IVKOVIC AND ERROL L. LLOYD

Insert(x):
1 store_Auz(x);
2 clear_Aux;
Delete(z):
3 p =locate_structure(z);
4 terminate(z,p);
5 if (zx € M) then
6 begin
7 top_with-M(B,); /* B, is a bin pointed to by p */
8 reload_M,;
9 end;
10 else /* z is a non-M-item */
11 if p points to a bin B, then
12 begin
13 store_Auz(content(Bp)); /* x is already deleted from B, */
14 remove(Byp);
15 clear_Aux;
16 end;

Fic. 4. A top level description of MMP’s Insert and Delete.

top_with-M(B):
unload_Auan (B);
while Auzv = 0 and B, is a M-bin do /* B,—rightmost bin in packing */
begin
store_Auz(content(By));
remove(By);
unload_Auzn (B);
end;

o discharge(zy,...,zk, TYPE)—creates a new bin B, packs the items/bundles
T1,...,T into B, sets the type of B to TYPE, and then inserts B into the regular
packing:

discharge(z1, ..., zk, TYPE):

open_new_-bin(B);
pack(B,r1, ...,z TYPE);
add(B);

e reload M—empty Auxzy by packing each of its bundles into the regular packing
via FF:

reload_M:

while Auzy # () do

begin
b=delete_min(Auxn); /* Extract the smallest M-bundle m from Auzy; */
p =search_myopic_M;
if p = null then /* pack m into a new bin */

discharge(m,M-bin);

else pack(Bp,0); /* pack m into By, the leftmost possible bin */

end;

We complete this subsection with an observation that it is easy to see that all of
the functions outlined above run in logarithmic uniform running time (using the data
structures outlined in section 3.1).

We now summarize the top level description of Insert and Delete in Figure 4.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 589

clear_Auz:
17 phase 1: clear all of the B-items from Auzp;
18 phase 2: pack L-items, S-items, and T-items from Awux into B-bins of the regular
packing;
19 phase 3: form LLS-coalitions;
20 phase 4: pack the remaining L-items, S-items, and T-items from Auz into non-
B-bins;

21 phase 5: reload_M;

F1c. 5. The five phases of clear_Auz.

3.2.2. Details of clear_Auz. In this subsection we provide a description of
clear_Auz, the most involved function invoked by Insert and Delete operations.
clear_Auz proceeds in five phases. The first four phases (Figures 6 through 9) are
aimed at the maintenance of LLS-maximality, while the last phase is a simple invo-
cation of reload M aimed at the maintenance of M-thoroughness. The five phases are
listed in Figure 5.

We proceed with a detailed description of the first four phases. We utilize the
functions defined in the previous subsection, as well as the function seek defined below.

o seek(z1,. .., x5, Y181, .., 31111], e yj[s{, el sgjj])—given items x1,..., Tk, seek
searches for an item y; in the sources from the list [si,..., 311!1], ..., and for an item
y; in the sources from the list [s],.. ., s;j] such that all of the z’s and y’s fit together;

i.e., their cumulative size does not exceed 1. The first source on each list is always
Auzg, (the type of K, is the same as the type of the corresponding y item), while
the remaining sources are the appropriate inferior trees (see code). The length of
each list is always bounded by a small constant. This search gives preference to the
“recruitment” of as many y’s from Auzx as possible. When an item currently packed
into a bin must be utilized, it is preferred to search for items from the second source,
and if that fails from the third source, etc. The search in any source is nothing more
than checking the minimum size item in that source, which is easily accomplished in
logarithmic time, since each source is maintained as a min-heap.

If the search is successful and the desired y’s are found, seek proceeds by deleting
all of the entries associated with the y’s that are currently packed into bins from
their respective inferior trees. Further, seek deletes such y’s from their bins, stores
the remaining content of these bins into Auz, and finally deletes these bins from the
regular packing and destroys the records associated with these bins.

Note that seek runs in logarithmic uniform running time, since the number of
searches of various balanced trees in the data structure from section 3.1 is bounded
by a small constant (depending on the lengths of the lists of sources).

3.2.3. Implementation of queries. In this subsection we briefly comment on
the implementation of queries size and packing. The query size asks for the number
of bins in the (current) MMP packing. It is easy to implement it in O(1) uniform
running time by maintaining a global integer variable number that reflects the number
of bins in the regular packing. When a query size is processed, the algorithm will first
look into Awuzx, which will at that time contain at most one L-item, two S-items, and
three T-items. MMP will then compute (in constant time) z, the number of bins
needed to pack these items from Auz (z < 2), and return number + z as the response
to query size.

Recall that the query packing requests a description of the packing in the form of

590 ZORAN IVKOVIC AND ERROL L. LLOYD

phase 1:
22 while Auzg # 0 do
23 begin
24 b = delete_min(Auzp);
25 if seek(b, I[Auzy ,4,3,2]) then
26 discharge(b, ,BL);
27 else if seek(b, s[Auzg,9,8,7,6]) then
28 if seek(b, s, t[Aurp,15,14,13,12,11]) then
29 discharge(b, s, t,BST);
30 else discharge(b, s,BS);
31 else if seek(b, t[Aurp,15,14,13,12]) then
32 if seek(b, t,t' [Auap,15,14,13,12]) then
33 discharge(b,t,t',BTT);
34 else discharge(b,t,BT);
35 else discharge(b,B);
36 end;

F1G. 6. Phase 1 of clear_Aux: clear all of the B-items from Auzp.

a list of pairs (x, Bin(z)), where Bin(z) denotes the bin into which an item x is packed,
in time linear in the number of items in the current instance. Such a description of the
regular packing can be obtained by a preorder traversal of the 2-3 tree representing the
regular packing, and a computation of the packing of the items from Auz (without
actually packing the items from Auz into bins, thereby removing these items from
Auz). It is easy to see that this processing requires a uniform running time that is
linear in n, the size of the (current) list L.

4. Competitive ratio and running time of MMP.

4.1. MMP is %-competitive. In this section the proof of the upper bound on
the competitive ratio of MMP is presented. Lower bound examples with a g ratio can
be given; hence, this bound is tight. See Figure 10 for details.

4.1.1. Overview of the proof of the upper bound on the competitive
ratio of MMP. The proof of the upper bound on the competitive ratio of MMP
consists of several parts. First, we establish that MMP maintains regular packings
that are LLS-maximal. Second, we show that MMP maintains M-thoroughness. Once
these two important facts about MMP are proved (see subsections 4.1.2 and 4.1.3
below), we consider only lists of non-M-items and prove that the upper bound on
the competitive ratio of MMP for such lists is % This is the most difficult part of
the proof. We then prove that MMP is g—competitive for arbitrary lists by an easy

application of M-thoroughness.

4.1.2. MMP maintains LLS-maximality. In this subsection we prove the
LLS-maximality of packings produced by MMP. In the proof, we will appeal to the
code presented in the previous section.

LEMMA 1. MMP maintains LLS-maximality of packings of lists of non-M-items.

Proof. The proof proceeds by induction on the number of Insert and Delete
operations processed by MMP. Suppose that the packing P produced by MMP is
LLS-maximal immediately before an Insert or Delete operation is requested from
MMP. We proceed to show that MMP will process that operation in a manner that
maintains LLS-maximality.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 591

phase 2:
37 do
39 I = min(Auay,);
40 p = search-myopic.L(l);
41 if p points to a B-bin, call it B, then
38 begin
42 success = true;
43 I = delete_min(Auzy));
44 store_Auz({y € content(B,)| y of type < L});
45 pack(Bp, [,BL);
46 top_with-M(Bp);
47 end
48 while Auzp, #) and success;
49 do
50 s = min(Auzg);
51 p = search-myopic_S(s);
52 if p points to a B-bin, call it B, then
53 begin
54 success = true;
55 s = delete_min(Auxg);
56 store_Auz({y € content(B,)| y of type < S});
57 if seek(b, s, t[Aurp,15,14,13,12,11]) then /* b € content(B,) */
58 pack(Bp, s,t,BST);
59 else pack(Bp, s,BS);
60 top_with-M(B,);
61 end
62 while Auzg # () and success;
63 do
64 t = min(Aua);
65 p = search-myopic_T(t);
66 if p points to a B-bin, call it B, then
67 begin
68 success = true;
69 t = delete_min(Auwp);
70 store_Auz({y € content(B,)| y of type < T});
71 if seek(b, t,t' [Auap,15,14,13,12]) then /* b € content(B,) */
72 pack(By,t,t' ,BTT);
73 else pack(Bp,t,BT);
74 top_with-M(Bp);
75 end

76 while Auzp # () and success;

Fi1G. 7. Phase 2 of clear-Auz: pack L-items, S-items, and T-items from Auz into B-bins of the
regqular packing.

LLS-maximality concerns only non-M-items. Thus, operations of interest here
are Inserts and Deletes of non-M-items. To complete the proof, it suffices to exam-
ine the first four phases of clear_Auzr and to verify that their execution maintains
LLS-maximality. This is in turn easy to verify by inspection of the definitions of
thoroughness and LLS-maximality (Definitions 2 and 3, respectively) and the code of
clear_Auz. d

592 ZORAN IVKOVIC AND ERROL L. LLOYD

phase 3:
7 do
78 I = min(Auay,);
79 success = seek(l, l'[Auzy ,4,3],s[Auzg,9,8]);
80 if success then discharge(l,l’, s,LLS);
81 while Auzy, # () and success;
82 do
83 s = min(Auzg);
84 success = seek(s, l1[Auay ,4,3],l2[Auzy ,4,3]);
85 if success then discharge(l1,l2, s,LLS);

86 while Auzg # () and success;

Fic. 8. Phase 3 of clear-Auz: form LLS—-coalitions.

phase 4:
87 while [Auayp | > 2 do
88 begin
89 Iy = delete_min(Auay,);
90 ly = delete_min(Auay);
91 if seek(l1,l2, t[Auwp,15,14]) then discharge(l,l2,t,LLT);
92 else discharge(l1,l2,LL);
93 end;
94 while |Auzg| > 3 do
95 begin
96 s1 = delete_min(Auzg);
97 So = delete,min(AuxS);
98 s3 = delete_min(Auag);
99 if seek(s1, s2, s3,t[Auwy,15]) then discharge(s1, sz, s3,t,SSST);
100 else discharge(s, s2, $3,595S);
101 end;
102 while |Auzp| > 4 do
103 begin
104 t1 = delete_min(AuzT);
105 te = delete_min(Auzp);
106 ts = delete_min(Auzy);
107 ta = delete_min(Auzy);
108 discharge(t1, ta, t3, t4,TTTT);
109 end;

F1c. 9. Phase 4 of clear_Auz: pack the remaining L-items, S-items, and T-items from Auz into
non-B-bins.

4.1.3. MMP maintains M-thoroughness. In this subsection we prove that
MMP maintains M-thorough packings. This proof also proceeds by induction on the
number of Insert and Delete operations processed by MMP. Suppose that the packing
P produced by MMP is M-thorough immediately before an Insert or Delete operation
is requested from MMP. We proceed to show that MMP will process that operation
in a manner that maintains M-thoroughness.

We first consider the operation Insert(x): the item x is simply stored into Auzx, and
then clear_Aux is invoked. Within clear_Auz, each bin B whose content is changed (B
can be a new bin or a bin whose content partially changes in the course of execution

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 593

1 1
L:<2+e,2+26, ,5—1——6, ..,§—|—Ne7
1 1 1 N 1
~ —Ne,=—(N=1)e,...,= e
2 6’2 ()67 72 267 72 6)
OPT MMP
i=1..,N i=1,..,N2 i=N2+1,..,N j=1,..,N/4
1 1 . 1 1 X
? -ie ? - (N-i+1) € ? -i € ? - (N/2-2j+1) €
1 1 1 1
— +ieg — +ieg — +ieg — - (N/2-2j+2) €
2 2 2 2

Fic. 10. A lower bound example for MMP. Here the items are inserted precisely in the order
in which they are listed in L above. This example proves that there are arbitrarily large lists L (N
is an arbitrarily large integer divisible by 4) for which OPT(L) = N, and MMP(L) = %N, thus
establishing a lower bound of % on the competitive ratio of MMP, i.e., R(MMP) > %.

of clear_Auz) is filled with M-bundles via the top_with M function. This function
continues filling B until an M-bundle that cannot fit into B is found, in which case
level(B) > % or until there are no more M-bins and Auz) is empty. Finally, phase 5
of clear_Auzx is an execution of the function reload_M. This function will, in case Auxn
is not empty at the conclusion of maintaining LLS-maximality (phases 1 through 4),
accomplish M-thoroughness by packing the M-bundles from Awuxy; into the regular
packing in an FF fashion. This will guarantee that (1) there could only be M-bins if
each non-M-bin has a level > % and (2) any M-bin, except, perhaps, for the rightmost
bin in the packing, has a level > %.

Next, we consider the operation Delete(x), where z is a non-M-item. If x is
packed into a bin B, x is deleted from B,, the remaining content of B, is inserted
into Auz, By, is deleted from the regular packing, and clear_Auz is invoked. (As argued
above clear-Auz maintains the M-thoroughness of the packing.) Note that deletion of
non-M-items from Auzx has no effect on M-thoroughness of MMP. Finally, deletion of
M-items (see code: lines 3-9 in Delete) also preserves M-thoroughness via functions
top_with_M and reload_M.

Thus we proved the following lemma.

LEMMA 2. MMP maintains M-thoroughness of packings of arbitrary lists.

4.1.4. Consideration of lists with no M-items. We fix an arbitrary list L
that contains no M-items. Recall that L may be obtained by an arbitrary sequence of
Inserts and Deletes of items. This arbitrariness may lead to various MMP packings
of L. We thus fix an arbitrary MMP packing P;, of L. Pp consists of the regular
packing Py and the auxiliary storage Auz.

We then fix an arbitrary optimal packing OPTj of L and derive from it another
optimal packing OPT of L. OPT is a reordering of the bins from OPT, such that
the bins of type BL are the leftmost bins of OPT, the bins of type BST are the next

594 ZORAN IVKOVIC AND ERROL L. LLOYD

leftmost bins of OPT, ..., and the bins of type T are the rightmost bins of OPT.

We note that it will be convenient to fix P, a reordering of the bins from Fy. P
is defined as follows: the kth leftmost B-bin in OPT and the kth leftmost B-bin in P
must contain the same B-item; the order of non-B-bins of P and P is identical.

For both OPT and P, let the indez of a B-bin B in the packing OPT(P) be the
number assigned to B in the “left to right” numbering of the bins from OPT(P).
Clearly, for an arbitrary B-item b from L, the indices of B-bins into which b is packed
in OPT and P are equal.

Intuitively, the above construction will enable us to view OPT and P in a special
way: we may imagine that the B-items of L are “static’—they “remain in the same
bin” in an imaginary transformation between OPT and P, and the L-items, S-item,
and T-items “migrate,” since they may be packed into the kith leftmost bin in OPT
and into the koth leftmost bin in P, where k1 # ks.

The underlying idea. The underlying idea of the proof is to develop an elegant
way of capturing the following imaginary series of events. At the outset, someone
“glued” the B-items from L into B bins, one B-item per bin. That person is then
required to take the non-B-items from L and pack them into those B bins and as
many additional bins as necessary (these will be non-B-bins), so as to create OPT.
Next, that person is required to remove all of the non-B-items from bins and retain
the bins containing the glued B-items in the “left to right” order produced by OPT.
Finally, that person is again required to take the non-B-items from L and pack them
into those B bins and as many additional bins as necessary (again, these will be non-
B-bins), so as to create P. As indicated in the course of defining P, we are interested
in “migrations” of non-B-items from bins of all types in OPT to B-bins in P. The
notion of glued B-items motivated the definitions of OPT and P: B-items may be
viewed as “static”; they do not move from bin to bin when the packing is changed
from OPT to P. L-items, S-items, and T-items, on the other hand, may “migrate”;
i.e., the indices of the bins they are packed into in OPT and P may differ. The
remainder of the proof explores this “itemographic process.”

We perform an extensive analysis of the structure of P in terms of different types
of bins in P and OPT and their respective multiplicity f;, 1 < ¢ < 30, where f;
denotes the number of bins of type ¢ in OPT (i is the canonical index of bin types
with respect to the superiority relation. See Figure 1.) The proof will not at all
depend on the particular sequence of Inserts and Deletes that led to L and its MMP
packing Pr. The proof will depend only on the fact, proved in subsection 4.1.2, that
MMP produces packings that are LLS-maximal. Based on that property, we derive
lower bounds on the quantities Lg, Sg, and Tz, and Ny s defined thus.

DEFINITION 5. Let Lp (S, Tp) denote the number of L-items (S-items, T-items)
in B-bins in P. Let Nps denote the number of bins of type LLS in P.

A preliminary result. We begin with a preliminary lemma. We establish an
upper bound on the number of bins MMP would require to pack a given number of
L-items, S-items, and T-items.

LEMMA 3. Suppose L contains only L-items, S-items, and T-items. MMP will
pack L into at most % + % + % + 2 bins.

Proof. Recall that MMP maintains LLS-maximality (see Lemma 1). Py will
require precisely L%J bins with two L-items (these bins may each contain an additional
S-item or an additional T-item), followed by at most L§J bins with three S-items

3
(analogously, these bins may each contain an additional T-item), followed by at most

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 595

| Z | bins with four T-items. In addition, Auz might contain at most one L-item, two
S-items, and three T-items. All of these items can fit into at most two bins (one bin
of type LTT and one bin of type SST). Hence the number of bins required by MMP
to pack all of the items of L is at most

S I S -
2 3 4 =23 "4 "7

Several technical results. We now proceed with several technical results that
are important in estimating the quantities Lg, Sp, T, and Nprs. A precise estimate
of these quantities is the key ingredient in the proof. Each of the following lemmas
contains three statements that are quite analogous and are moreover proved analo-
gously. We adopt this particular style of presentation to avoid unnecessary repetition.

LEMMA 4. Consider an optimal packing Popt consisting only of k bins of type BL
(BS; LLS). Consider a list L whose optimal packing could be Popt and is constructed

in stages?®

stage 0: X = the set of items in Py
L=0;
go to stage 1;
stage i: Y = (the smallest B-item in X (B-item; two L-items),
(1<i<k) the smallest L-item in X (S-item; S-item));
L="L-Y;

X =X — set of items in Y;
go to stage 1 + 1;
stage k+1: return L;

Then the B-item and the L-item (the B-item and the S-item; the two L-items and
the S-item) assigned to 'Y in stages 1 through o = [%] (%L [%D, respectively, must
fit together into a bin of type BL (BS, LLS).

Proof. Suppose by way of contradiction that it is not the case that the B-item
and the L-item (the B-item and the S-item; the two L-items and the S-item) assigned
to Y in all of the stages 1 through o = %W ({g], {§—|), respectively, fit together into
a bin of type BL (BS, LLS).

Then there exists a positive integer 1 < 3 < «a such that only the B-items and
the L-items (the B-items and the S-items; the L-items and the S-items) assigned to
Y in stages 1 through [, respectively, fit into a bin of type BL (BS; LLS).

Consider L arranged in a table with 2 (2;3) rows and k columns as follows: ith
column contains exactly the items added to L in the ith stage of the construction of
L, where within a column the items are arranged in successive rows according to the
order in which they were added to L. Refer to Figure 11 for details.

Note that only the items from the first 8 columns of this table can, according to
the supposition, fit together into bins: one bin per column of type BL (BS; LLS).

Let C; be the set of all of the items that lie in the first row (first row; first two
rows) and are also in the first 8 columns. Let ny = card(Cy). Clearly ny = 8 (5;
2(3). Let Cy be the set of all of the items in the last row that belong to the columns
B+1,8+2,..,k Let ng = card(Cq). Clearly no = k — f3.

Any item a € Cy could only be packed into a bin of type BL (BS; LLS) if b, the
B-item (the B-item; at least one of the two L-items) with which a would be packed,

5In the construction below, the operator - denotes concatenation; i.e., - is a binary operator that
appends its second operand to its first operand.

596 ZORAN IVKOVIC AND ERROL L. LLOYD

BL (BS):
k
stage: 1 2 3 . B B+l a={—w k
(column) 2
o1 |[[B. B B . B] B . B . B
——= B-itemsincreaseinsize
—= L-items(S-items) increaseinsize = ———
C, =2 LS LES LO . L(S){L(S) L©S) . L(S)J
CZ
LLS:
5]
stage: 1 2 3 . B B+l a={—/| .. k
(column) 3
row: 1 L L L L L L L
2 L L L L L L L
—= L-itemsincreasein size
—= Sitemsincreasein size
C1 3 S S S . S { S S S }

Co

F1a. 11. A tabular arrangement of L. Letters B, L, and S denote B-items, L-items, and S-items
of L, respectively.

would be from C;; otherwise the level of such a bin would exceed 1. Thus, since
the optimal packing of L contains only bins of type BL (BS; LLS), there should be
sufficiently many items in C; to ensure the packing of each a € Co; i.e., it should be
the case that nq > ns, i.e., ny — ny > 0. However,

n—ny=(c—1)3—(k—B) = cB—k §C<V—‘1)k

S(W)—c—k - 1,
c

where ¢=2 (2;3) bins of type BL (BS; LLS). This is a contradiction. d

Clearly, if MMP packs this particular list L in a series of Inserts of items in the
order in which the items appear in L, MMP will pack at least « bins of type BL (BS;
LLS).

COROLLARY 1. The MMP packing of the list L defined in the statement of
Lemma 4, carried out as a series of Inserts of items in the order in which the items
appear in L, must contain at least o = {g} ([g] ; [%1) bins of type BL (BS, LLS).

Thus we have shown that a very particular sequence of Inserts will pack an L with
a very specific optimal packing in the manner that will, informally, “salvage” about
one half (one half; one third) of the bins of type BL (BS; LLS). The following lemma
shows that this particular order of packing the items of L, inserted one by one in the
order in which they appear in L, is not at all essential. Furthermore, it is not essential
that an optimal packing of L consists only of bins of type BL (BS; LLS). In other
words, to determine the lower bound on the number of bins of type BL (BS; LLS) in

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 597

an MMP packing of a list L containing only B-items, L-items, S-items, and T-items
(B-items, S-items, and T-items [note a careful avoidance of L-items); L-items, S-items,
and T-items (note a careful avoidance of B-items)), the only relevant information is
the maximum number of bins of type BL (BS; LLS) that can be constructed from
items in L. MMP will, informally, “salvage” about one half (one half; one third) of
that maximum number of bins of type BL (BS; LLS). We again choose this particular
style of presentation to avoid the unnecessary repetition.

LEMMA 5. Let L' be a list containing B-items, L-items, S-items, and T-items (B-
items, S-items, and T-items; L-items, S-items, and T-items). Let k be the mazimum
number of bins of type BL (BS; LLS) that could be packed from the items of L'. Then
any MMP packing of L', obtained by an arbitrary sequence of Inserts and Deletes
leading to L', contains at least o = [%W (%L [%D bins of type BL (BS; LLS).

Proof. Suppose by way of contradiction that there is an MMP packing Ppyqq of
L’ that contains only v < a bins of type BL (BS; LLS). Let Pgyesireq be & maximum
cardinality packing of B-items and L-items (B-items and S-items; L-items and S-
items) from L’ into bins of type BL (BS; LLS) (note the correspondence of Pyesired
with P,p; from Lemma 11). By a hypothesis, the maximum number of bins of type
BL (BS; LLS) in the Pyesireq packing is precisely k. Let L be the list of items derived
from Pgesireq in the manner of Lemma 11. Let P’ be the MMP packing of L obtained
by a sequence of Inserts of items from L in the order in which the items appear in L
(note the correspondence with the situation from Corollary 1). Since there are only
v < « bins of type BL (BS; LLS) in Py.q, there must be at least one B-item b (one
B-item b; two L-items I, l) and one L-item ! (one S-item s; one S-item s) that are
packed in one of the first a bins of type BL (BS; LLS) in P’, and are not packed in a
bin of type BL (BS; LLS) in Py,4. Note that the size of each of b and I (b and s; [y,
la, and s) is no greater than the size of the B-item and the L-item (the B-item and
the S-item; the two L-items and the S-item) from the ath bin in Pyaq. Thus b and I
(b and s; I3, I3, and s) can fit into a bin. This is a contradiction, since MMP produces
packings that are thorough (thorough; LLS-maximal) (Lemma 1) for bins of type BL
(BS; LLS), and would therefore have packed at least one more bin of type BL (BS;
LLS) in Pbad- |

Toward a lower bound on Nprgs. We proceed by stating several properties
that will be used to obtain a lower bound on the value of Nyppg. We begin by
considering bins of type LSTT. We show that two L-items and one S-item, each from
any, and not necessarily the same, bin of type LSTT must fit into a bin.

LEMMA 6. Let l1, Iz, and s be two L-items and an S-item, each from any, and
not necessarily the same, bin of type LSTT. Then l1, ls, and s can fit into a bin.

Proof. Tt suffices to show that 2L,,40 + Smae < 1, where Lyap (Smaz) denotes
the maximum size of L-items (S-items) in any bin of type LSTT;

1 1 7
Lmafc:]-* mln72Tmzn]‘7—72.7:77
5 < 4 5 20

1 1 4
maz:]-_Lmin—QTmin 1———2.7:77
° < 3 5 15

7 4 29
2Lmax max 2. — _ = —]_7
T Smas <2055 T 15 T 55 <

where S,.in and T),;, denote the minimum size of an S-item and an T-item, respec-
tively. |
Establishing a good lower bound on the number of bins of type LLS that would be

598 ZORAN IVKOVIC AND ERROL L. LLOYD

produced by MMP is very important later in the proof, since that bound is a measure
of the success of the technique of LLS-coalitions utilized by MMP. To that end, we
state and prove the following lemma.
LEMMA 7. Suppose that L is a list of non-B-items. Let Popt be an arbitrary
optimal packing of L satisfying the following three conditions:
1. Pyt contains at least ny bins of type LLS;
2. at least no L-items from L are not packed into bins of type LLS in Pop?b and
each of these L-items can fit into a bin of type LSTT;
3. at least no S-items from L are not packed into bins of type LLS in Popt: and
each of these S-items can fit into a bin of type LSTT.
Then the number of bins of type LLS in any MMP packing of L is at least
nitng’ _ q.
(4P7“J0f, First, the following fact follows immediately from Lemma 6.
Fact 1. The mazimum number of bins of type LLS that can be packed from the
items of L is at least ng = ny + L%J
Now to prove this lemma, we consider two cases.
Case 1. nqy > no.

By Lemma 5, MMP will pack at least [%1 bins of type LLS:

2] - mA B |t [amtamtgne
3 3 = 3 3

_|mtne 1} fnitng 1
4 6|~ 4
Case 2. n1 < na.
By Lemma 6 and the fact that MMP maintains LLS-maximality of bins of type

LLS (Lemma 1), MMP will pack at least {%J bins of type LLS. Further, note that
n1 + ng < 2no:

{@J . {n1;n2J _ {n1+n2J > ’an +TL2-‘ 1 |
2 2 4 4

Toward lower bounds on Lg, S, and Tg. The next several lemmas estab-
lish important properties that will be used later to bound Lg, Sp, and Tg.

LEMMA 8. A B-item from a bin of type BL can be packed together with any
S-item.

Proof. 1t suffices to show that Bj,qe + Smaz < 1, where By,q, denotes the maxi-

mum size of B-items in any bin of type BL, and S;,4, denotes the maximum size of
S-items:

1 2 1 2 1
Bmale_Lmin<1_7:7a Sma$:77 Bmaac Sma;v< — *:L
373 3 + 313
where L,,,;, denotes the minimum size of L-items. O

The next nine lemmas are proved quite analogously.

LEMMA 9. A B-item from a bin of type BL can be packed together with any
T-item.

LEMMA 10. A B-item from a bin of type BST can be packed together with an
L-item from a bin of type LLS.

LEMMA 11. A B-item from a bin of type BST can be packed together with an
L-item from a bin of type LSTT.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 599

LEMMA 12. A B-item from a bin of type BST can be packed together with any
S-item.

LEMMA 13. A B-item from a bin of type BST can be packed together with any
T-item.

LEMMA 14. A B-item from a bin of type BS can be packed together with any
T-item.

LEMMA 15. A B-item from a bin of type BTT can be packed together with an
L-item from a bin of type LSTT.

LEMMA 16. A B-item from a bin of type BTT can be packed together with any
S-item.

LEMMA 17. A B-item from a bin of type BTT can be packed together with any
T-item.

MMP is %-competitive for lists with no M-items. Recall that there are 30
possible types of bins involving B-items, L-items, S-items, and T-items: BL, BST,
., T (see Figure 1). We will find it convenient to refer to these types of bins
according to their canonical index in the lexicographical ordering based on the relation
of superiority. For example, a bin of type 1 is a bin of type BL, a bin of type 2 is a
bin of type BST, ..., a bin of type 30 is a bin of type T, as depicted in Figure 1.

Next, recall that only a subset of the above types of bins is allowed in MMP
packings. The allowed bin types are BL, BST, BS, BTT, BT, B, LLS, LLT, LL,
SSST, SSS, and TTTT. Alternatively, using the canonical indices, the allowed bin
types are 1, 2, 3,4, 5,6, 7, 8,9, 18, 19, and 27.

Intuitively, certain types of bins will be more important for the proof of the upper
bound on the competitive ratio than the others. We therefore classify the bin types
into the front (more important) types of bins and the back (less important) types of
bins.

DEFINITION 6. The front types of bins are BL, BST, BS, BTT, BT, B, LLS, and
LSTT (types 1,2,...,7,11). All of the other types are back types of bins. Let Lpgck
(Sbacks Tvack) denote the number of L-items (S-items, T-items) in the bins of back
types in OPT.

Recall that f;; 1 < ¢ < 30, denotes the number of bins of type ¢ in OPT. The
following equations hold (see Figure 1):

17
Liack = 2(fs + fo) + fro+ Y _ fis

i=12
26
Spack = 3(f1s + f10) + 2(fro + foo + for + fo2) + fr2 + frs+ D _ fis
=23
Tpack = 4for + 3(f14 + faz + fas) + 2(f15 + f20 + foa + foo)
+ fs + fi2 + fie + fis + for + f25 + fa0,
L= fi+2fr+ fi1 + Loack;
S = fo+ f3+ fr+ fi1 + Spback,
T = fa+2fs+ f5+2f11 + Toack-
We next furnish a technical definition of the list of indices.
DEFINITION 7. A list of indices | = i1,1s,...,1 is a list of positive integers. x

will be used as an abbreviation for the list 8, 9, 10, 12, 13, ..., 30.6

6Note that this list corresponds to the back types of bins.

600 ZORAN IVKOVIC AND ERROL L. LLOYD

We would like to use this notation to count the number of bins in OPT whose type
is an element of the list of indices I. To that end, we furnish the following definition.

DEFINITION 8. Let [denote a list of indices. Let f; denote the number of bins in
OPT whose type is an element of I. Then fi =3, fi.

For example, the number of bins in OPT that contains a B-item and an S-item
(bins of type BST (2) or BS (3)) is fo,3 = fa + fs.

Let us define another technical definition of ranges of bins. Each range of bins r;
captures precisely the indices of B-bins of type i in OPT.

DEFINITION 9. Ranges of bins r;, 1 < i < 6, are segments of positive integers de-
ﬁned as fOllOU)S.‘ r = [1, ceey f]_], ro = [fl + 1, ey f1,2]7 rs = [f1,2 + 1, ey fl,g’g], T4 =
fres+ 1., figsal, s =[fi,.a+1,...,fi. 5], andre = [f1,. .5+ 1,..., f1,. 6]

We would like to count the number of items of a certain type (L-items, S-items,
or T-items) that are packed into a bin of type ¢ in OPT and into a B-bin with an
index from the range r; in P. Intuitively, we would like to count how many items of
a certain type “migrated” from bins of type ¢ in OPT (intuitively, the source bins) to
B-bins in P that “used to be” bins of type j in OPT; i.e., the index of such bins in
both OPT and P is from the range r; (intuitively, the destination bins).

We would also like to count the number of items of a certain type (L-items, S-
items, or T-items) that are packed into a bin in OPT whose type is an element of the
list of indices I, (intuitively, the types of source bins), and into a B-bin in P whose
index is from a range of bins indexed by an element of the list of indices l4 (intuitively,
the ranges of destination bins).

DEFINITION 10. Let L5 (S5, T3), s € {1,2,...,5,7,8,...,30} andd € {1,2,...,6},
denote the number of L-items (S-items, T-items) that are packed into bins of type s
(source) in OPT, and into B-bins with an index from rq (destination) in P.

Let I, and ly denote lists of indices. Let Lid (Sll;, Tlld) denote the number of L-
items (S-items, T-items) that are packed into a bin in OPT whose type is an element
of the list of indices ls, and into a B-bin in P whose index is from a range of bins
indexed by an element of the list of indices l;. Then

S IR E) SERE TS 9 307

i€ls jELa 1€ls jEla 1€ls jEla

We illustrate this notation with two examples.

First, L] denotes the number of L-items that are packed into bins of type 7 (LLS)
in OPT, and into bins with an index from 7; in P, that is, into one of the f; leftmost
bins, bins that contain a B-item that is packed into a bin of type 1 (BL) in OPT.

Second, the number of T-items that are packed into a bin of one of the types
BST (2), BT (4), or LLT (8) in OPT, and into a B-bin whose index is from one of
the ranges 7o or r3 (that is, into one of the bins that contains a B-item that is packed
into a bin of type 2 (BST) or a bin of type 3 (BS) in OPT) is written as follows:

T3 = Y > T =T3+ T+ T3+ T+ T3 + T3
1€2,4,8 j€2,3

We now state and prove the main result of this subsection.

LEMMA 18. MMP(L) < %OPT(L) +3.

Proof. We begin with a series of four claims that establish lower bounds on the
values of Lg, Sg, T, and Ny s, respectively.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 601

CLam 1. Lp > Lyg!he + Ly* +min(2f7 + fu — L3 g, fo — Ly™).

Proof. The key to the proof of this lemma is an observation that any B-item from
a bin of type 2 (BST) can be packed together with any L-item from a bin of type 7
or 11 (LLS or LSTT) (Lemmas 10 and 11).

The right-hand side of the above inequality consists of the follwing three additive
terms.

1. The first term accounts for all of the L-items that are packed into one of the
bins of type 1, 7, 11, or into one of the bins of back type in OPT, and into one of the
B-bins in P that contains a B-item that is packed into a bin of type 1, 3, 4, 5, or 6 in
OPT (note a careful avoidance of bins of type 2 (BST)).

2. The second term accounts for all of the L-items that are packed into one of
the bins of type 1, or into one of the bins of back type in OPT, and into one of the
B-bins in P that contains a B-item that is packed into a bin of type 2 (again, note a
careful avoidance of bins of type 2 (BST)).

3. The third term, the min term, is somewhat more involved.

The first operand of the min term is 2f7 + f11 — LI ;,1 This number denotes
the number of L-items from bins of type 7 (LLS) and 11 (LSTT) in OPT that are not
packed into a bin in P together with a B-item that is packed into a bin of type 1, 3,
4,5, or 6 in OPT (note a careful avoidance of B-items from bins of type 2 (BST) in
OPT).

The second operand of the min term is fo — . This number denotes the number
of B-items that are (1) packed into a bin of type 2 (BST) in OPT and (2) are not
packed into a bin in P together with an L-item that is packed into a bin of type 1
(BL) or one of the back-type bins in OPT (note a careful avoidance of L-items from
bins of type 7 (LLS) and 11 (LSTT) in OPT).

Thus, by Lemmas 10 and 11, any B-item accounted for by the second operand
can be packed together with any L-item accounted for by the first operand of the
min expression. By the LLS-maximality of MMP (see Lemma 1), P will feature
min(2f7 + fi11 — Ll’d 6 f2a — Lé*) bins of type 1 (BL) containing the above B-items
and L-items.]

The following two lemmas are proved quite analogously.

CLAIM 2. Sp > Syo¢™™ +min(f2 + fs + fr + fun — S3o¢ f1+ fo + fu —
(Le—Ly55 ")

CrAamM 3. Tg > T52,’é’5’117* + Hlil’l(fg + 2f4 + f5 2f11 — 2’4’5 11, f
(L — Lyg™™) = (S5 — S5571)).

CrLAmM 4. Nprs > %(max(oaf77(LI,...,6+S’17,...,6))+f117maX(L%,1...,67Sll,l...,G))*]-'

Proof. The key to the proof of this lemma is the statement of Lemma 7. Let the
set of items packed into non-B-bins in OPT play the role of L in Lemma 7. Let the
non-B-bins of OPT play the role of Popt in Lemma 7. Further, note the following
conditions.

1. max(0, fr — (L] s+ 57 __¢)) is a (conservative) lower bound on the number
of bins of type LLS in OPT that do not contain an item that is packed into a B-bin
in P. These max(0, fr — (L] s+ S7) bins of type LLS play the role of n; bins
of type LLS in Lemma 7.

2. fu1 —max(Li' 4, St!) is a (conservative) lower bound on the number of L-
items and the number of S-items from bins of type LSTT in OPT that are not packed
into B-bins in P. These fi;—max(L{! g, 51!) L-items and fi; —max(Li' 4, St)
S-items play the role of ny L-items and S-items in Lemma 7.

.....

602 ZORAN IVKOVIC AND ERROL L. LLOYD

This claim, then, follows directly from Lemma 7. Note that, unlike in Lemma 7,
we did not choose to apply the ceiling operator, as this will have no substantive effect
on the analysis of the competitive ratio of MMP.]

Next, we apply Lemma 5 to establish lower bounds on the values of L and S3.
Note that we do not provide a lower bound for T9. Again, while a lower bound
on TP could be established in an analogous manner, accounting for 79 will have no
substantive effect on the analysis of the competitive ratio of MMP.

Cram 5. L} > 3(fi —min(fy, LT + L g)).

Proof. The proof is immediate from Lemma 5. Let I" be the set of B-items from
L that are packed into bins of type BL in OPT and at the same time satisfy the
following two properties.

1. They are packed into a bin in OPT together with L-items which satisfy the
property that they are not packed into a bin of type BL in P together with a B-bin
with an index from ro Urs...Urg. Informally, the B-items from I' cannot be packed
in OPT together with L-items that “migrate” from bins with indices from r; in OPT
to other B-bins in P.

2. They are not packed into a bin in P together with L-items that are packed
into non-B-bins in OPT.

A conservative estimate of the lower bound on the cardinality of I' is f; —
min(f1, LI’H’* —&—L%’MG). We say that the estimate is conservative, since there may be
B-items that violate both properties, whereas this bound assumes that each B-item
violates at most one property; i.e., it is assumed that there are no “overlaps.”

The list consisting of B-items of I' and L-items that are packed together with a
B-item from I' in OPT now plays the role of L’ from Lemma 5. Further, the above
conservative estimate of the cardinality of I" plays the role of k£ from Lemma 5.

The claim follows directly from Lemma 5. Note that, unlike in Lemma 5, we did
not apply the ceiling operator, as this will have no substantive effect on the analysis
of the competitive ratio of MMP.]

The following claim is proved quite analogously.

CLaM 6. 83 > 3(fs —min(fs, Ly""" + 8371+ 835 45 6)).

Next, we note that the number of bins in OPT is precisely OPT(L) = 2?21 fi-
Let us now bound the value of MMP(L) in terms of f;’s, Lg, Sg, T, and Npps. The
number of B-bins, B = Z?Zl fi = f1,2,3,4,5,6, is identical for OPT and P. Further,
MMP packs Lp (Sp, Tp) L-items (S-items, T-items) into B-bins, and N 1s bins of
type LLS. Finally, we assume that the L-items, S-items, and T-items that are not
explicitly accounted for via Lg, Sg, Ts, and Nppg are packed in the “worst possible
way.” Hence, we bound the value of MMP(L) as follows:

MMP(L) < fi,...6 +Nrrs + %(E —Lp —2Nrrs)

+é(8 —Sp—Nrrs) + i(T—TB) +2

=fi,.6+ %(fl +2f7 + fi1 + Loack — L)
Jré(fz + f3+ fr+ fi1 + Sback — S — NiLs)

1
Jri(fz +2fs+ f5s + 2f11 + Toack — TB) + 2.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 603

Note that

Eback Sback %ack)
< = J x>
2 3 + 4 - 4f

which can be verified by a straightforward substitution. Hence, to complete the proof
it suffices to show that

,,,,,,

where C is defined as follows:

K=/fi.6+ %(fl +2f7+ fir — Lg)
+é(f2 + f3+ fr+ fir — Sp — Nrws)
+i(f2 +2fs+ f5s +2fu1 — Tp).

We outline four conditions, (I),...,(IV), by observing Claims 1 through 4. Our
case analysis will be guided by these conditions:

(I) holds «— 2f7 —+ fll — LI:;)},G < f2 _ L%’*7
(I1) holds <= fo + f + fr + fir = S5567" < fut ot fa— (Lp — Ly5s"™),
(III) holds <= fo + 2fs4 + f5 + 2f11 — T52,,51,5,11

< fra— (Lp — Lé:g’ll’*) —(Sp — nggﬂ,ll,*)’
(IV) holds <= L] s+ 5] < fr.

Before proceeding with the analysis, we note several useful facts:
1. Lg > %fl (immediate from Lemma 5).
2. If (I) holds,

Lp > Ligllg + Lé’* +2f7+ fi1 — Lzélﬁ
= L}i;...,ﬁ + Ly +2fr + fua
> 2fr+ fu1.
3. If (I) does not hold (—(I) holds),
Lp > Lygils +Ly" + fa— Ly”
= [+ Ly5thG
= [+ L+ Lylig ™ + LT

1 . * * *
> fot 5 (A —min(fi, LT+ Ly) + Lyl ™ + LT

L (11 . (11
+ LM+ (2 - 2) Ly 4 <2 - 2) L}

1 " 1 . %
=fot+zfi+ i(LI’H’ + L%,...,ﬁ) -3 min(fy, L7 + L%,,..,G)

604 ZORAN IVKOVIC AND ERROL L. LLOYD
—|—1L +L711 I L“l*—fL

1 1 .
>-fit+fo— L2+2L3 R S +2L7“
11

2
1 1 1
Z§f1+f2—§L% §L3 6

4. TIf (II) holds,
,11 %

LN
S
o

Sp = Sg,,g):g,n,* +fot+fat+frtfii—S
= fo+ f3+ fr+ fu1-

5. If —~(II) holds,

Sp > Seed™ + fit ot fa— Lo+ Lytg

=fitfotfi—Lp+Sog T +Lygt + S5+ S5 1,7,11,%

2711,*+556+L

2f1+f2+f4—LB+S52:g’11’*+Lé711*+§f3

1,7,11 2,7,11
L37’ ’*—‘1-5'3” y ¥

1 . . .
) mln(f3, 4 55,2,4,5,6) + S§,7711, + Sg,ﬁ + L:1>,’77117

! -
=fithfatfi—Lp+S5" "+ L' + o fs

L. * * 1 N
2 min(f3, Ly " 4+ 53T 57 2456) + (2) ST

L1 1 1 r L7110 1 1
(2 2> 8ot (2 + 2) 3 373 Sioa
% « 1
—f1+f2+f4—LB+52711 Lé;g’“’ +§f3

17,11,% | 2,711,
+§(L3 + 53 +572.456)

L711 | o2,701% | o3
Ly + 53 +S72.456)

« 1
75277,11 * + Sr 5 + L;} ST 1L,% 5510,’2’4

1,7,11,% 1,7,11,%
+L56

—% min(fs,

2,7,11,%

> fi+ fot f3+f4—LB+ L + S

2

2,7,11,%
+ 55576 - 551,2,4

+S5%
1 1 .
> fitfat §f3 +fi—Lp— 55’172,4.

6. If (IIT) holds,
Ty >Tr24511*+f2+2f4+f5+2f11 _Tf)z’,g,s,u
= fa+2fs+ f5 + 2f11.
7. 1f (III) holds,
Tp > T527’64’5’11’* + f1,..4a—(Lp— Lé:g’n’*) —(Sp — 5552’7’11’*)
> fi,..4a—(Lp— Lé:g’n’*) (Sp — 523 Tl

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING

605

Based on the bounds on Lg, S, T, and Nprg, the proof of Lemma 18 is

completed by an case analysis.
Case 1. (II) holds; (IIT) holds.

€ = fiows + 51 420+ fis — Lp)
b2t fo+ ot fu— S5~ Niss)
+%(f2 +2fs+ fs +2fu1 — Tp)
< frvot 3Uh +2fr+ fur — L)
5t fot fr S — (ot fo+ fr+ fir) = Niss)
$ U2 2a 4 Jo + 201 — (a4 26+ s+ 20)
= o U+ 26+ fir = Lp) = 3 Niis
<fotg (hv2hefu-3h)

5 1
=—fi+tfo. 7+ §f11

T4
5
< Zfl,...,?,ll +1

Case 2. (II) holds; —(III) holds.

5ot fo Sk fuo = S~ Nuss)
g2 2a+ f5 + 20— Ti)
< fivst U+ 26+ fu— Lp)
5ot Syt St fuo = S = Nuws)
F U2 2at fo + 20— (o o+ fo+ fi— Lo — Sp))

5 4 13 5 5 4 4
=-fH+ §f2 + Efs + Zf4+ 1]05 + fo + §f7 + §f11

4
1 1 1
—Lp——Sp—-N
TR 1253 5 VLLs
5 4 13 5 5 4 4
< = = b he e = =
< 4f1 + 3f2 + 12f3+ 4f4+ 4f5 + f6 + 3f7+ 3f11
1 1 1
Ly — N
LB 12(f2+f3+f7+f11) 5 ViLs
<2t ot o fant fot o f
S phetfatfas+fot frn
5
<-fi..ru+l

4

606 ZORAN IVKOVIC AND ERROL L. LLOYD
Case 3. —(II) holds; —(IIT) holds.
K=/fi.e+ %(ﬁ +2f7+ fi1 — Lp)
—l%(fQ + f3+ fr+ fir—Sp— Nrrs)
+i(f2 +2fs+ f5 +2fun —Tp)
<fi.e+ %(fl +2f7 4+ fi1 — L)
+%(f2 + f3+ fr+ fir — Sp — Nrws)
+i(f2 +2fat+fot+2fuu—(fit+tfotfo+fat (Léjé’“’* —Lg)+ (S§;§’7’“’* —SB)))
1 1

5 4 13 5 4 1
= Zfl + §f2 + EfB + Zf4,5 + fo + §f7,11 — ZLB - ESB — gNLLS

1 1711 1 2,371
—ZL>b ’*—*Sr’ﬁ”) ¥

4 5,6 479

5 13 5 4 1
S T . S —-L
_4f1+3f2+12f3+4f4,5+f6+3f7,11 1LlB
1 1 1 1 1 « 1 E .
=T (fl + ot gfat fo—Lp - 253274) — g Neps — gLag T = 7S50
7 5 25 7 5 4 4 1 1
P I A bt S aLp--N
76f1+4f2+24f3+6f4+4f5+f6+3f7+3f11 ghe — giVLLs
T a7t 123711+
_ZLS,G 1756
7 5 25 7 5 4 4 1 1 711 1
< a2l g - L — —STN N
< 6f1+4f2+24f3+6f4+4f + fe + 3f7+3f11 glB— 139%6 —3ViLs

Case 3.1. (I) holds.
7 5 25 7 5 4 4 1
K<sfid 2ot st —fat 2 Sfet o fi - (2
< 6f1 + 4f2+ 24f3+ 6f4+ 4f5+f6+ 3f7+ 3fll 6(Jr+ fi1)
5
<—fr o+ 1L
Case 3.2. —(I) holds.
7 5 25 7 5 4 4
< L e b z e = =
K< 6f1 + 4f2+ 24f3+ 6f4+ 4f5+f6+ 3f7+ 3f11
1/1 1 1 7,11 1 7,11 1
_6 <2f1 + f2 - 5[;% + 2L1,3,4..76> - ES&G - gNLLS

13 13 25 7 5 4 4 1 1
=2 =2 =2 L 2 = = —rt— =it
Shtphtopfitghit st fotgfrtsfut Sl 3.6

3 12 12
1% 6~ %NLLS
< %fl - %25;’11 + %L% + gfz - %QL;’H - %2527’11 + §f3 _ %25?3,11
P ST Dt ot St LI o ST S Nus
S TR g gl TRk T T g i = g 5T g

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 607

5 7 9 5 5 4 4 1 711 711
S U . A T 1
< 4f1+6f2+8f3+4f4+4f5+f6+3f7+3f11 19716 T 1
1/1
5 (G0, = (1o + ST + fi - max(LLL . I 6»—Q
5 7 9 5 5 4 5 1 711 1 711
_2 ! g 92 2t = ° A O _ g7
4f1 + 6f2 + 8f3 + 4f4 + 4f + fo + 3f7 + 4f11 5 Lts ~ 155
1 1 1
—u(mmaﬁ—@im+SZ6»+mmw@ﬂﬁﬁﬂﬁ0+3
< éfl 711+ 1 + f7 L max (0, fr — (L] s+ 5]) — iLI’H - i517711
— 4 PR 12 ? geeey geeny 12 ,...,6 12 6

1
ettt 050

1
< - 14+ —K'
< 4fl,...,7,11 + 1+ ThE

where K = f7 — (max(0, fr — L] =51)+ L __s+57 o)
Case 3.2.1. (IV) holds. K' = f7—(f7—LI ,,,,, — 97 76+LI ,,,,,

Case 3.2.2. =(IV) holds. K = f;—L] - 517"“’6 < 0.
Case 4. —(IT) holds; (III) holds.

.....

K = fi,oF 5(f +2fr+ i — L)
+é(f2+f3+f7+f11 —Sp — Nrrs)
+3(+ 26+ fs +2fu — Tp)

< fi 6+%(f1+2f7+f11 —Lp)
+1 <f2+f3+f7+f11— <f1+f2+;f3+f4—LB

* * * * 1 1
+ 2Ll?ll, +L1711, + S2711, +S2711, + 75;,6 _ 25’%)274> _NLLS')

+= (f2 +2fs+ fs +2f11 — (fo+2fs + f5 +2f11))

7 1 1 1.5
6f1+f2+ f3+ f4‘|‘f56+ f7+ f11 _ENLLS+6S17274
% (;L1711,*+L1711,*+ 52711,*’_52711,*_’_;536)

1 1
3 7 N
3,5,6 — QiYVLLS-

7 7 2 5 1
<! Tp4 2 -l
< 6f1 + fa+ 6f3+ 3f4+f5,6+ 3f7+ 6f11 B+ 3

6 651’2’4 12
Case 4.1. (I) holds.

7 7 2 4 5 1 1
K< 6f1 + fa+ *f3 + *f4+f5.6 + gf? + *f11 - 6(2f7+f11) + 8Sf’2’4
5 1 5
<2 e
> 4f1 1251 f2 2 2+4

+ f56,7 + gfll + 651’2’4

1 . 3 1
J3 — 53,2,4+Zf4* Esi)

608 ZORAN IVKOVIC AND ERROL L. LLOYD

5 13 5 3 2

= zfl + ﬁfz + Zf?’ + 1f4 + fs6,7 + §f11
5

< 1f1,4..77,11 + 1.

Case 4.2. = (I) holds.

7
K§6f1+f2+ f3+ f4+f56+ f7+ f11 <f1+f2 L2+ L13 6)
1 1
+65f,2,4—ﬁ §,5,6 SNLLS
5 1 1 1 1 1 1
<2 _753_77 7 _71_7 3 1.7 1
—4f1 1271 +f2 2122122122
1 - 4, 5
+- f3 2 S} o4+ f4 54 254+f5,6+§f7+6f11
L Ly + S Lgr 1y
e~ 1pts.6 124 — 12 3,56 ~ 3iVLLS
5 7 3 1 1 1
:1f1+6f2+ f3+4f4+f56+ f7+ f11 12LI,...,6_ESI,...,G—gNLLS
5 7 3 4 1 1
S-S UL 2 — =L - —gT
_4f1+6f2+4f3+4f4+f5,6+3f7+6f11 ol ~ 13516
1/1
—§ (4(max(0, fr— (LZ,...,G + 517,...,6)) + fu1 — maX(L%,l...,G» 51116)) - 1>
7 1
< f1+ ~fa+ f3+ f4+f56+ f7+ fll—*LI’.l}G_*S“l
6 12 o 12
1 1
T (max(O,ﬁ—(Li...,GJrSi))"‘EmaX(LH 6751, ,))+3
5 1 7 7 1 711 1 711
Szfl,...,7,11+1+ f7*ﬁ max(0, fr — (Ly_¢ + 5] 6))*EL1, .,6*ES1, 6
1
+ Emax(Lu 651, 6))
5 ,
Zf 711+1+ /C
where K' = f7 — (max(0, fr — L] ¢ — ST ¢) + LT ¢+ 51)
Case4.2.1. (IV) holds. K' = f7—(f7—L7 6 57 6+L7 6t+Sl .6 = 0
Case 4.2.2. =(IV) holds. K’ = fr—L] -5 5 < 0. a

4.1.5. Consideration of arbitrary lists. We established that the competitive
ratio of MMP packings of lists of non-M-items is %. We now use the M-thoroughness
of MMP, established in Lemma 2, to establish % as the competitive ratio of MMP for
arbitrary lists.

THEOREM 1. Let L be a list of items of arbitrary size from (0,1]. Then

MMP(L) < ZOPT(L) 43,

Proof. We consider the following two cases.
Case 1. There are no M-bins in any MMP packing of L.
We may disregard all of the M-items from L and directly apply Lemma 18.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 609

Case 2. There exists at least one MMP packing of L that contains an M-bin.

Fix an arbitrary MMP packing Py, of L that contains an M-bin. Let Py and Auz be
the regular packing and the auxiliary storage of Pr,, respectively. By M-thoroughness
of MMP (Lemma 2), all of the bins of the regular packing have a level of at least %,
except for, possibly, the last bin. This immediately implies that the regular packing
Py requires at most gOPT(L)+ 1 bins to pack all of the items of L, except for the
excess items from Awux: at most one L-item, two S-items, and three T-items, all of
which can be packed into two bins. Thus the overall number of bins required by Py,
is at most 2OPT(L)+ 3. 0

4.2. The running time of MMP is ©(logn).

THEOREM 2. MMP can be implemented to run in O(logn) uniform running time
per Insert /Delete operation.

Proof. Recall from sections 3.2.1 and 3.2.2 that each of the functions utilized by
MMP runs in logarithmic time. It is easy to see from the code that there is a small
bounded number of calls to these functions preceding each packing of an item and
in particular each insertion and deletion of a whole bin. Note that this in itself is
not sufficient to prove the logarithmic running time of MMP. However, it does suffice
to show that the number of bins that are inserted and deleted as a consequence of a
single Insert or Delete operation is bounded by a constant.

The proof proceeds by a case analysis. The nontrivial cases are the following:
Insert of a B-item, Insert of an L-item, Insert of an S-item, and Insert of a T-item;
Delete of a B-item, Delete of an L-item, Delete of an S-item, and, finally, Delete of a
T-item.

We only show the case of an Insert of an S-item and note that the proofs are quite
analogous for each of the other cases.

To facilitate a simple exposition of the proof, we denote items by upper case
letters corresponding to their type (e.g., a T-item will be denoted as T in this proof).
Items that could form an LLS-coalition will be decorated with an apostrophe.

What is the longest possible sequence of bin insertions/deletions an Insert of an
S-item S’ could generate?

We consider two subcases. First, S’ is inserted so as to form an LLS’ bin. Second,
S’ is inserted into a B-bin. It can be shown that the more difficult case is the second
case and with that case the subcase leading to a BS’T bin is more difficult than the
subcase leading to a BS’ bin.

We proceed with an analysis of the case of a BS'T bin. Before the Insert of S,
the content of Auz was in the worst case: {L, 2S, 3T}.

To construct BS'T, S’ may have in the worst case evicted two T-items from a
BTT bin and “recruited” a T-item from another BTT bin. At this moment, one bin
(BS’T) is inserted, one bin (BTT) is deleted, and the content of Auz is in the worst
case: {B, L, 2S, 6T}.

The B-item from Awuz could now, in the worst case, form a BTT bin with two
T-items, each from a BT bin. At this moment, one bin (BTT) is inserted and two
bins (BT, BT) are deleted. Auz is now {2B, L, 2S, 8T}.

The two B-items from Auz could now, in the worst case, each form a BT bin with
a T-item from an LLT bin. At this moment, two bins (BT, BT) are inserted, and two
bins (LLT, LLT) are deleted. Auz is now {5L, 2S, 8T}.

By LLS-maximality of MMP, none of the L-items from Auz can form LLS-
coalitions. Thus, in the worst case, each of the five L-items from Awuz can form

610 ZORAN IVKOVIC AND ERROL L. LLOYD

an LLT bin with a T-item from an SSST bin. At this moment, five LLT bins are
inserted, and five SSST bins are deleted. Auz is now {L, 17S, 8T}.

Again, by LLS-maximality of MMP, none of the S-items from Auz can form LLS-
coalitions. Thus, in the worst case, five SSST bins are formed out of 15 S-items from
Auz, coupled with five T-items, each from a TTTT bin. At this moment, five SSST
bins are inserted, and five TTTT bins are deleted. Auz is now {L, 2S, 23T}.

Finally, five TTTT bins are inserted, each containing four T-items from Auz. At
the conclusion, the content of Auzis {L, 2S, 3T}.

Thus, the overall number of inserted bins is 18, and the overall number of deleted
bins is 15. Note that we ignored the possibility that M-bins may be deleted to execute
top_with .M, and at the end of the Insert of S’ reload_ M. Clearly, consideration of
M-bins could contribute only very few inserted or deleted M-bins. For example, a
(generous) upper bound on the number of deleted M-bins is 18. O

5. Conclusion. We have studied the problem of maintaining an approximate so-
lution for one-dimensional bin packing when items may arrive and depart dynamically
and when the packing may be rearranged to accommodate arriving and departing
items. Our main result is a fully dynamic bin packing algorithm MMP that is %—
competitive and requires ©(logn) uniform running time per Insert/Delete operation.
Relative to the best practical off-line algorithms, our algorithm is the best possible
with respect to its running time and is nearly approximation-competitive with those
algorithms (losing but a factor of 1= to the best of those [13]).

The major unresolved issue is whether there exist fully dynamic bin packing
algorithms (accommodating both Inserts and Deletes) that attain better competitive
ratios, i.e., are there algorithms that are a-competitive for some a < %, and require
o(n) time per operation. Here, both uniform and amortized algorithms are of interest.

Other unresolved issues are (1) what is the nature of the trade-off between running
times and competitive ratios of fully dynamic bin packing algorithms for bin packing
(both uniform and amortized), and (2) is there a competitive ratio for which there
are no fully dynamic approximation algorithms for bin packing featuring sublinear
running times (uniform or amortized)?

REFERENCES

[1] R.J. ANDERSON, E. W. MAYR, AND M. K. WARMUTH (1983), Parallel approzimation algorithms
for bin packing, Inform. and Comput., 82, pp. 262—-277.

[2] E. G. CorrMAN, M. R. GAREY, AND D. S. JOHNSON (1983), Dynamic bin packing, STAM J.
Comput., 12, pp. 227-258.

[3] E. G. CorrMaAN, M. R. GAREY, AND D. S. JOHNSON (1984), Approzimation algorithms for
bin packing: An updated survey, in Algorithm Design for Computer System Design, G.
Ausiello, M. Lucertini, and P. Serafini, eds., Springer-Verlag, New York, pp. 49-106.

[4] W. FERNANDEZ DE LA VEGA AND G. S. LUEKER (1981), Bin packing can be solved within 1+ €
in linear time, Combinatorica, 1, pp. 349-355.

[5] D. K. FRIESEN AND M. A. LANGSTON (1991), Analysis of a compound bin packing algorithm,
STIAM J. Discrete Math., 4, pp. 61-79.

[6] G.GaMBoOsI, A. POSTIGLIONE, AND M. TALAMO (1990), New algorithms for on-line bin packing,
in Algorithms and Complexity, Proceedings of the First Italian Conference, G. Aussiello,
D. P. Bovet, and R. Petreschi, eds., World Scientific, Singapore, pp. 44-59.

[7] M. R. GAREY AND D. S. JOHNSON (1979), Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco.

[8] Z. Ivkovi¢ (1995), Fully Dynamic Approzimation Algorithms, Ph.D. thesis, University of
Delaware, Newark, DE.

N

w) gg ©

Z

g

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 611

. Ivkovi¢ AND E. L. Lroyp (1993), Fully dynamic maintenance of vertex cover, in Proc.

19th International Workshop on Graph—Theoretic Concepts in Computer Science, Lecture
Notes in Computer Science, Springer-Verlag, New York, pp. 99-111.

. S. JOHNSON (1973), Near—Optimal Bin Packing Algorithms, Ph.D. thesis, MIT, Cambridge,
MA.

. S. JOHNSON (1974), Fast algorithms for bin packing, J. Comput. System Sci., 8, pp. 272-314.

. S. JoHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY, AND R. L. GRAHAM (1974), Worst—
case performance bounds for simple one-dimensional packing algorithms, SIAM J. Com-
put., 3, pp. 299-325.

. S. JOHNSON AND M. R. GAREY (1985), A 71/60 theorem for bin packing, J. Complexity, 1,
pp. 65-106.

. KARMARKAR AND R. M. KARP (1982), An efficient approzimation scheme for the one-
dimensional bin-packing problem, in Proc. 23rd IEEE Symposium on Foundations of Com-
puter Science, pp. 312-320.

. M. KaRP (1972), Reducibility among combinatorial problems, in Complexity of Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum, New York, pp. 85-103.

. N. KLEIN AND S. SAIRAM (1993), Fully Dynamic Approzimation Schemes for Shortest Path
Problems in Planar Graphs, manuscript.

. C. LEg AND D. T. LEE (1985), A simple on-line bin-packing algorithm, J. Assoc. Comput.
Mach., 3, pp. 562-572.

. RamaNaN, D. J. BRown, C. C. LEg, AND D. T. LEE (1989), On-line bin-packing in linear
time, J. Algorithms, 3, pp. 305-326.

. C.—C. YA0 (1980). New algorithms for bin packing, J. Assoc. Comput. Mach., 27, pp. 207—
277.

