
Paper ID# 900146.PDF

INCREMENTAL CHANNELIZATION

Fei (Sophie) Che and Errol L. Lloyd 1

University of Delaware
Newark, DE 19716

July 23, 2009

Abstract

Channelization is the problem of forming multicast
groups from inputs of a set of flows, a set of users and
a set of user preferences, along with an upper bound
on the number of groups. Channelization aims to con-
struct groups such that the network cost is substantially
smaller than using a single multicast group which de-
livers all flows to all users. In this paper we intro-
duce an incremental version of channelization wherein
the input may change over time. When such a change
occurs, one approach is to totally recompute the chan-
nelization solution. In contrast, in the incremental ap-
proach taken here, the solution for the original channel-
ization instance is updated to become a solution for the
modified channelization instance. The goal is to produce
a solution of high quality in substantially less time than it
would take to do a full recomputation. In this context we
study incremental channelization problems correspond-
ing to adding a flow and adding a user. For these two
problems we provide complexity results and incremental
algorithms. Specifically we show: 1) that natural incre-
mental approaches are NP-hard; 2) that approximating
the optimal solution within a log factor is unlikely; and
3) give a greedy algorithm with a performance within a
log factor of the optimal (in light of our result 2, this is
the best possible approximation result). In addition to
the theoretical results, a case study is given for the prob-
lem of adding a flow, providing simulation results com-
paring the effectiveness of the solutions produced by our
incremental algorithms with solutions from algorithms
doing full recomputation.

1Email: {fei, elloyd}@cis.udel.edu. Prepared through col-
laborative participation in the Communications and Networks
Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooper-
ative Agreement DAAD19-01-2-0011. The U. S. Government is
authorized to reproduce and distribute reprints for Government

1 Introduction

The problem addressed in this paper considers channel-
ization in an incremental context:

• In channelization [AG01] a specified number of mul-
ticast groups are formed from a set of flows, a set
of users and a set of user preferences. The goal is
to construct groups in a way that the network cost
in terms of the total size of the flows delivered to
groups, and then to the users, is substantially less
in comparison with using a single multicast group
wherein all flows are delivered to all users.

• Incremental problems arise in situations where the
problem instance changes (slowly) over time. That
is, the problem instance is not provided “all in one
piece” but rather, over time, pieces of the instance
may arrive and depart. This situation occurs often
in a variety of dynamic problems. Incremental algo-
rithms incorporate changes without any knowledge
of the existence and nature of future changes. The
goal in solving incremental problems is to develop
algorithms that can accept changes in the prob-
lem instance (either additions or deletions) and can
compute a good solution to the modified problem
instance in significantly less time than an algorithm
that computes a solution for the modified instance
“from scratch”.

In this paper we study incremental channelization,
where the channelization instance can change over time.
We focus on the problems of: a) adding a flow (along
with the users who want to receive that flow); and b)
adding a user (along with the preferences of that user).
These are both changes that are likely to occur fre-
quently in real situations. For example, in a military
situation, flows may be the outputs of fields of sensors,

purposes notwithstanding any copyright notation thereon.

1 of 7

Paper ID# 900146.PDF

and users may be soldiers located in different geographic
areas or with different responsibilities (thus having dif-
ferent sets of sensors in which they are interested). Nei-
ther the set of flows nor the set of users is likely to be
static. Rather, over time, additional sensor fields (i.e.
flows) may become available and/or additional soldiers
(i.e. users) may require knowledge of particular flows.
This adding of flows and/or users is precisely the situa-
tion addressed in incremental channelization.

For the problems of adding a flow and adding a user we
provide complexity results and incremental algorithms.
Specifically we: 1) show that natural incremental ap-
proaches are NP-hard; 2) show that approximating the
optimal solution with less than a log factor is unlikely;
and 3) describe incremental algorithms that are no more
than a log factor of the optimal. In light of result 2, this
is the best possible approximation result. In addition to
the theoretical results, a case study is given for the prob-
lem of adding a flow, providing simulation results com-
paring the effectiveness of the solutions produced by our
incremental algorithms with solutions from algorithms
doing full recomputation.

The remainder of this paper is organized as follows. In
the next section we provide a formal definition of chan-
nelization and summarize existing work. In Section 3
we discuss the complexity and approximation results for
the problems of adding a flow and adding a user. Sec-
tion 4 describes the experimental study. Finally, Sec-
tion 5 summarizes our results and outlines future work
and open problems.

2 Background and Related Work

This section describes background and related work on
channelization including a formal definition.

Channelization was first studied in [AG01] and the
description given here is based on their formulation,
though with modified notation.

An instance of the channelization problem consists of:

• t, a positive integer indicating an upper bound on
the number of multicast groups to be formed

• a set F of flows F1, F2, ..., Fm where the rate (in
bytes) of flow Fi is denoted by si

• a set of users U1, U2, ..., Up

• for each user Ui, a set Pi ⊆ F – these are the pref-
erences of user Ui and specify the minimum set of

flows that must be delivered to Ui

• constants w1 and w2 each in the range [0, 1] such
that w1 + w2 = 1

A solution to a channelization instance is a surjective
mapping M from flows and users to 1, 2, . . . , t such that
for each user Ui, Pi ⊆ ∪j∈M(Ui)Gj , where Gj = {Fk : j ∈
M(Fk)}. Relative to this mapping, if j ∈ M(Ui) then
user Ui is said to subscribe or belong to group j, and
if j ∈ M(Fi) then flow Fi is said to belong to group j.
Thus, we can restate the requirement for the mapping M
to be: for each user, each of the flows desired by that user
must belong to at least one of the groups subscribed to
by that user. Note that since the mapping is surjective,
each user and each flow may be mapped to more than
one group.

The cost of a solution is the weighted sum of a) the
cost of getting the flows to the groups and b) the cost
of multicasting all of the flows assigned to a group to
each user subscribing to that group. Those costs are
dependent on the rates associated with the flows and,
in the case of sending the flows from the group host to
the users, on a “topology dependent coefficient” [AG01]
that is unique to each flow and user pair. In this pa-
per, as in both the complexity and experimental results
in [AG01], we assume that each of these topology de-
pendent coefficients is 1. It follows that the cost of a
solution is

t∑

i=1

∑

j:Fj∈Gi

(w1 ∗ sj + w2 ∗ sj ∗ ui) (1)

where ui is the number of users that subscribe to Gi.
Note that when w1 = 0 and w2 = 1, this sum is equal to
the total size of the flows delivered to users.

In [AG01] two versions of channelization were pro-
posed. In the first, constrained channelization, each
flow can be assigned to exactly one group, while in
the second, unconstrained channelization, there is no
such restriction. They showed that both versions are
NP-complete. [AG01] also proposed five heuristic algo-
rithms for unconstrained channelization and examined
their performance using an experimental study. The pri-
mary conclusions were that simple heuristics “generally
do not provide much improvement over a random as-
signment scheme”, and that a heuristic called flow-based
merge provides a good approximation to the result ob-
tained by exhaustive search. That heuristic works as fol-
lows: Initially there are m multicast groups, each being
assigned a single unique flow. Then, while the number

2 of 7

Paper ID# 900146.PDF

of groups exceeds t, iteratively merge two groups whose
merger will least increase the cost of the solution as given
by equation (1). Note that in this approach each flow
will be assigned to just a single group, while users will
generally subscribe to multiple groups.

3 Complexity Analysis

There are a variety of ways in which an instance of (un-
constrained) channelization can change in an incremen-
tal fashion. In this paper we study the following two
incremental channelization problems:

• The addition of a flow. Along with the added flow,
a set of (existing) users who add that flow to their
preferences is provided.

• The addition of a user. Along with the added user,
the flow preferences of that user are provided.

We consider each of these incremental problems to be
critical because they require action in terms of the chan-
nelization solution. In the case of adding a user for ex-
ample, the solution must be changed so that the user
does indeed subscribe to groups in a way that provides
the flows of interest to that user. In contrast, if a flow,
or user, or even just a user preference, is deleted then
the existing channelization solution remains valid (albeit
with the deleted items removed).

3.1 Adding a flow

In this section we consider how to handle the addition
of a flow. Recall that along with that flow, we are given
a list L of existing users who will add that flow to their
preferences. To handle this new flow, we consider three
approaches.

3.1.1 Single group approach (SGA)

In this approach the new flow f , whose rate is denoted
by sf , is added to just a single existing group, and all of
the users in L will add a subscription to that group (if
they are not already subscribed to that group). The goal
in selecting the group is to minimize the addition to the
total delivered flow cost. This can be determined in time
O(tp) by determining for each group Gi,

∑

j:Fj∈Gi

sj ∗u′i +

sf ∗u′′i , where u′i is the number of users in L that do not
subscribe to Gi and u′′i is the number of users either in

L or subscribed to Gi. Note that the latter term reflects
the delivery of the new flow to all subscribers to Gi. The
optimal group is then the group with smallest computed
value.

Unfortunately, while this approach is easy to imple-
ment, it may result in a very bad solution in the worst
case. Consider the following example: There are just
two groups, with half the members of L subscribed to
one group and the other half subscribed to the second
group. Assume that the number of flows in each group
is k, that the number of subscribers to each group is s,
that each flow rate is 1, and that w1 = 0 and w2 = 1.
Then if the flow is added to just one of the two groups,
then each of the s subscribers to the other group must
also now subscribe to the group where the flow is added.
Thus, the addition to the total solution cost is ks + 2s.
In contrast, if the flow is added to both groups, then no
new subscriptions are required and the added solution
cost is simply 2s. Clearly, since there is no apriori bound
on k, the single group solution is arbitrarily worse than
a solution allowing the flow to be assigned to multiple
groups.

3.1.2 Static subscription approach (SSA)

In this approach, the new flow is added to a minimum
number of groups so that all of the users in L do indeed
receive that flow. Here, users do not have their sub-
scriptions changed nor are the costs of delivery of the
flows from the subscribed groups to the users taken into
account in making the decision about to which groups
the new flow should be added. Despite the seeming sim-
plicity of this approach, it turns out that computing an
optimal solution is quite hard:

Theorem 3.1 The SSA for adding a flow to an in-
stance of channelization is NP-complete.

Proof: To show that the decision version2 of SSA is
NP-complete we use a reduction from the known NP-
complete problem:

2In the decision version of SSA we are given the regular inputs
along with a parameter k, and are asked to determine if there is a
solution of cost at most k. Formally:
Static Subscription Approach (SSA):

• Instance: Groups G1, . . . , Gt, a list L of users who will sub-
scribe to a new flow, and a positive integer k.

• Question: Does there exist a set X of at most k groups such
that each of the users in L subscribes to at least one of the
groups in X.

3 of 7

Paper ID# 900146.PDF

Hitting Set (HS) [GJ79]:

• Instance: A set M , finite subsets S1, S2, . . . , Sn of
M , and a positive integer k.

• Question: Does there exist a subset H of M such
that |H| ≤ k and such that |H ∩ Si| ≥ 1 for each i,
1 ≤ i ≤ n?

To reduce HS to SSA we use the following construc-
tion:

• There is one group in SSA for each element in M
from HS.

• For each subset Si in HS there is a user in SSA.
That user then subscribes to each of the groups cor-
responding to an element in Si.

Clearly the construction can be completed in linear time.
The correctness of the construction is straight-forward
and is omitted here due to space constraints.

Because this transformation is approximation preserv-
ing [C97], we immediately have:

Corollary 3.1 Unless P = NP , no approximation al-
gorithm for SSA can have an approximation ratio3 less
than Ω(logn).

What then is possible in regard to approximation al-
gorithms for SSA? Consider the greedy type algorithm
shown in Algorithm 1.

Algorithm 1 – ICNF - INCREMENTAL CHANNELIZATION

FOR A NEW FLOW
1: while there exist unsatisfied users in L do
2: Let Gi be a group having the largest number of un-

satisfied subscribers from L;
3: Assign the new flow to Gi;
4: Update L;

[Note: A user in L is satisfied if it subscribes to a group that

contains the new flow. Otherwise a user in L is unsatisfied.]

Using similar results for greedy algorithms for the Hit-
ting Set problem, we can show that:

Theorem 3.2 The approximation ratio of Algorithm 1
- ICNF is O(logn).

3The approximation ratio of an approximation algorithm is the
worst case ratio between the size of the solution produced by the
approximation algorithm and the size of an optimal solution.

Thus, from a theoretical perspective, the greedy ap-
proach can, on the one hand, have a very bad perfor-
mance, yielding a solution that is a factor of log n larger
than the minimum. But, on the other hand, from Corol-
lary 3.1, no other algorithm can do better in the worst
case. From the experimental perspective the story may
be quite different and we examine this issue in the case
study of Section ??.

3.1.3 Minimize uninterested users (MUS)

In this approach the new flow is added to multiple groups
with the goal of minimizing the sum over all groups
where this flow is added, of the number of subscribers
to that group. Note that if a user subscribes to two
groups, both of which will get this new flow, then that
user will be counted twice. Again in this approach user
subscriptions do not change.

Similarly to the reduction in the prior subsection, we
can use a reduction from the Weighted Hitting Set prob-
lem to show:

Corollary 3.2 The MUS problem (decision version)
for adding a flow to an instance of channelization is NP-
complete.

Likewise, it follows that:

Corollary 3.3 Unless P = NP , no approximation al-
gorithm for MUS can have an approximation ratio less
than Ω(logn).

To approximate an optimal solution for MUS, we use
the heuristic shown in Algorithm 2.

Algorithm 2 – WICNF - WEIGHTED INCREMENTAL

CHANNELIZATION FOR A NEW FLOW
1: Let ui be the number of subscribers to Gi;
2: while there exist unsatisfied users in L do
3: Let Gi be a group having the smallest cost ratio c =

ui/v where v is the number of unsatisfied subscribers to
Gi from L;

4: Assign the new flow to Gi;
5: Update L;

Using results for the weighted hitting set prob-
lem [GJ79] it follows that:

Corollary 3.4 The approximation ratio of Algorithm 2
- WICNF is O(logn).

4 of 7

Paper ID# 900146.PDF

Again, while the theoretical results are discouraging,
they do not address how the algorithm may perform
on the average or in typical scenarios. This question is
addressed through simulations described in Section ??.

We conclude this section by noting that although the
problem of adding a new flow is incremental with respect
to the solution to the instance of channelization, the al-
gorithms that we utilize are not themselves incremental
with respect to the underlying problem. Thus, our so-
lutions are based on solutions to Hitting Set. That is
regular Hitting Set, and not an incremental version of
Hitting Set.

3.2 Adding a user

In this section we consider how to change the channeliza-
tion assignments when a new user is added. Recall that
along with that new user, we are given their flow pref-
erences. We consider two approaches, described below,
to handling a new user.

3.2.1 Static assignment approach (SAA)

In this solution, the new user subscribes to a minimum
number of groups so that each of its preferences is met.
In this approach, flows do not have their assignments
changed nor are the costs of delivery of the flows from
the subscribed groups to the new user taken into account
in making the decision about to which groups the new
user should subscribe. As in the case of adding a flow,
despite the seeming simplicity of this approach, it turns
out that computing an optimal solution is quite hard:

Theorem 3.3 The SAA (decision version) for adding
a user to an instance of channelization is NP-complete.

Proof: To show that SAA is NP-complete, we use a
reduction from the classic NP-complete problem:
Set Cover (SC) [GJ79]:

• Instance: A universal set H, finite subsets
S1, S2, . . . , Sn of H, and a positive integer k.

• Question: Do there exist k of the base sets
Si1, Si2, . . . , Sik such that the union of those k base
sets is H?

To reduce SC to SAA we use the following construc-
tion:

• There is a flow for each element in H.

• The new user has one flow preference for each ele-
ment in H.

• There is a group Gi for each finite subset Si.

• A flow is assigned to group Gi if the element in H
that corresponds to that flow is in Si.

Clearly the construction can be completed in linear time.
The correctness of the construction is straight-forward
and is omitted here due to space constraints.

Because this transformation is approximation preserv-
ing [C97], we immediately have:

Corollary 3.5 Unless P = NP , no approximation al-
gorithm for SAA can have an approximation ratio less
than Ω(logn).

What then is possible in regard to approximation algo-
rithms for SAA? Consider the algorithm for SAA given
in Algorithm 3.

Algorithm 3 – ICNU - INCREMENTAL CHANNELIZATION

FOR A NEW USER
1: while there exist unsatisfied preferences for the new user

do
2: Let Gi be a group having the largest number of flows

corresponding to currently unsatisfied preferences of the
new user;

3: Let the new user subscribe to group Gi;
4: Update the remaining unsatisfied preferences;

Using similar results for greedy algorithms for the Set
Cover problem, we can show that:

Theorem 3.4 The approximation ratio of Algorithm 3
- ICNU is O(log n) where n is the number of preferences
of the new user.

Thus, from a theoretical perspective, the greedy ap-
proach can, on the one hand, have a very bad perfor-
mance, yielding a solution that is a factor of log n larger
than the minimum. But, on the other hand, from Corol-
lary 3.5, no other algorithm can do better in the worst
case.

3.2.2 Minimize delivered flows (MDF)

In this approach the new user is added to multiple groups
with the goal of minimizing the sum over all groups
where this flow is added, of the total rate of the flows as-
signed to that group. That is, we want to minimize the

5 of 7

Paper ID# 900146.PDF

total flow rate for the new user - these flows of course,
include both the ones given in its preferences as well as
the other flows delivered by the groups to which the user
subscribes (the flows the user did not desire). Note that
if a user receives the same flow from two different groups,
then that flow rate is counted twice since the flow is ac-
tually delivered twice. Note that in this solution flow
assignments to groups do not change.

Analogous to the prior section, we can show the fol-
lowing. The proofs are omitted due to space constraints:

Corollary 3.6 The MDF problem for adding a flow to
an instance of channelization is NP-hard.

Corollary 3.7 Unless P = NP , no approximation al-
gorithm for MDF can have an approximation ratio less
than Ω(logn).

Corollary 3.8 There is a polynomial time approxima-
tion algorithm for MDF having an O(logn) approxima-
tion ratio.

3.2.3 Adding a single user preference

In this section we consider how to handle the situation
where a user u adds a single preference to its set of pref-
erences. It turns out that this is relatively easy to ac-
commodate as follows. Let Fi be the newly desired flow.
There are two possibilities. Either Fi is located in a
group to which user u already subscribes, or it is not. In
the former case there is nothing to do. In the latter case,
there are two possible actions: Either user u adds a sub-
scription to a group that includes Fi, or Fi is added to a
group to which user u already subscribes. Accordingly,
we calculate two values:

• Determine the least total flow rate of the flows in a
group to which Fi is assigned. Call this least total
flow rate r1.

• Determine the least number of users of any group to
to which user u already subscribes. Let Gj be that
group and let N be the number of users in that
group. Then let r2 = N × si, which is the total ad-
ditional delivered flow rate for existing subscribers
to group Gj .

The action that is taken (u adds a subscription or Fi is
added to some group) depends on which of the values
r1 and r2 is smaller. Clearly this determination can be
made in polynomial time.

4 A Case Study - Adding a Flow

This section provides an experimental case study of the
performance of heuristics for the problem of incremen-
tally adding a flow. Recall (section 3.1) that we outlined
three approaches for handling the addition of a flow,
namely SGA, SSA, and MUS, and gave incremental al-
gorithms for handling each approach. In this section
we compare the performance of those incremental algo-
rithms with the results obtained by running the Flow
Based Merge (FBM) algorithm (section 2) of [AG01] on
the entire instance.

Our experiments are designed as follows: First, a
specific size instance of channelization is generated and
solved using FBM. Then, additional flows are added to
the instance one at a time, with the algorithms for SGA,
SSA and MUS each being applied 4. At the end of the
process, FBM is run on the entire final instance and
the final outputs of SGA, SSA and MUS are compared
against the output of that final run of FBM. In the next
several paragraphs we provide some details of this pro-
cess.

As noted, we begin by randomly generating problem
instances (sets of flows and users, along with flow rates
and preferences). This is done using parameters:

• high rate or low rate – Each flow is assigned either
“high” flow rate rH with probability Probr or “low”
flow rate rL with probability 1− Probr.

• user preference – Each flow is either popular with
probability Probp or unpopular with probability
1 − Probp. Note that the popularity of a flow is
uncorrelated to its rate. A user will add a popular
flow to its preferences with probability Probpop and
an unpopular flow with probability Probunp. Usu-
ally, Probpop >> Probunp.

As mentioned in Section 2, for the cost function we
assume each topology dependent coefficient is 1. We
also let w1 = w2 = 1. Thus, the cost of a solution to
a channelization instance is

∑t
i=1

∑
j:Fj∈Gi

(sj + sj ∗ ui)
where sj is the rate of flow Fj and ui is the number of
users that subscribe to Gi.

The parameters utilized in our experiments were set
as follows: Initially a channelization instance was gen-
erated having 25 flows, 10 groups and 100 users, with

4Those are: the algorithm in section 3.1.1 for SGA; the INCNF
algorithm for SSA; the WICNF algorithm for MUS. In this section
we refer to each algorithm by the name of the problem it handles.

6 of 7

Paper ID# 900146.PDF

rH = 10, rL = 1, P robr = 0.2, P robp = 0.4, P robpop =
0.6, P robunp = 0.1. The FBM algorithm was run on this
initial instance to produce an initial solution (i.e. assign-
ment of flows and users to groups). Then, 25 new flows
were introduced along with user preferences for those
flows. The flow rate and user perferences were generated
using the same parameters as for the original 25 flows.
These 25 new flows were added to the original 25 flow
instances one by one and each of SGA, SSA and MUS
was run for each added flow. In addition, FBM was run
on the entire instance containing the 50 flows. For each
of SGA, SSA, MUS and FBM, the cost of the solution
that was produced when all 50 flows are included was
calculated. Figure 1 shows the results. There, results
are given for 30 different channelization instances as out-
lined above. The x-axis shows the experiment number
and the y-axis shows the solution cost.

From the figure, we see that SGA provides the best
results of the three heuristics, and that the results pro-
vided by SGA are almost as good as FBM (sometimes
even better5!). Note that this is precisely the result that
one hopes for in designing incremental algorithms! No-
tice also that both SGA and FBM implicitly include a
constraint that no flow will be assigned to more than
one multicast group. In contrast, SSA and MUS allow
each flow to be assigned to multiple multicast groups.
It seems that a side affect of this assignment is that
higher numbers of unnecessary flows are delivered, hence
the higher costs of SSA and MUS. This also explains
why MUS performs worse than SSA because MUS tends
to assign the new flow to more groups than SSA since
smaller sized groups may achieve better cost ratios.
Again, this increases the possibility of unnecessary flows
being delivered to users.

Along with the specific simulation reported above, we
have run additional simulations varying problem param-
eters. Those results, not reported due to space con-
straints, all show the same general results (i.e. SGA
almost as good as FBM, etc) as those described here.

5 Conclusions

In this paper we studied two incremental problems as-
sociated with channelization. We showed that most ap-
proaches to these problems are based on NP-hard prob-
lems and cannot be approximated within log n factors.
We also gave algorithms that achieve those log n approx-

5Recall that FBM is also a heuristic that does not guarantee an
optimal solution.

Figure 1: Cost incremental versus full

imation factors. In addition we provided an experimen-
tal case study of the problem of adding a flow, compar-
ing the performance of our incremental algorithms with
solutions based on full recomputation of a solution.

One open problem is how to handle changes in the
number of groups. For instance, if the group count is
decremented, what should be done? One approach is to
delete a group and reallocate its subscribers. There are
two issues: First, what is the best method of selecting
a group to delete, and second, once that group is se-
lected, how should the flows and users associated with
that group be reassigned? This seems to be a more dif-
ficult version of the basic channelization problem, since
groups already have some assigned users and flows.

Acknowledgement: We thank Professor S.S. Ravi of the
University at Albany for his insights.

Disclaimer: The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U. S.
Government.

References

[AG01] M. Adler, Z. Ge, J. F. Kurose, D. Towsley and S.
Zabele. “Channelization Problem In Large Scale Data
Dissemination”, ICNP, 2001, pp. 100–109.

[GJ79] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco,
CA, 1979.

[C97] P. Crescenzi. “A Short Guide To Approximation Pre-
serving Reductions”, Proc. 12th IEEE Conf. on Com-
putational Complexity, 1997, pp. 262–273.

7 of 7

