
166 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 2. APRIL 1993

Scheduling Algorithms for Multihop Radio Networks
Subramanian Ramanathan and Errol L. Lloyd

Abstructqew algorithms for transmission scheduling in multi-
hop broadcast radio networks are presented. Both link scheduling
and broadcast scheduling are considered. In each instance, sched-
uling algorithms are given that improve upon existing algorithms
both theoretically and experimentally. Theoretically, it is shown
that tree networks can be scheduled optimally, and that arbitrary
networks can be scheduled so that the schedule is bounded by a
length that is proportional to a function of the network thickness
times the optimum. Previous algorithms could guarantee only
that the schedules were bounded by a length no worse than the
maximum node degree times optimum. Since the thickness is
typically several orders of magnitude less than the maximum node
degree, the algorithms presented here represent a considerable
theoretical improvement. Experimentally, a realistic model of a
radio network is given and the performance of the new algorithms
is studied. These results show that, for both types of scheduling,
the new algorithms (experimentally) perform consistently better
than earlier methods.

I. INTRODUCTION

NETWORK of processors that communicate using broad- A cast radio is a radio nerwork. Typical examples in-
clude packet radio networks, cellular phone networks, and
satellite networks. The stations constituting a radio network
share a common radio channel over which communication
takes place. The multihop nature of most radio networks
makes spatial reuse possible in the sharing or assignment
of channels.The channel assignment considered here assigns
transmission rights using time division multiplexing (TDM).
In this method, transmissions that will not collide may overlap
in time, thereby obtaining channel reuse in time.’

This is typically done by constructing a schedule [3]; that
is, a sequence of fixed-length time slots, where each possible
transmission is assigned a time slot in such a way that
transmissions assigned to the same time slot do not collide.
We address the problem of minimizing the number of time
slots in such a schedule.

A. What is Scheduling?

In order to properly discuss the concept of scheduling, we

Manuscript received July 15, 1992; revised January 1993; approved by
IEEWACM TRANSAC~IONS ON NETWORKING Editor Chih-Lin 1. This work
was supported in part by the National Science Foundation under Grant CCR-
9120731. An earlier version of this paper was presented at SIGCOMM’92.

S. Ramanathan is with BBN Systems and Technologies, Cambridge,
MA.(email: ramanath@udel.edu)

E. L. Lloyd is with the Department of Computer Science, University of
Delaware, Newark, DE 19716. (email: elloyd@udel.edu)

IEEE Log Number 920828.
’ An analogous technique whereby channel reuse in frequency is obtained

in frequency division multiplexing (FDM). All results in this paper uniformly
hold for FDM as well as TDM.

first consider what is meant by a collision.2 In particular,
depending on the signaling mechanism, transmissions may
collide in two ways-these are typically referred to as primary
and secondary interference [121. Primary interference occurs
when the schedule is such that a station must do more than
one thing in a single time slot-for instance, receive from two
different transmitters. Secondary interference occurs when a
receiver R tuned to a particular transmitter T is within range of
another transmitter whose transmissions, though not intended
for R, interfere with the transmissions of T.

We note that the scheduling protocol typically corresponds
to the media access layer in the ISO-OS1 model [29] and
provides transparent channel access to the network layer.
Depending on the service required by the network layer,
there are two kinds of scheduling-broadcast and link.3 In
a broadcast schedule, the entities scheduled are the stations
themselves. The transmission of a station is intended for, and
must be received collision free by, all of its out-neighbors4
Here, primary interference is not tolerated, and it follows from
the definitions that secondary interference does not arise. Thus,
two stations may not be assigned to the same slot if they are
either adjacent or have a common neighbor. In a link schedule,
the links5 between the stations are scheduled. The transmission
of a station is intended for a particular out-neighbor, and
we require that there be no collision at this receiver. Here,
neither primary nor secondary interference is tolerated. Thus,
two links may not be assigned to the same slot if either they
are adjacent or there exists a third link from the transmitter of
one link to the receiver of the other link.

B. An Overview-Our Approach and Results

In Sections I11 and IV, we present new algorithms for link
and broadcast scheduling. Our interest in developing these
algorithms has been to produce more nearly optimal schedules
than existing algorithms. The schedule length is the most
relevant measure of the performance of a scheduling algorithm,
and it is important that the performance be good. In many
applications, the transmission schedule is constructed just once
(when the network is “brought up”) and the actual data com-
munication is done with this schedule for as long as the net-
work remains up. In this context, note that a schedule that uses,
for example, even one extra slot every five seconds thereby

2The reader is referred to [3], [I91 for a thorough treatment of the basic
issues in channel assignment for radio networks. We give here only the basic
concepts that are required in this paper.

Link scheduling has also been referred to as point-to-poinr scheduling,
link activarion scheduling, and receiver-directed scheduling.

41f station .I‘ can transmit a message to station y, then y is an out-neighbor
of .I‘ and .I‘ is an in-neighbor of y.

51f .r can transmit a message to 9 , there is a link from s to y.

10634692/93$03.00 0 1993 IEEE

RAMANATHAN AND LLOYD: SCHEDULING ALGORITHMS 167

“wastes” 720 slots per hour of network operation. Clearly, it
pays to invest in algorithms that reduce the schedule length.

Previous work on link scheduling includes [7], [12], [25],
while work on broadcast scheduling includes [9], [111, [28].
The work in these papers covers aspects of scheduling such
as distributed implementation and adaptation to toplogical
changes. Little work has been done on developing algorithms
that produce short schedules. Perhaps one reason for this lack
of work is that finding short schedules is not easy. In particular,
the problem of finding an optimal schedule, that is a minimum-
length schedule, is NP-complete for both link and broadcast
scheduling [lo], [2], [28]. Further, both link and broadcast
scheduling are closely related to the classic graph theoretic
problem of vertex coloring [27]. This is a notoriously hard
problem for which the best existing approximation algorithms
are quite poor [30], and for which it is widely believed that
there do not exist approximation algorithms with provably
good worst-case performance bounds [141, [171.

Fortunately, the situation in practice may not be as bad as
the above discussion indicates. It might be the case that radio
networks are best modeled using various restricted classes
of graphs (and that excellent scheduling algorithms can be
formulated for those restricted classes). Indeed, it is claimed in
[6] that most existing packet radio networks may be modeled
by trees. While this may be true at present, the notion that
packet radio networks may be modeled as trees seems to be
too restrictive for long-term use. On the other hand, our ex-
perimental investigations in this regard have shown that even
in the most general case, radio networks can be adequately
modeled by planar or close-to-planar graphs. Intuitively,
this is a consequence of the fact that the radio stations are
“spread” over a geographical area and each station can only
communicate with stations in its vicinity. In this paper, we
study both trees and planar graphs as relevant restricted cases,
and show that tree networks can be scheduled optimally and
that planar networks can be scheduled nearly optimally.

Somewhat surprisingly, the study of these restricted cases
yields considerable insight into the nature of the general
problem and other possible solutions. In particular, we show
that even if a network cannot be modeled by a planar graph, the
worse-case performance of our algorithms may be expressed
as a function of how planar the graph is. We use the notion of
the thickness of a graph to measure is “nearness to planarity.”
Here, thickness is the minimum number of planar graphs into
which a given graph can be partitioned. In this context, we
show that for a graph having thickness 8 and a maximum
vertex degree of p, the worst-case number of slots used by
our algorithms is proportional to 02p for link scheduling and
proportional to 8 p for broadcast scheduling. Previous algo-
rithms could guarantee only that the schedules were bounded
by a length proportional to p 2 for link scheduling [7]. For
broadcast scheduling, a bound proportional to p2 was shown
in [28] and a bound proportional to plogN (N is the number
of vertices) was shown in [l]. Since the thickness is typically
several orders of magnitude less than the maximum station
degree and logN, the algorithms presented here represent a
considerable improvement over existing methods in terms of
worst-case performance.

In addition to the worst-case performance bounds, we pro-
vide an experimental analysis of our algorithms and their
perfamance as it relates to existing methods. This analysis
includes the formulation of a realistic experimental model of
a radio network and shows that, for both types of scheduling,
our new algorithms perform consistently better than previous
methods. In particular, our experiments show that in compari-
son to previous methods, the new methods use about 8% fewer
slots for link scheduling and 10% fewer slots for broadcast
scheduling.

The remainder of the paper is organized as follows. Section
I1 gives the definitions of terms and the explanation of concepts
that we use in analyzing (theoretically and experimentally)
our algorithms. Section 111 is devoted to link scheduling and
Section IV to broadcast scheduling. Section V concludes with
a summary of the results.

11. PRELIMINARIES
In this section, we provide definitions of, and explana-

tions for, some of the fundamental notions that we employ
throughout later sections. These include certain graph theoretic
concepts, the network model used in our experiments, and defi-
nitions related to bounds on the performance of approximation
algorithms.

A. Graphical Representation

Our presentation of scheduling algorithms in Sections 111
and IV is based on a standard representation of a radio network
by a directed graph G = (V ,A) . Here, V is a set of vertices
denoting the stations in the radio network, and A is a set
of directed edges between vertices such that for any two
distinct vertices U , V E V,(u,w) E A if and only if w can
receive U’S transmission. Note that we do not make an a priori
assumption about the edges of the corresponding graph being
bidirectional.6 That is, (U, w) E A does not necessarily imply
(w , ~) E A.

A natural interpretation of scheduling in this context is as
one of coloring the corresponding graph G = (V, A) . Thus,
broadcast scheduling is one of coloring the vertices of the
graph such that any pair of vertices a, b may be colored the
same if and only if

1) edge (a, b) $! A and edge (b , a)
2) there is no c such that (b, c) E A and (a, c) E A.
When the first condition fails to hold, there is a primary

vertex conjict between vertices a and 6 , and when the second
condition fails to hold, there is a secondary verfex conflict
between a and b.

Similarly, link scheduling corresponds to coloring the edges
of the graph such that any pair of directed edges (a, b), (c , d)
may be colored the same if and only i f

A, and

1) a, b, c, d are all mutually distinct, and
2) (a , d) $! A and (c , b) $! A (recall that edges are not

necessarily bidirectional).

61n some networks, extraneous noise or deliberate jamming at the site of
one station (121 may cause one-way connections.

168 IEEUACM TRANSACTIONS ON NETWORKING, VOL. I , NO. 2, APRIL 1993

Here, when the first (second) condition fails to hold, there is
a primary (secondary) edge conjict between (a, b) and (c, d) .

In subsequent sections, we will interchangeably use the
terminology of coloring and that of scheduling in refemng
to the problems we consider. The choice of terminology will
depend on which is clearer in a given context.

B. The Experimental Model

In this subsection, we discuss the generation of radio net-
works that we use for experimentally studying the performance
of our algorithms and existing methods.

As we noted in the previous subsection, the problem of
scheduling a network is equivalent to one of coloring the
corresponding graph. The experimental performance of some
well-known coloring problems such as vertex coloring has
traditionally been studied using a simple probabilistic model.
In this model, a graph of a given number of vertices is
generated by placing an edge between two vertices according
to some probability distribution [5] . One such approach is to
generate each edge with a fixed probability p. Unfortunately,
the application that we are concerned with (radio networks) is
not realistically modeled in such a fashion. Typically, radio
network stations are not equally likely to be connected to
all of the other stations. The connectivity depends on the
geographical location of the stations, and a station has a link
to the stations that are within a certain distance from itself.
This unique property of link “locality” must be captured in
any realistic model of radio networks.

Our experiments have been conducted under the assumption
of a noiseless, immobile radio network in which all of the
stations have the same transmission radius. In this context,
the network may be represented by the three-tuple (N, R, P)
where N is the number of stations, R is the transmission radius
of each station, and P = {(xi, yi, 1 5 i 5 N} is the set of
locations for each of the stations. The location of a station is
generated randomly, using a uniform distribution for its X and
Y coordinates, in a given area. We convert this network into
a graph G = (V, A) so that IVI = N , and (U , U) E A if and
only if the Euclidean distance between (xczL,yu) and (xulyu)
is less than or equal to R. Under this model, all edges in the
graph are bidirectional.

We have studied the experimental performance of our
algorithms by generating a number of random graphs for
various “typical” values of N and R. Since real-life data is
scarce in this area, we have chosen, as in [16], a range of
values that one might expect for future applications. In the
tables appearing in Sections 111 and IV, the results for each
pair of (N, R) values are obtained by averaging over thirty
random graphs generated with those values.

C. Approximation Algorithms

When dealing with optimization problems that are NP-
complete, a common approach is to devise algorithms that
produce approximate (i.e., nonoptimal) solutions. A standard
measure of the performance of such an approximation algo-
rithm is in terms of the ratio of the sizes of the approximate
solution produced by the algorithm and an optimal solution.
Formally, the performance of an algorithm A is given by its

perf ormance guarantee7 = max {A(G)/OPT(G)}, taken
over all graphs G, where A(G) denotes the size of a solution
given by algorithm A, and OPT(G) denotes the size of an
optimal solution. In conformance with existing notions, an
approximation algorithm is good if its performance guarantee
is O(1). In our context, this means that an algorithm is good if
it produces a coloring using a constant times optimal number
of colors. As we noted less formally in the Introduction,
there do not exist any good approximation algorithms for
the standard graph vertex coloring problem and, further, it
is widely assumed that no such algorithms exist. On the other
hand, there exist a wide range of NP-complete problems for
which there are good approximation algorithms [8].

In our experimental analysis (Sections 111-D and IV-C), we
have compared the performance of our algorithms to existing
algorithms and not optimal algorithms since, even for small
networks, the time requirements of algorithms that obtain
optimal solutions (using exhaustive search) are prohibitive.

111. LINK SCHEDULING
In this section, we study link scheduling. As noted earlier,

this is done in the context of coloring the edges of the
corresponding directed graph. Recall that, in link scheduling,
any pair of directed edges (a, b) and (c, d) may be colored the
same if and only if a,b ,c ,d are all distinct, (a , d) 4 A, and
(c, b) 4 A [i.e., there is no primary or secondary edge confict
between (a ,b) and (c , d)] .

Also recall that it is NP-complete to construct an optimum
link schedule for an arbitrary graph. In fact, we show in [20],
[21] that this holds even when we restrict our attention to
planar graphs.

Fact 3.1: For a planar network, determining the existence
of a link schedule using seven colors is NP-complete.

Given these NP-completeness results, this section examines
what can be done in regard to link scheduling. In Section 111-A,
we describe a link scheduling algorithm for tree networks. This
algorithm runs in polynomial time and does indeed produce
an optimal link schedule (for tree networks). In Section 111-B,
we consider a more complicated situation involving oriented
graphs (these are slighly generalized trees). Here, additional
“interference” edges are present that, while not themselves
needing to be colored, do invoke additional secondary conflicts
that must be accomodated in the coloring of the “ordinary”
edges of the oriented graph. Interestingly, the notion of inter-
ference(nonschedu1ed) and ordinary(schedu1ed) edges, though
invented here as a conceptual step towards the actual coloring
algorithm, models a realistic situation in radio networks. In
some networks, the signal transmitted by a user z to a user j
may be too weak to be decoded at j but may be strong enough
to interfere with another signal amving at j . In such a case,
there would be an interference edge from z to j . Interference
edges were considered in [26] .

Since finding an optimal coloring in this situation is NP-
complete, we provide an algorithm that produces an ap-
proximate solution. In Section 111-C, we use the results of
Section 111-B to provide a new polynomial time algorithm for
finding link schedules for arbitrary networks. The performance

RAMANATHAN AND LLOYD SCHEDULING ALGORITHMS I69

guarantee for this algorithm is 0(1) for planar graphs and
O(8’) for arbitrary graphs of thickness 8. Finally, in Section
111-D, we present some experimental results.

A. Tree Networks

In this section, we give an algorithm for optimum link
scheduling of tree networks. These are connected’ networks

for each child a of b in T do
subtreecolor(a)

The function NonConflictingEdge simply collects the colors
of all edges conflicting with the given edge and retums the
first color in this set. It is described next.

where, if the directions are removed from the edges, then
the underlying graph is a tree. Without loss of generality,
we assume that some vertex of the network is designated
as the root, and hence the terminology of parent and child
with respect to the tree follows naturally. Note that, between
a parent z and a child y, there are three possibilities for the
edge(s) present in the tree network: (z, y), (y, z) or both. Also,
a vertex located at distance k from the root is at level k.
An edge is at level k if k is the greater of the levels of its
endpoints, and a tree with a maximum level of k is said to
have k levels.

The algorithm given colors the edges of a tree using a
breadth first search starting from the root. Intuitively, the tree
is colored by level. In this context, consider the coloring of
(directed) edge (z ,y) where 5 is the parent of y. Since the
coloring is being done by levels, the only edges having either
primary or secondary edge conflicts with (z,y) are edges
that are either incident to z or are incoming to the parent
of 2. In particular, this means that the colors of the edges
outgoing from the parent of z can be used to color edge (IC, y),
assuming that no other edge incident on z has already been
so colored. Giving priority to such a reuse of colors is the
primary observation needed to ensure that the coloring will be
optimum. The details of the algorithm follow.

Algorithm MSched.
Input: A tree network T = (V, A) with root T

Output: A coloring c : A -+ { 1 ,2 , . . .}.
color the edges incident on T using

subtreecolor(r)
colors 1,2, . . . , degree(r)

The procedure subtreecolor colors the remainder
of the edges and is described next.
procedure subtreecolor(b)

for each child a of b in T do
BI, t {c(u, b) : (U , b) E A and colored}
BOut+- {c (b ,u) : @ , U) E A and colored}
for each uncolored edge (x, a) do

if BI, is not empty
then let j be any color in BI,

Bin+ &n-{.j}

else let j +- NonConflictingEdge ((2, a))

c (z , a) + J’
Tor each uncolored edge (a, x) do

if Bout is not empty
then let j be any color in Bout

else let j + NonConflictingEdge((a, z))
Bout+- Bout - { j }

c (a , z) +- j

’Every station is reachable from every other station

function NonConflictingEdge(e)
Conflicting +- {c(h) : h is colored and eand h

have a primary edge conflict }U
{ c (h) : h is colored and e and h
have a secondary edge conflict}.

retum the least color 4 Conflicting.

To see that the algorithm produces a conflict-free coloring,
we first observe that a color is chosen either using the
NonConflictingEdge function or from the nonadjacent edges
at the previous level. Clearly, NonConflictingEdge retums a
nonconflicting color. If the color is a reuse of a color in the
previous level, it has to be in the same direction. That is, if we
are coloring an edge outgoing (incoming) to “a,” we choose a
color from the outgoing (incoming) edges to a parent of “a.”
Since such edges do not conflict and we reuse a color at most
once for edges incident on “a,” the coloring is conflict free.

With a very careful implementation, the running time of
the algorithm can be shown to be O(v log p), where p is the
maximum degree of any vertex.

The remainder of this section is devoted to showing that:
Theorem 3.1: Algorithm TreeSched colors a tree network

T with the optimum number of colors.
Proofi The proof is by induction on k, the number of

levels in the tree network. When the tree network consists of
only the root and its children, it follows immediately from
the special handling afforded the root that exactly p colors
are used (recall that p is the maximum (total) degree of any
vertex-in this case, it is the degree of the root).

Thus, assume inductively that the theorem holds for all
tree networks having fewer than k levels, and consider a tree
network T with k levels. Thus, (inductively) the algorithm
produces an optimum coloring of T, not including the edges
of level k. Note that all of the calls to subtreecolor for the
vertices of level k are completely independent (i.e., the edges
colored in distinct calls are sufficiently far apart that neither
primary nor secondary conflicts are possible). In this case, it is
sufficient for us to concentrate on a single call to subtreecolor
for a vertex a of level I C . Thus, analogous to the body of
subtreecolor, let ain, bin, aout. bo,, be as shown in Fig. I.

There are two situations, depending on whether there are
edges in both or only one direction(s) between nodes a and b.
In the proof given here, we assume that both edges are present.
The other situation can be analyzed in a similar fashion, and
is not presented. There are four cases.

Case 1: aout 5 bout:a;, 5 bin. It follows from subtree-
color that each of the edges incident between vertex a and its
children will be colored using colors of edges in b;, or bout.
Since no new colors are required, it follows that the overall
coloring is optimum.

170 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1 , NO. 2, APRIL 1993

9n

Fig. 1. Link scheduling a tree optimally.

Case 2: aout 5 bout; ai, > bin. Let x + d be the number
of colors used to color T not including the edges of level k.
Here, d is the degree of b and, hence, d is also the number
of colors used to color edges incident on b. Then, x is the
number of colors not used to color edges incident on b. Note:
d = bin +bout + 2, and colors in bin, along with the “z” colors,
may be used to color the incoming edges to “a.”

It follows that the total number of colors utilized, including
the coloring of the edges incident to a, is z + d + max(0,
(Uin - bin) - z). If the max term is 0, we are done since
the number of colors used has not increased. Thus, suppose
that term is nonzero and simplify the entire expression to

note that the optimum number of colors is at least a in+bOut+2,
since each edge outgoing from b has a secondary edge conflict
with each edge incoming to a. It follows that the overall
coloring is optimum.

Case 3: aout > bout; ai, 5 bin. This is completely analo-
gous to Case 2.

Case 4: aout > bout; ai, > bin. This is a modified version
of Case 2. As before, let z + d be the number of colors used to
color T not including the edges of level k. Now, the x colors
not used in edges incident on b may be used to color both the
incoming and outgoing edges of vertex “a.”

It follows that the total number of colors utilized, including
the coloring of the edges incident to “a,” is x + d+ max(0,
(sin - bin) + (aout - bout) - z). If the max term is 0, we
are done since the number of colors used has not increased.
Thus, suppose that the term is nonzero and simplify the entire
expression to d+ (ai, - bin) + (aout - bout) = (bin +bout + 2) +
(a i n - bin) + (aout - bout) = ai, + aout + 2. NOW note that the
optimum number of colors is at least ai, + aout + 2 since this
is the degree of vertex “a.” It follows that the overall coloring
is optimum. 0

d+(a in-b in) = (bin+bout+2)+ain-bin = ain+bo,t+2. NOW

B. Oriented Graphs with Interference Edges

In the next section, we provide a new algorithm for link
scheduling of arbitrary networks. The motivation for that algo-
rithm, and the key to its good performance, is the recognition
of the fact that while the graph considered as a whole is

difficult to color, it can be decomposed into several pieces
each of which are fairly easy to color. These pieces can then be
recombined to produce a good (though not necessarily optimal)
coloring of the entire graph.

Given that we can color trees optimally, an obvious candi-
date for a “piece” is a tree. Unfortunately, we are unable to
utilize the algorithm of the previous section since the coloring
of each piece (a tree) cannot be done in isolation from the other
pieces (i.e., the edges of the other trees in the decomposition).
The remainder of this section is devoted to handling coloring
in this situation. Because the coloring of each decomposed
piece must take into account the influence of the other pieces,
the algorithm that we present lies somewhere between the
approaches of coloring in one “global” swoop and coloring
purely “locally.”

In the context of the algorithm given in the following
section, there are two additional considerations. First, it is a
bit more convenient to work with a slight generalization of
trees rather than trees themselves. Second, in order to obtain
a good performance bound, certain values must be bounded.
Specifically, when coloring an edge e, the number of potential
edge conflicts with e must be bounded in some way. Thus, the
algorithm of the next section does not decompose the graph
into trees but rather into oriented graphs. Here, an in-oriented
graph is one in which every vertex has at most one outgoing
edge (that is, a local view of a vertex shows several incoming
edges but only one outgoing edge). Similarly, an out-oriented
graph is one in which every vertex has at most one incoming
edge.

Thus, in this section, we assume that we are given an
oriented graph T and a set of interference edges between the
vertices of T. The problem is to provide a proper coloring
of T’s edges, even taking into consideration the additional
secondary conflicts induced by the interference edges. Note
that the interference edges do not have to be colored-they
simply induce conflicts between edges that must be colored.
This notion is best understood in the context of decomposing
a graph G into oriented graphs. If T is an oriented graph
in that decomposition, then all edges of G that are not
part of T itself will be taken as interference edges with
respect to T. For instance, consider Fig. 2. There, the solid
edges are the edges of T, and it is those edges that must
be colored. The remainder of the graph is shown using
dashed edges. The dashed edges are the interference edges
since they cause interference between the edges of T. The
interference edge (a , d) , for example, causes a secondary
conflict between edges (a, b) and (c, d) forcing them to receive
different colors.

A natural question is whether an optimal coloring of an
oriented graph with interference edges may be found easily.
Unfortunately, in [27] we show:

Fact 3.2: It is NP-complete to find an optimal coloring of
an oriented graph with interference edges.

Thus, we are left to consider methods that obtain only
near-optimal solutions. One such method is the subject of
this section. The method presented here will be used in the
following section as a subroutine in our algorithm for the
coloring of arbitrary networks.

r-

RAMANATHAN AND LLOYD: SCHEDULING ALGORITHMS 171

a

Fig. 2 . Oriented graph coloring with interference edges.

The algorithm for coloring an oriented graph with interfer-
ence edges has two phases. In the first phase, a unique label is
assigned to each of the vertices of G. In the second phase, the
edges of the oriented graph are colored. This is accomplished
by considering the vertices in increasing order by label. For
each vertex 2, we take the sole incoming/outgoing edge
incident on z and assign a color to that edge. That assigned
color is the lowest numbered color that can be assigned without
causing a conflict with previously colored edges. We note
that the ordering of the vertices is crucial to bounding the
worst-case performance of the algorithm.

As a precursor to the actual coloring algorithm, we first
provide the details of the labeling mentioned previously. In
particular, we give a function labeler which takes as input an
oriented graph with interference edges, and assigns a unique
label to each vertex of that graph. The function returns the
highest assigned label.

integer labeler(T)
if T is not empty

let U be a vertex df T of minimum degree
(considering edges in both T and I)

L(u) t I+ labeler(T - U)

return L (u)

return 0
else

Here, in an abuse of notation we let T-U denote the oriented
graph with interference edges that result when the vertex U and
all of its incident (graph and interference) edges are deleted
from T.

The algorithm for scheduling the edges of an oriented
graph with interference edges is given. The algorithm uses the
function NonConflictingEdge, which was described in Section
Ill-A.

Algorithm OrientedGraphSchedule
Input: T = (V, A, I), an oriented graph with
interference edges, where V and A are

the vertices and edges of the graph and I is the
set of interference edges
Output: An assignment of colors(s1ots) c : A +

Phase 1:

Phase 2:

{ 1.2. . . .}

n t labeler (T)

for j + 1 to n do
if T is out-oriented

then let e = (u ,v) be such that

else that e = (U,.) be such that
L(U) = j

L(v) = j
c(e) t NonConflictingEdge(e)

To see that this algorithm yields a legal coloring of an
oriented graph, we assume inductively that the coloring con-
structed through the (i - 1)st iteration is legal. Then, let
e = (U, w) be the edge to be colored in the ith iteration. The
colors of the edges that interfere with (hence, influence the
color of) P are collected in the set Conflicting (of function
NonConflictingEdge). These edges are shown in Fig. 3. Note
that interference edges incoming to U and outgoing from
v do not introduce conflicts between e and other edges of
the oriented graph being considered. Since we assign to e
a color that is different from the color assigned to each of
the edges interfering with e, the coloring inclusive of edge e
(ith iteration) is legal. Thus, the algorithm produces a legal
coloring of each oriented graph.

In regard to the number of colors used by the above
algorithm, we have:

Lemma 3.1: Suppose that each vertex of T has at most ,!3
neighbors with lower labels. Then, T may be colored using
no more than O (p p) colors.

Proof! We prove the lemma for an out-oriented graph.
The proof for an in-oriented graph is analogous. Thus, we
begin by considering the coloring of an out-oriented graph
using OrientedGraphSchedule, and let n1, n 2 , n3, 714 be the
number of colors added to the set Conflicting from the sources
as shown in Fig. 3. It suffices to show that n1 + 712 + 123 + 714

It is easy to see from Fig. 3 that 711 5 p - 1. Also, since
there can be at most one edge of the oriented graph incoming
to z, for any interference edge (U. xc), it follows that n 2 + 713

is O(Pp).
We show that 714 is O@p) by carefully examining inter-

ference edges contributing to 7 ~ 4 . Let (x,,yz) be an edge in
714 and let (xL, v) be the interference edge that induces a
conflict between (x,, yI) and (U . U) (see Fig. 3). Then, either
L(z ,) > L (v) or L(z ,) < L(w). Suppose that there are k
edges (-1.2.u) such that L (x :) < L(w) and p - 1 - IC edges
(xf .v) such that L(x ;) > L(TJ) (note that k 5 p).

Clearly, there can be at most p - 1 edges from T incident on
xf and at most p- 1 edges from T incident on xp. However, of
the latter p - 1 edges, at most (P - 1) edges (zcf , y) incident
on are colored at this point. This is because, for (zf,y)
to be colored, we require that L(y) > L(v) . However, since
L(.rg) > L(w), it follows that L (y) < L(zf) and, by our

is O(PP).

172

n
4

IEEFJACM TRANSACTIONS ON NETWORKING. VOL. 1. NO. 2, APRIL 1993

assumption, there can be only P - 1 such y’s, excluding v
itself.

Thus, n4 5 k (p - 1) + (p - 1 - k) (P - 1). Since k 5 /?, 124

Regarding the time complexity, we have
Lemma 3.2: The running time of Phase 2 of Oriented-

Graphschedule is O (~ p p) ~ .
Proofi From Lemma 3.1, we have that the size of the set

Conflicting (of function NonConflictingEdge) is O(pp). Thus,
finding a new color for an edge in Phase 2 takes 0 (/ 3 p) steps.
Since this is done once for each label (and hence for each
vertex), it follows that the overall running time in Phase 2 of

is O(PP).

OrientedGraphSchedule is O(vpp). 0

C. Arbitrary and Planar Networks

The main result of this section is a new algorithm for
link scheduling. The performance guarantee for this algorithm
is O(1) for planar graphs and 0(8*) for arbitrary graphs of
thickness 8. In what follows, we begin with a description of
the algorithm, followed by an analysis of its performance.

1) The Algorithm: As noted in the previous section, our
algorithm begins by decomposing the graph G into several
in-oriented and out-oriented graphs TI, T2 . . . T k . The decom-
position is such that while the Ti’s are not necessarily vertex
disjoint, it is the case that every edge of G is in exactly one
of the Ti’s. For any particular T,, the edges of G that are not
in Ai are interference edges for T,.

The decomposition of G into oriented graphs is done by
first partitioning the undirected equivalent of the graph into
undirected forests. It is possible to do this in an optimal
fashion using the techniques given in [15], [18] or it may
be done nonoptimally, but somewhat more speedily, by using
successive breadth first searches (the latter approach is the one
that is implemented and experimentally studied). Following
this initial partitioning, each of the undirected forests is split
further into two forests-one containing the edges pointing

‘In stating the running times, we use 1‘ and c to denote the number of
vertices and the number of edges, respectively.

n
3

Fig. 3. Neighborhood of edge to be colored in Link Schedule.

away from the root and the other containing edges pointing
towards the root. The former produces out-oriented graphs
and the latter produces in-oriented graphs. This splitting of the
undirected forests into two oriented graphs is straightforward,
and is not considered further here.

Recall that the algorithm for link scheduling of oriented
graphs had two phases: the first for labeling the vertices, and
the second for actually assigning colors. It should be apparent
that the same labeling will be done for each of graph Ti, since
that labeling takes into account both graph and interference
edges in determining vertex degrees. Thus, for efficiency, the
labeling is performed only once. This labeling may be done
either before or after the decomposition into oriented graphs.
For convenience in explanation, we assume it occurs before the
decomposition is performed. With the preliminaries concluded,
we now present the entire link scheduling algorighm.

Algorithm ArboricalLinkSchedule
Input: A directed graph G = (V, A)
Output: A coloring c : .4 + { 1 , 2 , . . .}
71 + labeler(T)
Decompose G into oriented graphs TL, 1 5 i 5 k
for i e 1 to k do

apply Phase 2 of OrientedGraphSchedule to graph
T,, letting the interference edges I = A - T,)

Fig. 4 illustrates the execution of the algorithm. The various
“steps” are labeled on the arrows. In Step 1, the vertices are
labeled (the labels are shown within parantheses), directed
edges are coalesced, and directions removed to form the
undirected equivalent. Step 2 decomposes this graph into two
trees. Step 3 divides the first of these into out-oriented and in-
oriented graphs, and labels them. Step 4(a) and 4(b) show the
“greedy” coloring of the edges of each of the oriented graphs
taken in order of the labeling and taking a fresh set of colors
for each. The dashed edges are the interference edges from the
remainder of the graph. The processing of the other undirected
tree is similar and is not shown here.

I

RAMANATHAN AND LLOYD: SCHEDULING ALGORITHMS I73

2 4 & + -
a b

+
0

a t 4 a a $(4b

0 g

Fig. 4. Steps in the aborical partition and coloring.

2) The Analysis: In this subsection we consider both the
performance bounds and time complexity of Linkschedule.
The fact that the algorithm provides a legal coloring is easy
to see and is omitted. Thus, we begin by considering the
performance of ArboricalLinkSchedule in terms of the quality
of the coloring that is produced.

We begin by letting, for each i, 1 5 i 5 k , c; be the number
offresh colors used in the coloring of Ti. That is, c; denotes
the number of colors that are used for the first time in the
coloring of Ti.

It follows from Lemma 3.1 that:
Lemma 3.3: For each i, 1 5 i I k, c; is 0 (/ 3 p) . Thus, since

the total number of colors used by the algorithm is equal to
the sum of the c;'s, it follows that:

Lemma 3.4: ArboricalLinkSchedule uses no more than
O(k0p) colors, where IC is the number of oriented graphs, 0
is the maximum number of neighbors with lower labels, and
p is the maximum vertex degree.

3) Planar networks: Consider a call of the function labeler
when the input graph G is planar. Since every subgraph of a
planar graph is also planar, it follows that in each recursive
call to labeler, the input graph is planar. Now, in any such call,
consider the vertex U of minimum degree. By a fundamental
property of planar graphs [4], that minimum degree vertex
has at most five neighbors. These five neighbors of U will all
receive labels lower than L(u). All other neighbors of U in
the original graph G will receive higher labels than does U.

Thus,

I74 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1. NO. 2, APFUL 1993

Lemma 3.5: If G is planar, then for each vertex of G there TABLE I
COMPARISON OF MAXIMUM DEGREE AND THICKNESS are at most five neighbors with lower labels.

In terms of Lemma 3.4, this means that /3 5 5. Further,
it is known [24] that a planar graph can be partitioned into
at most three undirected forests. Since the algorithm of [15]
gives an optimal partitioning, it follows that a planar G is
partitioned into no more than six oriented graphs. Hence,
k 5 6, and it follows from Lemma 3.4 that if G is planar, then
ArboricalLinkSchedule uses no more than O(p) colors. Since
for any G the optimal number of colors required is trivially at
least p, the performance guarantee y = O(1).

As far as the running time is concerned, let e and v denote
the number of edges and the number of vertices, respectively,
in the input graph G = (V ,E) . The function labeler can be
done in time O(e + v log v) by using a Fibonacci Heap [131
to select a vertex of minimum degree and to update vertex
degrees as the graph is reduced via the recursive calls. The de-
composition of the input graph into oriented subgraphs requires
time O(ev log v) 1151. Since k 5 6, it follows from Lemma 3.2
that the for-loop of ArboricalLinkSchedule runs in time O(vp).
Thus, the overall running time of ArboricalLinkSchedule is
O(evlogv + (e + wlogw) + up). Thus, we have the following.

Theorem 3.2: For a planar graph G, ArboricalLinkSched-
ule has a performance guarantee of 0(1) and a worst-case
time complexity of O(ew1ogv).

4) Arbitrary Networks: We use the algorithm Arborical
Linkschedule given in Section III-C- 1). ArboricalLinkSched-
ule may be applied to any graph, not only ones that are
planar. Note that neither in the algorithm nor in the proof
of its correctness did we use the “planar” aspect of the graph.
However, while the algorithm produces a schedule for any
graph, the performance analysis of the previous section (for
planar graphs) obviously does not apply. In this section, we
consider the performance of that algorithm on arbitrary graphs.
Because the analysis is primarily a generalization of that given
in the previous section for planar graphs, we provide here only
a brief sketch of the necessary changes.

Theorem 3.3: For an arbitrary graph of thickness 8 and
maximum degree p, ArboricalLinkSchedule has a performance
guarantee of 0 (O 2) and a running time of O(ev1ogv + v8’p).

Proofi The primary change in the analysis is that the
bound of five on /3, the number of neighbors of a vertex with
lower labels, no longer applies. Since for planar graphs the
bound of five neighbors was essential in proving the 0 (1)
performance bound, this presents something of a problem.
What we can, however, show is that for a graph of thickness
0, there exists at least one vertex of degree at most 68 - 1,
hence /3 5 68 - 1. Further, the partitioning method of [151 will
result in a decomposition of a thickness 8 graph into at most 68
oriented graphs. It follows from these two facts that the entire
graph can be colored with 0 (O 2 p) colors. An examination of
the running time in a manner similar to that in Section III-
C-3) shows that the running time is O(ev1ogv + v02p). For
future reference, we note that when 8 is small relative to w ,
the running time is dominated by the decomposition and is
O(evlogv).O

Previous algorithms for link scheduling all have a bound of
O(p2) (a formal analysis is done in [7]) . Intuitively, it seems

that the thickness of a graph is a small quantity compared to the
maximum vertex degree+specially for graphs representing
radio networks. This fact is confirmed by our experiments.
Here, we generated a number of random graphs (as described
in Section IJ-B) over a large number of values for the “size”
(number of vertices) and the transmission range of each of
the vertices. A portion of these results is shown in Table I. It
can be seen that although both the maximum degree and the
thickness’ increase as the graphs become denser, the thickness
increases much more slowly. For all of the graphs generated
(including a great number not shown), O2 was considerably less
than p. It follows that our algorithm provides a considerable
performance improvement over existing methods, even for
arbitrary networks.

We observe that while the performance is proportional to
the square of the thickness, we never actually need to compute
the thickness itself. This facet of the algorithm is especially
significant since, as mentioned earlier, it is NP-complete to
compute the thickness of an arbitrary graph.

A final interesting observation is illustrated in the last col-
umn in Table I, which shows the percentage of edges that are
present in a maximally planar component of the input graph.
As we can see, many graphs are “almost” planar. Further
investigation (not documented here) shows the existence of
a few isolated edge “cliques” (contributing to nonplanarity)
and a very large planar component.

D. Experimental Results

In this section, we provide an experimental analysis of
the performance of Linkschedule in comparison with existing
heuristics for the problem of link scheduling. We begin with
brief descriptions of the heuristics that were studied.

1) Pure Greedy (PC): This is a straightforward algorithm
in which an edge is chosen at random and colored with the
first available, nonconflicting color. Most of the algorithms
described in previous works are essentially this method.

2) Extended Maximum Degree First Ordering (EMDF)
Algorithm: In this method, we take a maximal mutually
conflicting clique of edges around the maximum degree vertex
first, color it, and then progressively do the same for the
remainder of the graph. This method is based on the intuitive
notion that it is better to color the more “crowded” areas first.

9Since determining the thickness of a graph is itself an NP-complete
problem [22], this is an estimate of fhickness based on the number of trees
into which the graph may be decomposed.

RAMANATHAN AND LLOYD SCHEDULING ALGORITHMS I75

TABLE I1
COMPARISON OF LINK SCHEDULING HEURISTICS

Node b g e PG EMDF

200
200. 154 151

I 400 I 20 I1 50 I 49

400

ARBOIUC
22
46
87
143
49
107
215
391

we can model the network as an undirected graph. Thus, the
problem of broadcast scheduling is to color an input undirected
graph G = (V, E) so that U, v are colored the same only if

2) There is no w such that (U, w) E and (v, w) E E .
As mentioned in Section I, finding an optimal broadcast

schedule is NP-complete. Actually, the following stronger
result is shown in [20], 1271.

Fact 4.1: For a planar graph G = (V, E), finding an
optimal broadcast schedule using seven colors is NP-complete.

However, similar to the previous section, we can find an
optimal algorithm for broadcast scheduling of tree networks, lo

and a suitable approximation algorithm for planar and arbitrary
networks. In particular, we give here an algorithm for finding
a coloring in a arbitrary graph, and show that the algorithm
has a performance guarantee of 0(1) for planar graphs and
a performance guarantee of O(@ for an arbitrary graph of
thickness 8.

1) (%U> 4 E .

Heuristics with this philosophy were first examined in [23] for
vertex coloring and were found to do quite well.

3) The Algorithm ArboricalLinkSchedule (ARBORIC): This
is an implementation of the algorithm of Section III-C-1). In
this implementation, we do not use the method of [15] to
partition the graph into oriented graphs but rather we use
breadth first search, progressively, to produce an oriented
graph partitioning. Using this partitioning method, the running A. The Algorithm

parameters. As seen in that table, ArboricalLinkSchedule
generally performs the best, followed by the maximal clique
first algorithm, and lastly by the commonly used Pure Greedy
algorithm. On average, the ArboricalLinkSchedule algorithm
uses roughly 8% fewer slots than the Pure Greedy algorithm.
The difference in performance widens as we tend toward
higher ranges and a higher population (higher densities). Note
that ArboricalLinkSchedule does significantly better (about
10%) for a population of 400 vertices, each with a range of
50. In the context of the fact that schedules are set up once
and used repeatedly many times over, even a small reduction
in the number of slots used is worthwhile since it is amplified
by the amount of time the schedule is in operation.

Finally, we note that we have conducted a great many
more experiments than those described here. These additional
experiments considered both a wider variety of algorithms and
additional values of S and R. It is notable that in no circum-
stance did any algorithm have an average performance better
than that of ArboricalLinkSchedule. The high consistency of
these results certainly gives enhanced credibility to the value
of ArboricalLinkSchedule.

IV. BROADCAST SCHEDULING

In this section, we study broadcast scheduling. Recall that
we construct a broadcast schedule by coloring the vertices of
the graph such that two vertices must be given different colors
if they either are adjacent or have a common out-neighbor. In
this section, we shall consider only graphs with bidirectional
edges. Given this and that we color vertices and not edges,

Algorithm BroadcastSchedule
input: A graph G = (V, E)
output: A coloring c : V + { 1 , 2 , 3 , . . .}.
Phase 1:

Phase 2:
n e labeler(G)

for j t 1 to n do
let U be such that L(u) = j

.(U) t NonConflictingVertex(u)

The function NonConflictingVertex simply collects all of
the vertices conflicting with the input vertex and returns the
first color not in this set. It is described next.

function NonConflictingVertex(u)

neighbor of u}U
{c(z) : z is colored and is
two-hops away from U}

return the least color Conflicting

Conflicting c {c(z) : z is colored and is a

In the above, the call to labeler is actually a call to a modified
version of labeler in which an arbitrary undirected graph G
is passed rather than an oriented tree with interference edges.
The necessary changes to labeler are straightforward and are
omitted here. The function NonConflictingVertex may be de-

'OThis algorithm is reasonably straighfonvard and is omitted here.

h

176 IEEEJACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 2, APRIL 1993

atmost p-1 k (at most 5) -- @I---

/ >m

Fig. 5. Neighborhood of the vertex to be colored in Broadcast Schedule.

fined in a manner similar to the function NonConflictingEdge
defined for edges in Section 111-A-instead of considering
primarylsecondary edge conflicts, we consider vertex conflicts.
Note also that to broadcast schedule an arbitrary graph, only
a single pass is required rather than the series of passes (one
for each oriented subgraph) that was needed in the case of
link scheduling.

B. Analysis

It is straightforward to show that the algorithm produces a
legal coloring. As far as the performance guarantees and the
running times are concerned, we have the following.

Theorem 4.1: For a planar graph G, Broadcastschedule
has a performance guarantee of 0(1) and a worst-case time
complexity of O(vp).

Proof: First we discuss the performance and then con-
sider the time complexity of algorithm BroadcastSchedule.

Performance: We begin by noting that the number of colors
n used by the algorithm is no more than the maximum
color returned by the function NonConflictingVertex, over all
vertices.

Without loss of generality, let n be the largest color used and
U be a vertex colored n. We show that n is O(p) by carefully
examining the vertices that affect the color of U. Clearly, such
vertices are one-hop or two-hop away from U (see Fig. 5).

Consider a neighbor x; of U. Then, either L(x;) > L(u) or
L(x i) < L(u). Suppose that there are k vertices x i such that
L (x i) < L(u) and p - k vertices xf such that L(xf) > L(u) .
Note that since the labeling algorithm is the same as the one
used for Link Scheduling, Lemma 3.5 applies and therefore
k 5 5.

Each of the xi may have at most p - 1 neighbors (not
including U itself) and, hence, the xi and their neighbors may
utilize at most k (p - 1) + k or k p colors that may not be
assigned to U .

We now turn our attention to x:. There are p - k such
vertices. However, none of them are colored since L(x:) >
L(u) (recall that we do the coloring in the increasing order
of vertex labels). Nevertheless, we still have to consider the
neighbors of x:, some of which may have lower labels than
U and hence may be colored. Such vertices would, however,
then also have smaller labels than $3 and, by Lemma 3.5, there
can be at most 4(p - k) of them (four for each vertex; note
that U itself is a neighbor of x: having a smaller label).

Thus, U can be colored using no more than k p + 4 (p - k)+
1 colors, (k 5 5), which is at most 9p - 19. Since the
optimum is at least p + 1, the performance guarantee of
BroadcastSchedule is O(1).

Running Eme: The running time is clearly dominated by
the running time of NonConflictingVertex. Since at most 5 p
one-hop or two-hop neighbors are colored, coloring a vertex
requires processing (updating and searching) a list of at most
5 p vertices. This is done for each vertex and, therefore, the
running time of Broadcastschedule is O(vp).O

Theorem 4.2: For an arbitrary graph G, BroadcastSchedule
has a performance guarantee of O(0) and a worst-case time
complexity of O(v6’p).

Proof: As in the case of link scheduling, the primary
change in the analysis involves the observation of the fact
that while the bound of 5 on the vertex degree is no longer
true (Lemma 3 . 3 , the bound of 66’ - 1 holds. Proceeding in a
manner analogous to Theorem 4.1, the performance guarantee
of BroadcastSchedule for a graph of thickness 6’ is O(0) and
the running time is O(v0p).

C. Experimental Results

We first describe briefly the various heuristics for the
problem of BroadcastScheduling. The performance of these
heuristics (number of slots used for scheduling) is shown in
Table 111. Each entry is averaged over thirty different random
graphs with the same parameters.

1) Pure Greedy (PG): This is a straightforward algorithm
in which a vertex is chosen at random and colored in
a greedy fashion with the first available, nonconflicting
color. Despite its simplicity, it performs quite well. Most
of the algorithms described in previous works [28], [111
are essentially this method.

2) The Maximum Degree First (MDF) Algorithm: This is
an extension of the technique used in [23] for vertex
coloring and selects the vertices in decreasing order
of their degrees for coloring. The coloring is done
“greedily” that is, by using the least color not used by
one-hop or two-hop neighbors.

3) Our algorithm BroadcastSchedule (Bsch): This is a di-
rect implementation of the algorithm given in Section

From the results tabulated in Table 111, we see that Broad-
castSchedule performs the best of all (more than 10% better
than the commonly used Pure Greedy algorithm), followed
by the Maximum Degree First algorithm, and then the Pure
Greedy algorithm.

IV-A.

RAMANATHAN AND LLOYD: SCHEDULING ALGORITHMS 177

TABLE I11
COMPARISON OF BROAXAST SCHEDULING HEURISTICS

We observe here, as in the case of link scheduling, that the
gap widens as we tend toward higher densities. From more
detailed studies that cannot be presented here for lack of space,
we observed that for none of the over 30 different (S , R)
values did the Pure Greedy algorithm do better on average
than BroadcastSchedule.

V. CONCLUSIONS

The problems of link and broadcast scheduling for multi-
hop broadcast networks were studied for both arbitrary and
restricted networks. New algorithms were given for each case.
The performance of our algorithms is superior to existing ones,
both theoretically and experimentally. Specifically, the notion
of the thickness (8) of a graph was used to analyze the per-
formance. It was shown that, in the worst case, our algorithms
have performance guarantees of 0 (0 2) for link scheduling
and O(0) for broadcast scheduling. These represent significant
theoretical improvements over existing algorithms [which have
performance quarantees of O(p)] , since O is typically much
smaller than p. In each case, the explicit calculation of the
thickness itself was not a requirement. A realistic experimental
modeling showed that the algorithms described in this paper
used, on the average, roughly 8% (10%) fewer slots than
did existing link scheduling (broadcast scheduling) algorithms.
Since schedules are typically constructed only once and then
used for as long as the network is “up,” these improvements in
performance translate into the savings of precious bandwidth,
especially under heavily loaded conditions.

REFERENCES

N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, “On the complexity of
radio communication,” in Proc. Twenty First Ann. ACM Symp. Theory
of Comput., 1989, pp. 274-285.
E. Arikan, “Some complexity results about packet radio networks,”
IEEE Trans. Inform. Theory, vol. IT-30, pp. 910-918, July 1984.
D. Bertsekas and R. Gallager, Data Nenuorks. Englewood Cliffs, NJ:
F’rentice-Hall, 1987.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New
York: American Elsevier, 1976.
B. Bollobas, Random Graphs. London: Academic, 1985.

[6] R. Bar-Yehuda, A. Israeli, and A. Itai, “Multiple communication in
multi-hop radio networks,” in Pmc. Eighrh Ann ACM Symp. Princ.
Distrib. Comput., 1989, pp. 329-338.

[7] I. Chlamtac and S. Lemer, “A link allocation protocl for mobile multi-
hop radio networks,” in Pmc. GWBECOM, Dec. 1985.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. New York McGraw-Hill, 1990.

[9] I. Chlamtac and S. Kutten, “A spatial reuse t d d f d m a for mobile
multi-hop radio networks,” in INFOCOM Cont Proc., Mar. 1985.

[lo] S. Even, 0. Goldreich, S. Moran, and P. Tong, “On the np-completeness
of certain network testing problems,” Networks, vol. 14, pp. 1-24, 1984.

[I 11 A. Ephremedis and T. Truong, “A distributed algorithm for efficient and
interference free broadcasting in radio networks,” in Proc. INFOCOM,
1988.

[12] A. Ephremedis, J. E. Wieselthier, and D. J. Baker, “A design concept
for reliable mobile radio networks with frequency hopping signalling,”
Pmc. IEEE, vol. 75, no. 1, pp. 56-73, Jan. 1987.

[I31 M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596-615, 1987.

[141 M. R. Garey and D. S. Johnson, Computers and Intractabiliry: A Guide to
the Theory of NP-Completeness. San Francisco, C A Freeman, 1979.

[15] H. N. Gabow and H. H. Westermann, “Forests, frames and games:
Algorithms for matroid sums and applications,” in Pmc. 20th Ann. ACM
Symp. Theory of Comp., 1988, pp. 407421.

[I61 L. Hu, “Reliability analysis of sparse topologies for packet radio net
works,” in Proc. INFOCOM, 1992.

[I71 D. S. Johnson, “The NP-completeness column,” J. Algorithms (appears
periodically from 1981).

[181 E. L. Lawler, Combinatorial Optimization. New York: Holt, Reinhardt
and Winston, 1976.

[191 B. M. Leiner, D. L. Nielson, and F. A. Tobagi, “Issues in packet radio
network design,” Proc. IEEE, vol. 75, no. 1, Jan. 1987.

[20] E. L. Lloyd and S. Ramanathan, “On the complexity of distance-2
coloring,” in Pmc. 4th Int. Con$ Comput. and Inform., May 1992.

[21] E. L. Lloyd and S. Ramanathan, “On the complexity of link scheduling
in multi-hop radio networks,” in Proc. 26th Con5 Inform. Sci. and Syst.,
Mar 1992.

[22] A. Mansfield, “Determining the thickness of graphs is np-hard,” Math.
Proc. Cambridge Philos. Soc., vol. 93, pp. 9-23, 1983.

[23] D. W. Matula, G. Marble, and J. F. Issacson, “Graph coloring algo-
rithms,” in Graph Theory and Computing. New York: Academic,
1972.

[24] C. Nash-Williams, “Edge-disjoint spanning trees of finite graphs,” J.
London Math. Soc., vol. 36, pp. 213-228, 1961.

[25] R. Ogier, “A decomposition method for optimal scheduling,” in Proc.
24th Allerton Con$, Oct 1986.

[26] C. G. Prohazka, “Decoupling link scheduling constraints in multi-hop
packet radio networks,” IEEE Trans.Comput.,vo1.38,no.3, pp. 455458,
Mar. 1989.

[27] S. Ramanathan and E. L. Lloyd, “Complexity of certain graph coloring
problems with applications to radio networks,” Tech. Rep. 92- 18, Dept.
Comput. Sci., Univ. Delaware, 1992.

[28] R. Ramaswami and K. K. Parhi, “Distributed scheduling of broadcasts
in a radio network,” in Proc. INFOCOM, 1989.

[29] A. S. Tanenbaum, Computer Nehvorks. Englewood Cliffs, NJ:
F’rentice-Hall, 1988.

[30] A. Wigderson, “Improving the performance guarantee for approximate
graph coloring,” J. ACM, vol. 30, no. 4, pp. 729-735, Oct. 1983.

Subramanian Ramanathan, photograph and biography not available at the
time of publication.

Errol L. Lloyd, photograph and biography not available at the time of
publication.

-r-

