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Scheduling Algorithms for Multihop Radio Networks 
Subramanian Ramanathan and Errol L. Lloyd 

Abstructqew algorithms for transmission scheduling in multi- 
hop broadcast radio networks are presented. Both link scheduling 
and broadcast scheduling are considered. In each instance, sched- 
uling algorithms are given that improve upon existing algorithms 
both theoretically and experimentally. Theoretically, it is shown 
that tree networks can be scheduled optimally, and that arbitrary 
networks can be scheduled so that the schedule is bounded by a 
length that is proportional to a function of the network thickness 
times the optimum. Previous algorithms could guarantee only 
that the schedules were bounded by a length no worse than the 
maximum node degree times optimum. Since the thickness is 
typically several orders of magnitude less than the maximum node 
degree, the algorithms presented here represent a considerable 
theoretical improvement. Experimentally, a realistic model of a 
radio network is given and the performance of the new algorithms 
is studied. These results show that, for both types of scheduling, 
the new algorithms (experimentally) perform consistently better 
than earlier methods. 

I. INTRODUCTION 

NETWORK of processors that communicate using broad- A cast radio is a radio nerwork. Typical examples in- 
clude packet radio networks, cellular phone networks, and 
satellite networks. The stations constituting a radio network 
share a common radio channel over which communication 
takes place. The multihop nature of most radio networks 
makes spatial reuse possible in the sharing or assignment 
of channels.The channel assignment considered here assigns 
transmission rights using time division multiplexing (TDM). 
In this method, transmissions that will not collide may overlap 
in time, thereby obtaining channel reuse in time.’ 

This is typically done by constructing a schedule [3]; that 
is, a sequence of fixed-length time slots, where each possible 
transmission is assigned a time slot in such a way that 
transmissions assigned to the same time slot do not collide. 
We address the problem of minimizing the number of time 
slots in such a schedule. 

A. What is Scheduling? 

In order to properly discuss the concept of scheduling, we 
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in frequency division multiplexing (FDM). All results in this paper uniformly 
hold for FDM as well as TDM. 

first consider what is meant by a collision.2 In particular, 
depending on the signaling mechanism, transmissions may 
collide in two ways-these are typically referred to as primary 
and secondary interference [ 121. Primary interference occurs 
when the schedule is such that a station must do more than 
one thing in a single time slot-for instance, receive from two 
different transmitters. Secondary interference occurs when a 
receiver R tuned to a particular transmitter T is within range of 
another transmitter whose transmissions, though not intended 
for R, interfere with the transmissions of T. 

We note that the scheduling protocol typically corresponds 
to the media access layer in the ISO-OS1 model [29] and 
provides transparent channel access to the network layer. 
Depending on the service required by the network layer, 
there are two kinds of scheduling-broadcast and link.3 In 
a broadcast schedule, the entities scheduled are the stations 
themselves. The transmission of a station is intended for, and 
must be received collision free by, all of its out-neighbors4 
Here, primary interference is not tolerated, and it follows from 
the definitions that secondary interference does not arise. Thus, 
two stations may not be assigned to the same slot if they are 
either adjacent or have a common neighbor. In a link schedule, 
the links5 between the stations are scheduled. The transmission 
of a station is intended for a particular out-neighbor, and 
we require that there be no collision at this receiver. Here, 
neither primary nor secondary interference is tolerated. Thus, 
two links may not be assigned to the same slot if either they 
are adjacent or there exists a third link from the transmitter of 
one link to the receiver of the other link. 

B. An Overview-Our Approach and Results 

In Sections I11 and IV, we present new algorithms for link 
and broadcast scheduling. Our interest in developing these 
algorithms has been to produce more nearly optimal schedules 
than existing algorithms. The schedule length is the most 
relevant measure of the performance of a scheduling algorithm, 
and it is important that the performance be good. In many 
applications, the transmission schedule is constructed just once 
(when the network is “brought up”) and the actual data com- 
munication is done with this schedule for as long as the net- 
work remains up. In this context, note that a schedule that uses, 
for example, even one extra slot every five seconds thereby 

2The reader is referred to [3], [I91 for a thorough treatment of the basic 
issues in channel assignment for radio networks. We give here only the basic 
concepts that are required in this paper. 

Link scheduling has also been referred to as point-to-poinr scheduling, 
link activarion scheduling, and receiver-directed scheduling. 

41f station .I‘ can transmit a message to station y, then y is an out-neighbor 
of .I‘ and .I‘ is an in-neighbor of y. 

51f .r can transmit a message to 9 ,  there is a link from s to y. 
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“wastes” 720 slots per hour of network operation. Clearly, it 
pays to invest in algorithms that reduce the schedule length. 

Previous work on link scheduling includes [7], [12], [25], 
while work on broadcast scheduling includes [9], [ 111, [28]. 
The work in these papers covers aspects of scheduling such 
as distributed implementation and adaptation to toplogical 
changes. Little work has been done on developing algorithms 
that produce short schedules. Perhaps one reason for this lack 
of work is that finding short schedules is not easy. In particular, 
the problem of finding an optimal schedule, that is a minimum- 
length schedule, is NP-complete for both link and broadcast 
scheduling [lo], [2], [28]. Further, both link and broadcast 
scheduling are closely related to the classic graph theoretic 
problem of vertex coloring [27]. This is a notoriously hard 
problem for which the best existing approximation algorithms 
are quite poor [30], and for which it is widely believed that 
there do not exist approximation algorithms with provably 
good worst-case performance bounds [ 141, [ 171. 

Fortunately, the situation in practice may not be as bad as 
the above discussion indicates. It might be the case that radio 
networks are best modeled using various restricted classes 
of graphs (and that excellent scheduling algorithms can be 
formulated for those restricted classes). Indeed, it is claimed in 
[6] that most existing packet radio networks may be modeled 
by trees. While this may be true at present, the notion that 
packet radio networks may be modeled as trees seems to be 
too restrictive for long-term use. On the other hand, our ex- 
perimental investigations in this regard have shown that even 
in the most general case, radio networks can be adequately 
modeled by planar or close-to-planar graphs. Intuitively, 
this is a consequence of the fact that the radio stations are 
“spread” over a geographical area and each station can only 
communicate with stations in its vicinity. In this paper, we 
study both trees and planar graphs as relevant restricted cases, 
and show that tree networks can be scheduled optimally and 
that planar networks can be scheduled nearly optimally. 

Somewhat surprisingly, the study of these restricted cases 
yields considerable insight into the nature of the general 
problem and other possible solutions. In particular, we show 
that even if a network cannot be modeled by a planar graph, the 
worse-case performance of our algorithms may be expressed 
as a function of how planar the graph is. We use the notion of 
the thickness of a graph to measure is “nearness to planarity.” 
Here, thickness is the minimum number of planar graphs into 
which a given graph can be partitioned. In this context, we 
show that for a graph having thickness 8 and a maximum 
vertex degree of p, the worst-case number of slots used by 
our algorithms is proportional to 02p  for link scheduling and 
proportional to 8 p  for broadcast scheduling. Previous algo- 
rithms could guarantee only that the schedules were bounded 
by a length proportional to p 2  for link scheduling [7]. For 
broadcast scheduling, a bound proportional to p2 was shown 
in [28] and a bound proportional to plogN (N is the number 
of vertices) was shown in [l]. Since the thickness is typically 
several orders of magnitude less than the maximum station 
degree and logN, the algorithms presented here represent a 
considerable improvement over existing methods in terms of 
worst-case performance. 

In addition to the worst-case performance bounds, we pro- 
vide an experimental analysis of our algorithms and their 
perfamance as it relates to existing methods. This analysis 
includes the formulation of a realistic experimental model of 
a radio network and shows that, for both types of scheduling, 
our new algorithms perform consistently better than previous 
methods. In particular, our experiments show that in compari- 
son to previous methods, the new methods use about 8% fewer 
slots for link scheduling and 10% fewer slots for broadcast 
scheduling. 

The remainder of the paper is organized as follows. Section 
I1 gives the definitions of terms and the explanation of concepts 
that we use in analyzing (theoretically and experimentally) 
our algorithms. Section 111 is devoted to link scheduling and 
Section IV to broadcast scheduling. Section V concludes with 
a summary of the results. 

11. PRELIMINARIES 
In this section, we provide definitions of, and explana- 

tions for, some of the fundamental notions that we employ 
throughout later sections. These include certain graph theoretic 
concepts, the network model used in our experiments, and defi- 
nitions related to bounds on the performance of approximation 
algorithms. 

A. Graphical Representation 

Our presentation of scheduling algorithms in Sections 111 
and IV is based on a standard representation of a radio network 
by a directed graph G = (V ,A) .  Here, V is a set of vertices 
denoting the stations in the radio network, and A is a set 
of directed edges between vertices such that for any two 
distinct vertices U , V  E V,(u,w) E A if and only if w can 
receive U’S transmission. Note that we do not make an a priori 
assumption about the edges of the corresponding graph being 
bidirectional.6 That is, (U, w) E A does not necessarily imply 
( w , ~ )  E A. 

A natural interpretation of scheduling in this context is as 
one of coloring the corresponding graph G = (V, A ) .  Thus, 
broadcast scheduling is one of coloring the vertices of the 
graph such that any pair of vertices a, b may be colored the 
same if and only if 

1) edge (a, b) $! A and edge ( b ,  a) 
2) there is no c such that (b, c) E A and (a, c )  E A. 
When the first condition fails to hold, there is a primary 

vertex conjict between vertices a and 6 ,  and when the second 
condition fails to hold, there is a secondary verfex conflict 
between a and b. 

Similarly, link scheduling corresponds to coloring the edges 
of the graph such that any pair of directed edges (a, b), (c ,  d) 
may be colored the same if and only i f  

A, and 

1) a,  b, c, d are all mutually distinct, and 
2) ( a , d )  $! A and ( c , b )  $! A (recall that edges are not 

necessarily bidirectional). 

61n some networks, extraneous noise or deliberate jamming at the site of 
one station (121 may cause one-way connections. 
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Here, when the first (second) condition fails to hold, there is 
a primary (secondary) edge conjict between (a, b)  and (c, d ) .  

In subsequent sections, we will interchangeably use the 
terminology of coloring and that of scheduling in refemng 
to the problems we consider. The choice of terminology will 
depend on which is clearer in a given context. 

B. The Experimental Model 

In this subsection, we discuss the generation of radio net- 
works that we use for experimentally studying the performance 
of our algorithms and existing methods. 

As we noted in the previous subsection, the problem of 
scheduling a network is equivalent to one of coloring the 
corresponding graph. The experimental performance of some 
well-known coloring problems such as vertex coloring has 
traditionally been studied using a simple probabilistic model. 
In this model, a graph of a given number of vertices is 
generated by placing an edge between two vertices according 
to some probability distribution [ 5 ] .  One such approach is to 
generate each edge with a fixed probability p. Unfortunately, 
the application that we are concerned with (radio networks) is 
not realistically modeled in such a fashion. Typically, radio 
network stations are not equally likely to be connected to 
all of the other stations. The connectivity depends on the 
geographical location of the stations, and a station has a link 
to the stations that are within a certain distance from itself. 
This unique property of link “locality” must be captured in 
any realistic model of radio networks. 

Our experiments have been conducted under the assumption 
of a noiseless, immobile radio network in which all of the 
stations have the same transmission radius. In this context, 
the network may be represented by the three-tuple (N, R, P) 
where N is the number of stations, R is the transmission radius 
of each station, and P = {(xi, yi, 1 5 i 5 N} is the set of 
locations for each of the stations. The location of a station is 
generated randomly, using a uniform distribution for its X and 
Y coordinates, in a given area. We convert this network into 
a graph G = (V, A) so that IVI = N ,  and ( U ,  U) E A if and 
only if the Euclidean distance between (xczL,yu) and (xulyu)  
is less than or equal to R. Under this model, all edges in the 
graph are bidirectional. 

We have studied the experimental performance of our 
algorithms by generating a number of random graphs for 
various “typical” values of N and R. Since real-life data is 
scarce in this area, we have chosen, as in [16], a range of 
values that one might expect for future applications. In the 
tables appearing in Sections 111 and IV, the results for each 
pair of (N, R) values are obtained by averaging over thirty 
random graphs generated with those values. 

C. Approximation Algorithms 

When dealing with optimization problems that are NP- 
complete, a common approach is to devise algorithms that 
produce approximate (i.e., nonoptimal) solutions. A standard 
measure of the performance of such an approximation algo- 
rithm is in terms of the ratio of the sizes of the approximate 
solution produced by the algorithm and an optimal solution. 
Formally, the performance of an algorithm A is given by its 

perf ormance guarantee7 = max {A(G)/OPT(G)}, taken 
over all graphs G, where A(G) denotes the size of a solution 
given by algorithm A, and OPT(G) denotes the size of an 
optimal solution. In conformance with existing notions, an 
approximation algorithm is good if its performance guarantee 
is O( 1). In our context, this means that an algorithm is good if 
it produces a coloring using a constant times optimal number 
of colors. As we noted less formally in the Introduction, 
there do not exist any good approximation algorithms for 
the standard graph vertex coloring problem and, further, it 
is widely assumed that no such algorithms exist. On the other 
hand, there exist a wide range of NP-complete problems for 
which there are good approximation algorithms [8]. 

In our experimental analysis (Sections 111-D and IV-C), we 
have compared the performance of our algorithms to existing 
algorithms and not optimal algorithms since, even for small 
networks, the time requirements of algorithms that obtain 
optimal solutions (using exhaustive search) are prohibitive. 

111. LINK SCHEDULING 
In this section, we study link scheduling. As noted earlier, 

this is done in the context of coloring the edges of the 
corresponding directed graph. Recall that, in link scheduling, 
any pair of directed edges (a, b) and (c, d )  may be colored the 
same if and only if a,b ,c ,d  are all distinct, ( a , d )  4 A, and 
(c, b) 4 A [i.e., there is no primary or secondary edge confict 
between (a ,b )  and ( c , d ) ] .  

Also recall that it is NP-complete to construct an optimum 
link schedule for an arbitrary graph. In fact, we show in [20], 
[21] that this holds even when we restrict our attention to 
planar graphs. 

Fact 3.1: For a planar network, determining the existence 
of a link schedule using seven colors is NP-complete. 

Given these NP-completeness results, this section examines 
what can be done in regard to link scheduling. In Section 111-A, 
we describe a link scheduling algorithm for tree networks. This 
algorithm runs in polynomial time and does indeed produce 
an optimal link schedule (for tree networks). In Section 111-B, 
we consider a more complicated situation involving oriented 
graphs (these are slighly generalized trees). Here, additional 
“interference” edges are present that, while not themselves 
needing to be colored, do invoke additional secondary conflicts 
that must be accomodated in the coloring of the “ordinary” 
edges of the oriented graph. Interestingly, the notion of inter- 
ference(nonschedu1ed) and ordinary(schedu1ed) edges, though 
invented here as a conceptual step towards the actual coloring 
algorithm, models a realistic situation in radio networks. In 
some networks, the signal transmitted by a user z to a user j 
may be too weak to be decoded at j but may be strong enough 
to interfere with another signal amving at j .  In such a case, 
there would be an interference edge from z to j .  Interference 
edges were considered in [26] .  

Since finding an optimal coloring in this situation is NP- 
complete, we provide an algorithm that produces an ap- 
proximate solution. In Section 111-C, we use the results of 
Section 111-B to provide a new polynomial time algorithm for 
finding link schedules for arbitrary networks. The performance 
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guarantee for this algorithm is 0(1) for planar graphs and 
O(8’) for arbitrary graphs of thickness 8. Finally, in Section 
111-D, we present some experimental results. 

A. Tree Networks 

In this section, we give an algorithm for optimum link 
scheduling of tree networks. These are connected’ networks 

for each child a of b in T do 
subtreecolor( a) 

The function NonConflictingEdge simply collects the colors 
of all edges conflicting with the given edge and retums the 
first color in this set. It is described next. 

where, if the directions are removed from the edges, then 
the underlying graph is a tree. Without loss of generality, 
we assume that some vertex of the network is designated 
as the root, and hence the terminology of parent and child 
with respect to the tree follows naturally. Note that, between 
a parent z and a child y, there are three possibilities for the 
edge(s) present in the tree network: (z, y), (y, z) or both. Also, 
a vertex located at distance k from the root is at level k. 
An edge is at level k if k is the greater of the levels of its 
endpoints, and a tree with a maximum level of k is said to 
have k levels. 

The algorithm given colors the edges of a tree using a 
breadth first search starting from the root. Intuitively, the tree 
is colored by level. In this context, consider the coloring of 
(directed) edge (z ,y)  where 5 is the parent of y. Since the 
coloring is being done by levels, the only edges having either 
primary or secondary edge conflicts with (z,y) are edges 
that are either incident to z or are incoming to the parent 
of 2. In particular, this means that the colors of the edges 
outgoing from the parent of z can be used to color edge (IC, y), 
assuming that no other edge incident on z has already been 
so colored. Giving priority to such a reuse of colors is the 
primary observation needed to ensure that the coloring will be 
optimum. The details of the algorithm follow. 

Algorithm MSched.  
Input: A tree network T = (V, A)  with root T 

Output: A coloring c : A -+ { 1 ,2 ,  . . .}. 
color the edges incident on T using 

subtreecolor(r) 
colors 1,2,  . . . , degree(r) 

The procedure subtreecolor colors the remainder 
of the edges and is described next. 
procedure subtreecolor(b) 

for each child a of b in T do 
BI, t {c(u,  b )  : ( U ,  b) E A and colored} 
BOut+- {c (b ,u )  : @ , U )  E A and colored} 
for each uncolored edge (x, a) do 

if BI,  is not empty 
then let j be any color in BI,  

Bin+ &n-{.j} 

else let j +- NonConflictingEdge ((2, a)) 

c ( z , a )  + J’ 
Tor each uncolored edge (a, x) do 

if Bout is not empty 
then let j be any color in Bout 

else let j + NonConflictingEdge((a, z)) 
Bout+- Bout - { j }  

c ( a , z )  +- j 

’Every station is reachable from every other station 

function NonConflictingEdge(e) 
Conflicting +- {c(h) : h is colored and eand h 

have a primary edge conflict }U 
{ c ( h )  : h is colored and e and h 
have a secondary edge conflict}. 

retum the least color 4 Conflicting. 

To see that the algorithm produces a conflict-free coloring, 
we first observe that a color is chosen either using the 
NonConflictingEdge function or from the nonadjacent edges 
at the previous level. Clearly, NonConflictingEdge retums a 
nonconflicting color. If the color is a reuse of a color in the 
previous level, it has to be in the same direction. That is, if we 
are coloring an edge outgoing (incoming) to “a,” we choose a 
color from the outgoing (incoming) edges to a parent of “a.” 
Since such edges do not conflict and we reuse a color at most 
once for edges incident on “a,” the coloring is conflict free. 

With a very careful implementation, the running time of 
the algorithm can be shown to be O(v log p), where p is the 
maximum degree of any vertex. 

The remainder of this section is devoted to showing that: 
Theorem 3.1: Algorithm TreeSched colors a tree network 

T with the optimum number of colors. 
Proofi The proof is by induction on k, the number of 

levels in the tree network. When the tree network consists of 
only the root and its children, it follows immediately from 
the special handling afforded the root that exactly p colors 
are used (recall that p is the maximum (total) degree of any 
vertex-in this case, it is the degree of the root). 

Thus, assume inductively that the theorem holds for all 
tree networks having fewer than k levels, and consider a tree 
network T with k levels. Thus, (inductively) the algorithm 
produces an optimum coloring of T, not including the edges 
of level k. Note that all of the calls to subtreecolor for the 
vertices of level k are completely independent (i.e., the edges 
colored in distinct calls are sufficiently far apart that neither 
primary nor secondary conflicts are possible). In this case, it is 
sufficient for us to concentrate on a single call to subtreecolor 
for a vertex a of level I C .  Thus, analogous to the body of 
subtreecolor, let ain, bin, aout. bo,, be as shown in Fig. I. 

There are two situations, depending on whether there are 
edges in both or only one direction(s) between nodes a and b. 
In the proof given here, we assume that both edges are present. 
The other situation can be analyzed in a similar fashion, and 
is not presented. There are four cases. 

Case 1: aout 5 bout:a;, 5 bin. It follows from subtree- 
color that each of the edges incident between vertex a and its 
children will be colored using colors of edges in b;,  or bout. 
Since no new colors are required, it follows that the overall 
coloring is optimum. 
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Fig. 1. Link scheduling a tree optimally. 

Case 2: aout 5 bout; ai, > bin. Let x + d be the number 
of colors used to color T not including the edges of level k. 
Here, d is the degree of b and, hence, d is also the number 
of colors used to color edges incident on b. Then, x is the 
number of colors not used to color edges incident on b. Note: 
d = bin +bout + 2, and colors in bin, along with the “z” colors, 
may be used to color the incoming edges to “a.” 

It follows that the total number of colors utilized, including 
the coloring of the edges incident to a, is z + d +  max(0, 
(Uin - bin) - z). If the max term is 0, we are done since 
the number of colors used has not increased. Thus, suppose 
that term is nonzero and simplify the entire expression to 

note that the optimum number of colors is at least a in+bOut+2,  
since each edge outgoing from b has a secondary edge conflict 
with each edge incoming to a. It follows that the overall 
coloring is optimum. 

Case 3: aout > bout; ai, 5 bin. This is completely analo- 
gous to Case 2. 

Case 4: aout > bout; ai, > bin. This is a modified version 
of Case 2. As before, let z + d be the number of colors used to 
color T not including the edges of level k. Now, the x colors 
not used in edges incident on b may be used to color both the 
incoming and outgoing edges of vertex “a.” 

It follows that the total number of colors utilized, including 
the coloring of the edges incident to “a,” is x + d+ max(0, 
(sin - bin) + (aout - bout) - z). If the max term is 0, we 
are done since the number of colors used has not increased. 
Thus, suppose that the term is nonzero and simplify the entire 
expression to d+ (ai, - bin) + ( aout - bout) = (bin +bout + 2) + 
( a i n  - bin) + (aout - bout) = ai, + aout + 2. NOW note that the 
optimum number of colors is at least ai, + aout + 2 since this 
is the degree of vertex “a.” It follows that the overall coloring 
is optimum. 0 

d+(a in-b in)  = (bin+bout+2)+ain-bin = ain+bo,t+2. NOW 

B. Oriented Graphs with Interference Edges 

In the next section, we provide a new algorithm for link 
scheduling of arbitrary networks. The motivation for that algo- 
rithm, and the key to its good performance, is the recognition 
of the fact that while the graph considered as a whole is 

difficult to color, it can be decomposed into several pieces 
each of which are fairly easy to color. These pieces can then be 
recombined to produce a good (though not necessarily optimal) 
coloring of the entire graph. 

Given that we can color trees optimally, an obvious candi- 
date for a “piece” is a tree. Unfortunately, we are unable to 
utilize the algorithm of the previous section since the coloring 
of each piece (a tree) cannot be done in isolation from the other 
pieces (i.e., the edges of the other trees in the decomposition). 
The remainder of this section is devoted to handling coloring 
in this situation. Because the coloring of each decomposed 
piece must take into account the influence of the other pieces, 
the algorithm that we present lies somewhere between the 
approaches of coloring in one “global” swoop and coloring 
purely “locally.” 

In the context of the algorithm given in the following 
section, there are two additional considerations. First, it is a 
bit more convenient to work with a slight generalization of 
trees rather than trees themselves. Second, in order to obtain 
a good performance bound, certain values must be bounded. 
Specifically, when coloring an edge e, the number of potential 
edge conflicts with e must be bounded in some way. Thus, the 
algorithm of the next section does not decompose the graph 
into trees but rather into oriented graphs. Here, an in-oriented 
graph is one in which every vertex has at most one outgoing 
edge (that is, a local view of a vertex shows several incoming 
edges but only one outgoing edge). Similarly, an out-oriented 
graph is one in which every vertex has at most one incoming 
edge. 

Thus, in this section, we assume that we are given an 
oriented graph T and a set of interference edges between the 
vertices of T. The problem is to provide a proper coloring 
of T’s edges, even taking into consideration the additional 
secondary conflicts induced by the interference edges. Note 
that the interference edges do not have to be colored-they 
simply induce conflicts between edges that must be colored. 
This notion is best understood in the context of decomposing 
a graph G into oriented graphs. If T is an oriented graph 
in that decomposition, then all edges of G that are not 
part of T itself will be taken as interference edges with 
respect to T. For instance, consider Fig. 2. There, the solid 
edges are the edges of T, and it is those edges that must 
be colored. The remainder of the graph is shown using 
dashed edges. The dashed edges are the interference edges 
since they cause interference between the edges of T. The 
interference edge ( a , d ) ,  for example, causes a secondary 
conflict between edges (a, b) and (c, d) forcing them to receive 
different colors. 

A natural question is whether an optimal coloring of an 
oriented graph with interference edges may be found easily. 
Unfortunately, in [27] we show: 

Fact 3.2: It is NP-complete to find an optimal coloring of 
an oriented graph with interference edges. 

Thus, we are left to consider methods that obtain only 
near-optimal solutions. One such method is the subject of 
this section. The method presented here will be used in the 
following section as a subroutine in our algorithm for the 
coloring of arbitrary networks. 

r- 
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a 

Fig. 2 .  Oriented graph coloring with interference edges. 

The algorithm for coloring an oriented graph with interfer- 
ence edges has two phases. In the first phase, a unique label is 
assigned to each of the vertices of G. In the second phase, the 
edges of the oriented graph are colored. This is accomplished 
by considering the vertices in increasing order by label. For 
each vertex 2, we take the sole incoming/outgoing edge 
incident on z and assign a color to that edge. That assigned 
color is the lowest numbered color that can be assigned without 
causing a conflict with previously colored edges. We note 
that the ordering of the vertices is crucial to bounding the 
worst-case performance of the algorithm. 

As a precursor to the actual coloring algorithm, we first 
provide the details of the labeling mentioned previously. In 
particular, we give a function labeler which takes as input an 
oriented graph with interference edges, and assigns a unique 
label to each vertex of that graph. The function returns the 
highest assigned label. 

integer labeler(T) 
if T is not empty 

let U be a vertex df T of minimum degree 
(considering edges in both T and I) 

L(u)  t I+ labeler(T - U )  

return L ( u )  

return 0 
else 

Here, in an abuse of notation we let T-U denote the oriented 
graph with interference edges that result when the vertex U and 
all of its incident (graph and interference) edges are deleted 
from T. 

The algorithm for scheduling the edges of an oriented 
graph with interference edges is given. The algorithm uses the 
function NonConflictingEdge, which was described in Section 
Ill-A. 

Algorithm OrientedGraphSchedule 
Input: T = (V, A, I), an oriented graph with 
interference edges, where V and A are 

the vertices and edges of the graph and I is the 
set of interference edges 
Output: An assignment of colors(s1ots) c : A + 

Phase 1: 

Phase 2: 

{ 1.2. . . .} 

n t labeler (T) 

for j + 1 to n do 
if T is out-oriented 

then let e = (u ,v)  be such that 

else that e = (U,.) be such that 
L(U) = j 

L(v) = j 
c( e)  t NonConflictingEdge(e) 

To see that this algorithm yields a legal coloring of an 
oriented graph, we assume inductively that the coloring con- 
structed through the (i - 1)st iteration is legal. Then, let 
e = (U, w) be the edge to be colored in the ith iteration. The 
colors of the edges that interfere with (hence, influence the 
color of) P are collected in the set Conflicting (of function 
NonConflictingEdge). These edges are shown in Fig. 3. Note 
that interference edges incoming to U and outgoing from 
v do not introduce conflicts between e and other edges of 
the oriented graph being considered. Since we assign to e 
a color that is different from the color assigned to each of 
the edges interfering with e, the coloring inclusive of edge e 
(ith iteration) is legal. Thus, the algorithm produces a legal 
coloring of each oriented graph. 

In regard to the number of colors used by the above 
algorithm, we have: 

Lemma 3.1: Suppose that each vertex of T has at most ,!3 
neighbors with lower labels. Then, T may be colored using 
no more than O ( p p )  colors. 

Proof! We prove the lemma for an out-oriented graph. 
The proof for an in-oriented graph is analogous. Thus, we 
begin by considering the coloring of an out-oriented graph 
using OrientedGraphSchedule, and let n1, n 2 ,  n3, 714 be the 
number of colors added to the set Conflicting from the sources 
as shown in Fig. 3. It suffices to show that n1 + 712 + 123 + 714 

It is easy to see from Fig. 3 that 711 5 p - 1. Also, since 
there can be at most one edge of the oriented graph incoming 
to z, for any interference edge (U. xc), it follows that n 2  + 713 

is O(Pp). 
We show that 714 is O@p)  by carefully examining inter- 

ference edges contributing to 7 ~ 4 .  Let (x,,yz) be an edge in 
714 and let (xL, v )  be the interference edge that induces a 
conflict between (x,, yI) and ( U .  U )  (see Fig. 3). Then, either 
L(z , )  > L ( v )  or L(z , )  < L(w). Suppose that there are k 
edges (-1.2.u) such that L ( x : )  < L(w) and p - 1 - IC edges 
(xf .v)  such that L(x ; )  > L(TJ)  (note that k 5 p). 

Clearly, there can be at most p - 1 edges from T incident on 
xf and at most p- 1 edges from T incident on xp. However, of 
the latter p - 1 edges, at most ( P  - 1) edges (zcf , y) incident 
on are colored at this point. This is because, for (zf,y) 
to be colored, we require that L(y) > L(v) .  However, since 
L(.rg) > L(w), it follows that L ( y )  < L(zf )  and, by our 

is O(PP). 
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assumption, there can be only P - 1 such y’s, excluding v 
itself. 

Thus, n4 5 k ( p  - 1) + ( p  - 1 - k ) ( P  - 1). Since k 5 /?, 124 

Regarding the time complexity, we have 
Lemma 3.2: The running time of Phase 2 of Oriented- 

Graphschedule is O ( ~ p p ) ~ .  
Proofi From Lemma 3.1,  we have that the size of the set 

Conflicting (of function NonConflictingEdge) is O(pp). Thus, 
finding a new color for an edge in Phase 2 takes 0 ( / 3 p )  steps. 
Since this is done once for each label (and hence for each 
vertex), it follows that the overall running time in Phase 2 of 

is O(PP). 

OrientedGraphSchedule is O(vpp). 0 

C. Arbitrary and Planar Networks 

The main result of this section is a new algorithm for 
link scheduling. The performance guarantee for this algorithm 
is O(1) for planar graphs and 0(8*) for arbitrary graphs of 
thickness 8. In what follows, we begin with a description of 
the algorithm, followed by an analysis of its performance. 

1)  The Algorithm: As noted in the previous section, our 
algorithm begins by decomposing the graph G into several 
in-oriented and out-oriented graphs TI, T2 . . . T k .  The decom- 
position is such that while the Ti’s are not necessarily vertex 
disjoint, it is the case that every edge of G is in exactly one 
of the Ti’s. For any particular T,, the edges of G that are not 
in Ai are interference edges for T,. 

The decomposition of G into oriented graphs is done by 
first partitioning the undirected equivalent of the graph into 
undirected forests. It is possible to do this in an optimal 
fashion using the techniques given in [15], [18] or it  may 
be done nonoptimally, but somewhat more speedily, by using 
successive breadth first searches (the latter approach is the one 
that is implemented and experimentally studied). Following 
this initial partitioning, each of the undirected forests is split 
further into two forests-one containing the edges pointing 

‘In stating the running times, we use 1‘  and c to denote the number of 
vertices and the number of edges, respectively. 

n 
3 

Fig. 3. Neighborhood of edge to be colored in Link Schedule. 

away from the root and the other containing edges pointing 
towards the root. The former produces out-oriented graphs 
and the latter produces in-oriented graphs. This splitting of the 
undirected forests into two oriented graphs is straightforward, 
and is not considered further here. 

Recall that the algorithm for link scheduling of oriented 
graphs had two phases: the first for labeling the vertices, and 
the second for actually assigning colors. It should be apparent 
that the same labeling will be done for each of graph Ti, since 
that labeling takes into account both graph and interference 
edges in determining vertex degrees. Thus, for efficiency, the 
labeling is performed only once. This labeling may be done 
either before or after the decomposition into oriented graphs. 
For convenience in explanation, we assume it occurs before the 
decomposition is performed. With the preliminaries concluded, 
we now present the entire link scheduling algorighm. 

Algorithm ArboricalLinkSchedule 
Input: A directed graph G = (V, A )  
Output: A coloring c : .4 + { 1 , 2 ,  . . .} 
71 + labeler(T) 
Decompose G into oriented graphs TL, 1 5 i 5 k 
for i e 1 to k do 

apply Phase 2 of OrientedGraphSchedule to graph 
T,, letting the interference edges I = A - T,)  

Fig. 4 illustrates the execution of the algorithm. The various 
“steps” are labeled on the arrows. In Step 1, the vertices are 
labeled (the labels are shown within parantheses), directed 
edges are coalesced, and directions removed to form the 
undirected equivalent. Step 2 decomposes this graph into two 
trees. Step 3 divides the first of these into out-oriented and in- 
oriented graphs, and labels them. Step 4(a) and 4(b) show the 
“greedy” coloring of the edges of each of the oriented graphs 
taken in order of the labeling and taking a fresh set of colors 
for each. The dashed edges are the interference edges from the 
remainder of the graph. The processing of the other undirected 
tree is similar and is not shown here. 
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Fig. 4. Steps in the aborical partition and coloring. 

2) The Analysis: In this subsection we consider both the 
performance bounds and time complexity of Linkschedule. 
The fact that the algorithm provides a legal coloring is easy 
to see and is omitted. Thus, we begin by considering the 
performance of ArboricalLinkSchedule in terms of the quality 
of the coloring that is produced. 

We begin by letting, for each i, 1 5 i 5 k ,  c; be the number 
offresh colors used in the coloring of Ti. That is, c; denotes 
the number of colors that are used for the first time in the 
coloring of Ti. 

It follows from Lemma 3.1 that: 
Lemma 3.3: For each i, 1 5 i I k, c; is 0 ( / 3 p ) .  Thus, since 

the total number of colors used by the algorithm is equal to 
the sum of the c;'s, it follows that: 

Lemma 3.4: ArboricalLinkSchedule uses no more than 
O(k0p) colors, where IC is the number of oriented graphs, 0 
is the maximum number of neighbors with lower labels, and 
p is the maximum vertex degree. 

3) Planar networks: Consider a call of the function labeler 
when the input graph G is planar. Since every subgraph of a 
planar graph is also planar, it follows that in each recursive 
call to labeler, the input graph is planar. Now, in any such call, 
consider the vertex U of minimum degree. By a fundamental 
property of planar graphs [4], that minimum degree vertex 
has at most five neighbors. These five neighbors of U will all 
receive labels lower than L(u).  All other neighbors of U in 
the original graph G will receive higher labels than does U. 

Thus, 
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Lemma 3.5: If G is planar, then for each vertex of G there TABLE I 
COMPARISON OF MAXIMUM DEGREE AND THICKNESS are at most five neighbors with lower labels. 

In terms of Lemma 3.4, this means that /3 5 5. Further, 
it is known [24] that a planar graph can be partitioned into 
at most three undirected forests. Since the algorithm of [15] 
gives an optimal partitioning, it follows that a planar G is 
partitioned into no more than six oriented graphs. Hence, 
k 5 6, and it follows from Lemma 3.4 that if G is planar, then 
ArboricalLinkSchedule uses no more than O(p) colors. Since 
for any G the optimal number of colors required is trivially at 
least p, the performance guarantee y = O(1). 

As far as the running time is concerned, let e and v denote 
the number of edges and the number of vertices, respectively, 
in the input graph G = (V ,E) .  The function labeler can be 
done in time O(e + v log v) by using a Fibonacci Heap [ 131 
to select a vertex of minimum degree and to update vertex 
degrees as the graph is reduced via the recursive calls. The de- 
composition of the input graph into oriented subgraphs requires 
time O(ev log v )  1151. Since k 5 6, it follows from Lemma 3.2 
that the for-loop of ArboricalLinkSchedule runs in time O(vp). 
Thus, the overall running time of ArboricalLinkSchedule is 
O(evlogv + (e + wlogw) + up).  Thus, we have the following. 

Theorem 3.2: For a planar graph G, ArboricalLinkSched- 
ule has a performance guarantee of 0(1) and a worst-case 
time complexity of O(ew1ogv). 

4) Arbitrary Networks: We use the algorithm Arborical 
Linkschedule given in Section III-C- 1). ArboricalLinkSched- 
ule may be applied to any graph, not only ones that are 
planar. Note that neither in the algorithm nor in the proof 
of its correctness did we use the “planar” aspect of the graph. 
However, while the algorithm produces a schedule for any 
graph, the performance analysis of the previous section (for 
planar graphs) obviously does not apply. In this section, we 
consider the performance of that algorithm on arbitrary graphs. 
Because the analysis is primarily a generalization of that given 
in the previous section for planar graphs, we provide here only 
a brief sketch of the necessary changes. 

Theorem 3.3: For an arbitrary graph of thickness 8 and 
maximum degree p, ArboricalLinkSchedule has a performance 
guarantee of 0 ( O 2 )  and a running time of O(ev1ogv + v8’p). 

Proofi The primary change in the analysis is that the 
bound of five on /3, the number of neighbors of a vertex with 
lower labels, no longer applies. Since for planar graphs the 
bound of five neighbors was essential in proving the 0 ( 1 )  
performance bound, this presents something of a problem. 
What we can, however, show is that for a graph of thickness 
0, there exists at least one vertex of degree at most 68 - 1, 
hence /3 5 68 - 1. Further, the partitioning method of [ 151 will 
result in a decomposition of a thickness 8 graph into at most 68 
oriented graphs. It follows from these two facts that the entire 
graph can be colored with 0 ( O 2 p )  colors. An examination of 
the running time in a manner similar to that in Section III- 
C-3) shows that the running time is O(ev1ogv + v02p).  For 
future reference, we note that when 8 is small relative to w ,  
the running time is dominated by the decomposition and is 
O(evlogv).O 

Previous algorithms for link scheduling all have a bound of 
O(p2) (a formal analysis is done in [7 ] ) .  Intuitively, it seems 

that the thickness of a graph is a small quantity compared to the 
maximum vertex degree+specially for graphs representing 
radio networks. This fact is confirmed by our experiments. 
Here, we generated a number of random graphs (as described 
in Section IJ-B) over a large number of values for the “size” 
(number of vertices) and the transmission range of each of 
the vertices. A portion of these results is shown in Table I. It 
can be seen that although both the maximum degree and the 
thickness’ increase as the graphs become denser, the thickness 
increases much more slowly. For all of the graphs generated 
(including a great number not shown), O2 was considerably less 
than p. It follows that our algorithm provides a considerable 
performance improvement over existing methods, even for 
arbitrary networks. 

We observe that while the performance is proportional to 
the square of the thickness, we never actually need to compute 
the thickness itself. This facet of the algorithm is especially 
significant since, as mentioned earlier, it is NP-complete to 
compute the thickness of an arbitrary graph. 

A final interesting observation is illustrated in the last col- 
umn in Table I, which shows the percentage of edges that are 
present in a maximally planar component of the input graph. 
As we can see, many graphs are “almost” planar. Further 
investigation (not documented here) shows the existence of 
a few isolated edge “cliques” (contributing to nonplanarity) 
and a very large planar component. 

D. Experimental Results 

In this section, we provide an experimental analysis of 
the performance of Linkschedule in comparison with existing 
heuristics for the problem of link scheduling. We begin with 
brief descriptions of the heuristics that were studied. 

1) Pure Greedy (PC): This is a straightforward algorithm 
in which an edge is chosen at random and colored with the 
first available, nonconflicting color. Most of the algorithms 
described in previous works are essentially this method. 

2) Extended Maximum Degree First Ordering (EMDF) 
Algorithm: In this method, we take a maximal mutually 
conflicting clique of edges around the maximum degree vertex 
first, color it, and then progressively do the same for the 
remainder of the graph. This method is based on the intuitive 
notion that it is better to color the more “crowded” areas first. 

9Since determining the thickness of a graph is itself an NP-complete 
problem [22], this is an estimate of fhickness based on the number of  trees 
into which the graph may be decomposed. 
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TABLE I1 
COMPARISON OF LINK SCHEDULING HEURISTICS 

Node  b g e  PG EMDF 

200 
200. 154 151 

I 400 I 20 I1 50 I 49 

400 
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22 
46 
87 
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49 
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215 
391 

we can model the network as an undirected graph. Thus, the 
problem of broadcast scheduling is to color an input undirected 
graph G = (V, E) so that U, v are colored the same only if 

2) There is no w such that (U, w) E and (v, w) E E .  
As mentioned in Section I, finding an optimal broadcast 

schedule is NP-complete. Actually, the following stronger 
result is shown in [20], 1271. 

Fact 4.1: For a planar graph G = (V, E), finding an 
optimal broadcast schedule using seven colors is NP-complete. 

However, similar to the previous section, we can find an 
optimal algorithm for broadcast scheduling of tree networks, lo 

and a suitable approximation algorithm for planar and arbitrary 
networks. In particular, we give here an algorithm for finding 
a coloring in a arbitrary graph, and show that the algorithm 
has a performance guarantee of 0(1) for planar graphs and 
a performance guarantee of O(@ for an arbitrary graph of 
thickness 8. 

1) (%U> 4 E .  

Heuristics with this philosophy were first examined in [23] for 
vertex coloring and were found to do quite well. 

3) The Algorithm ArboricalLinkSchedule (ARBORIC): This 
is an implementation of the algorithm of Section III-C-1). In 
this implementation, we do not use the method of [15] to 
partition the graph into oriented graphs but rather we use 
breadth first search, progressively, to produce an oriented 
graph partitioning. Using this partitioning method, the running A. The Algorithm 

parameters. As seen in that table, ArboricalLinkSchedule 
generally performs the best, followed by the maximal clique 
first algorithm, and lastly by the commonly used Pure Greedy 
algorithm. On average, the ArboricalLinkSchedule algorithm 
uses roughly 8% fewer slots than the Pure Greedy algorithm. 
The difference in performance widens as we tend toward 
higher ranges and a higher population (higher densities). Note 
that ArboricalLinkSchedule does significantly better (about 
10%) for a population of 400 vertices, each with a range of 
50. In the context of the fact that schedules are set up once 
and used repeatedly many times over, even a small reduction 
in the number of slots used is worthwhile since it is amplified 
by the amount of time the schedule is in operation. 

Finally, we note that we have conducted a great many 
more experiments than those described here. These additional 
experiments considered both a wider variety of algorithms and 
additional values of S and R. It is notable that in no circum- 
stance did any algorithm have an average performance better 
than that of ArboricalLinkSchedule. The high consistency of 
these results certainly gives enhanced credibility to the value 
of ArboricalLinkSchedule. 

IV. BROADCAST SCHEDULING 

In this section, we study broadcast scheduling. Recall that 
we construct a broadcast schedule by coloring the vertices of 
the graph such that two vertices must be given different colors 
if they either are adjacent or have a common out-neighbor. In 
this section, we shall consider only graphs with bidirectional 
edges. Given this and that we color vertices and not edges, 

Algorithm BroadcastSchedule 
input: A graph G = (V, E) 
output: A coloring c : V + { 1 , 2 , 3 , .  . .}. 
Phase 1: 

Phase 2: 
n e labeler(G) 

for j t 1 to n do 
let U be such that L(u) = j 

.(U) t NonConflictingVertex(u) 

The function NonConflictingVertex simply collects all of 
the vertices conflicting with the input vertex and returns the 
first color not in this set. It is described next. 

function NonConflictingVertex(u) 

neighbor of u}U 
{c(z) : z is colored and is 
two-hops away from U} 

return the least color Conflicting 

Conflicting c {c(z) : z is colored and is a 

In the above, the call to labeler is actually a call to a modified 
version of labeler in which an arbitrary undirected graph G 
is passed rather than an oriented tree with interference edges. 
The necessary changes to labeler are straightforward and are 
omitted here. The function NonConflictingVertex may be de- 

'OThis algorithm is reasonably straighfonvard and is omitted here. 
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Fig. 5.  Neighborhood of the vertex to be colored in Broadcast Schedule. 

fined in a manner similar to the function NonConflictingEdge 
defined for edges in Section 111-A-instead of considering 
primarylsecondary edge conflicts, we consider vertex conflicts. 
Note also that to broadcast schedule an arbitrary graph, only 
a single pass is required rather than the series of passes (one 
for each oriented subgraph) that was needed in the case of 
link scheduling. 

B. Analysis 

It is straightforward to show that the algorithm produces a 
legal coloring. As far as the performance guarantees and the 
running times are concerned, we have the following. 

Theorem 4.1: For a planar graph G, Broadcastschedule 
has a performance guarantee of 0(1)  and a worst-case time 
complexity of O(vp). 

Proof: First we discuss the performance and then con- 
sider the time complexity of algorithm BroadcastSchedule. 

Performance: We begin by noting that the number of colors 
n used by the algorithm is no more than the maximum 
color returned by the function NonConflictingVertex, over all 
vertices. 

Without loss of generality, let n be the largest color used and 
U be a vertex colored n. We show that n is O(p) by carefully 
examining the vertices that affect the color of U. Clearly, such 
vertices are one-hop or two-hop away from U (see Fig. 5). 

Consider a neighbor x; of U. Then, either L(x; )  > L(u)  or 
L(x i )  < L(u).  Suppose that there are k vertices x i  such that 
L ( x i )  < L(u)  and p - k vertices xf such that L(xf) > L(u) .  
Note that since the labeling algorithm is the same as the one 
used for Link Scheduling, Lemma 3.5 applies and therefore 
k 5 5. 

Each of the xi may have at most p - 1 neighbors (not 
including U itself) and, hence, the xi and their neighbors may 
utilize at most k ( p  - 1) + k or k p  colors that may not be 
assigned to U .  

We now turn our attention to x:. There are p - k such 
vertices. However, none of them are colored since L(x:)  > 
L(u)  (recall that we do the coloring in the increasing order 
of vertex labels). Nevertheless, we still have to consider the 
neighbors of x:, some of which may have lower labels than 
U and hence may be colored. Such vertices would, however, 
then also have smaller labels than $3 and, by Lemma 3.5, there 
can be at most 4(p - k) of them (four for each vertex; note 
that U itself is a neighbor of x: having a smaller label). 

Thus, U can be colored using no more than k p  + 4 ( p  - k)+ 
1 colors, (k 5 5), which is at most 9p - 19. Since the 
optimum is at least p + 1, the performance guarantee of 
BroadcastSchedule is O( 1). 

Running Eme: The running time is clearly dominated by 
the running time of NonConflictingVertex. Since at most 5 p  
one-hop or two-hop neighbors are colored, coloring a vertex 
requires processing (updating and searching) a list of at most 
5 p  vertices. This is done for each vertex and, therefore, the 
running time of Broadcastschedule is O(vp).O 

Theorem 4.2: For an arbitrary graph G, BroadcastSchedule 
has a performance guarantee of O(0) and a worst-case time 
complexity of O(v6’p). 

Proof: As in the case of link scheduling, the primary 
change in the analysis involves the observation of the fact 
that while the bound of 5 on the vertex degree is no longer 
true (Lemma 3 . 3 ,  the bound of 66’ - 1 holds. Proceeding in a 
manner analogous to Theorem 4.1, the performance guarantee 
of BroadcastSchedule for a graph of thickness 6’ is O(0) and 
the running time is O(v0p). 

C. Experimental Results 

We first describe briefly the various heuristics for the 
problem of BroadcastScheduling. The performance of these 
heuristics (number of slots used for scheduling) is shown in 
Table 111. Each entry is averaged over thirty different random 
graphs with the same parameters. 

1) Pure Greedy (PG): This is a straightforward algorithm 
in which a vertex is chosen at random and colored in 
a greedy fashion with the first available, nonconflicting 
color. Despite its simplicity, it performs quite well. Most 
of the algorithms described in previous works [28], [ 111 
are essentially this method. 

2) The Maximum Degree First (MDF) Algorithm: This is 
an extension of the technique used in [23] for vertex 
coloring and selects the vertices in decreasing order 
of their degrees for coloring. The coloring is done 
“greedily” that is, by using the least color not used by 
one-hop or two-hop neighbors. 

3 )  Our algorithm BroadcastSchedule (Bsch): This is a di- 
rect implementation of the algorithm given in Section 

From the results tabulated in Table 111, we see that Broad- 
castSchedule performs the best of all (more than 10% better 
than the commonly used Pure Greedy algorithm), followed 
by the Maximum Degree First algorithm, and then the Pure 
Greedy algorithm. 

IV-A. 
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TABLE I11 
COMPARISON OF BROAXAST SCHEDULING HEURISTICS 

We observe here, as in the case of link scheduling, that the 
gap widens as we tend toward higher densities. From more 
detailed studies that cannot be presented here for lack of space, 
we observed that for none of the over 30 different ( S , R )  
values did the Pure Greedy algorithm do better on average 
than BroadcastSchedule. 

V. CONCLUSIONS 

The problems of link and broadcast scheduling for multi- 
hop broadcast networks were studied for both arbitrary and 
restricted networks. New algorithms were given for each case. 
The performance of our algorithms is superior to existing ones, 
both theoretically and experimentally. Specifically, the notion 
of the thickness ( 8 )  of a graph was used to analyze the per- 
formance. It was shown that, in the worst case, our algorithms 
have performance guarantees of 0 ( 0 2 )  for link scheduling 
and O(0) for broadcast scheduling. These represent significant 
theoretical improvements over existing algorithms [which have 
performance quarantees of O(p)] ,  since O is typically much 
smaller than p. In each case, the explicit calculation of the 
thickness itself was not a requirement. A realistic experimental 
modeling showed that the algorithms described in this paper 
used, on the average, roughly 8% (10%) fewer slots than 
did existing link scheduling (broadcast scheduling) algorithms. 
Since schedules are typically constructed only once and then 
used for as long as the network is “up,” these improvements in 
performance translate into the savings of precious bandwidth, 
especially under heavily loaded conditions. 
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