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Abstract

Rendezvous point (RP) selection for multicast groups is
the problem of selecting a node to serve as the RP-host
for a multicast group. We consider rendezvous point
selection in the context of channelization where groups
have been established based on user preferences for a set
of available flows. Thus, each of the flows associated
with a group will arrive at the node that serves as the
RP-host for that group, from which those flows will be
multicast to the group subscribers. We study the simul-
taneous assignment of RP-hosts for a collection of mul-
ticast groups with the dual goals of a) not overloading
any single node serving as a host; and, b) minimizing
the total network traffic. Toward those ends we consider
two versions of the problem. For Bounded Host Assign-
ment, we give a polynomial time algorithm for finding an
optimal assignment. For Host Traffic Constrained As-
stgnment, we establish that the problem is NP-complete
and then study approximation algorithms. Simulation
results are provided for the latter problem comparing the
effectiveness of the solutions produced by our algorithms
with optimal solutions.

1 Introduction

The study of rendezvous point selection in this paper is
based on taking as input a collection of multicast groups
along with a set of network nodes that are potential
hosts and a matrix where c¢;; specifies the network cost
of assigning group 4 to host j. When a host is assigned
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to a group this means that each flow received by that
group is routed from its source to the group host which
then multicasts those flows to the users subscribing to
the group. The goal is to assign a host to each group in
a way that minimizes the total cost of that assignment.

This problem arises in the context of channelization
[AGO1] wherein a specified number of multicast groups
are formed from a set of flows, a set of users and a set of
user preferences. The goal in channelization is to con-
struct groups in a way that the network cost in terms of
the total sizes (or numbers) of flows delivered to users is
substantially less in comparison with using a single mul-
ticast group wherein all flows are delivered to all users.
Note that channelization computes network costs so as
to minimize a cost function involving the total band-
width consumed and the amount of unwanted informa-
tion received by receivers [AG01]. The channelization
problem itself does not consider the specific cost of get-
ting the flows to the users. This aspect, wherein costs
are computed for each possible assignment of a group to
a host and the goal is to assign groups to hosts in such
a way that the total network cost is minimized, is the
subject of this paper.

Specifically, we consider the simultaneous assignment
of RP-hosts for a collection of multicast groups with the
dual goals of a) not overloading any single node serv-
ing as a host; and, b) minimizing the total network
traffic. Toward those ends we consider two versions of
the problem. In the first, Bounded Host Assignment
(BHA), there is a limit on the number of groups that
can be assigned to any host. For this problem we give
a polynomial time algorithm for finding an optimal as-
signment. For the second, Host Traffic Constrained As-
signment (HT'CA), there are host specific limits on the
total flow bandwidth that a host can handle. We es-
tablish that HT'C A is NP-complete even if minimizing
the total network cost is not a consideration, and then
discuss approximation algorithms for HT'C A both with
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and without considering the total network cost. Simu-
lation results are provided for the latter problem com-
paring the effectiveness of the solutions produced by our
algorithms with optimal solutions.

2 Background and Related Work

This section describes background and related work on
rendezvous point selection and on channelization.

The concept of a rendezvous point (RP) as utilized in
this paper appears in CISCO documentation on “Con-
figuring a Rendezvous Point” [CI08] which says: An RP
acts as the meeting place for sources and receivers of
multicast data. ... sources must send their traffic to the
RP. This traffic is then forwarded to receivers down a
shared distribution tree. In [CI08], while general RP as-
signment methods are described, no specifics are given
as to how to best select an RP.

Four categories of methods for RP selection? are de-
scribed in [CZD95]. Simulation results in [CZD95] show
that topology based and group based selections signifi-
cantly outperform arbitrary and random selections.

Several natural RP selection algorithms and a range
of performance metrics are considered in [FHM98]. The
overall conclusion is that center based methods perform
the best and that among those, using the center of the
multicast tree is recommended.

In [MWMO2] RP selection is studied in a videocon-
ferencing setting where all participants are both sources
and receivers. Here, the RP selection goal is to minimize
a weighted sum of the costs of a unicast tree wherein
group nodes forward packets to the RP and a Steiner
tree wherein the packets are distributed to all members
of the group.

Important aspects of the RP selection problems that
we study relate to the underlying channelization prob-
lem and to the groups formed as a result of solving that
channelization problem. Channelization was first stud-
ied as a mechanism for creating a collection of multicast
groups in [AGO1] and the description given here is based
on their formulation, though with modified notation. An
instance of the channelization problem consists of:

e ¢, a positive integer indicating an upper bound on
the number of multicast groups to be formed

2In several of the works cited in this section, the term “core”
is used instead of RP. For clarity and consistency we will use the
term RP in place of core in describing those papers.

e a set F' of flows Fy, Fy,---, F,, where the size (in
bytes) of flow F; is denoted by s;

e a set of users Uy,Us,---,U,

e for each user U;, a set P; C F — these are the pref-
erences of user U; and specify the minimum set of
flows that must be delivered to U;

A solution to a channelization instance is a surjective
mapping M from flows and users to 1,2, ---,¢ such that
for each user Us;, P; C Ujcp(u,)Gj, where Gj = {F}, :
j € M(Fg)}. Relative to this mapping, if j € M(U;)
then user U; is said to subscribe or belong to group j,
and if j € M (F;) then flow Fj is said to belong to group
j. Thus, we can restate the requirement for the mapping
M to be: for each user, each of the flows desired by that
user must belong to at least one of the groups subscribed
to by that user. Note that each user and each flow may
be mapped to more than one group.

3 Problem Specification

In this section we formally define the two problems stud-
ied in this paper. For both problems we assume that
there is an underlying channelization problem that has
already been solved wherein groups have been created
based on user requests for flows. We begin with the
most basic RP assignment problem, where a node can
serve as the RP for at most a single group:

Bounded RP-Host Assignment (BHA):

e Input: A set GG of t groups, a set H of n hosts, and
values ¢;; for 1 <7 <t and 1 < j < n, where ¢;;
indicates the network cost that is incurred if host
Hj serves as the RP for group G;.

e Output: An injective mapping f from G to H such
t

that Z Ci f (i), the total network cost, is minimized.
i=1

We have several comments about this problem formu-
lation. First, for the input, note that the costs ¢;; can
be calculated in a number of ways. Section 4 discusses
the calculation of this cost in detail. Second, note that
the set of hosts could possibly include all of the net-
work nodes or could consist of a limited subset of them.
Regardless, we assume that the number of hosts is at
least equal to the number of groups. Third, for a given
output, we say that group G; is assigned to host H ;.
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Further extending the way in which hosts might con-
strain the groups for which they serve as the RP, we
consider a host traffic constrained version of the prob-
lem. That is, the critical aspect for a host is not the
number of groups for which it serves as RP, but rather
the total amount of traffic passing through that host as
a consequence of that host serving as an RP. In the fol-
lowing each host specifies an upper bound on the total
traffic that it is willing to handle as an RP:

RP-Host Traffic Constrained Assignment (HTCA):

o A set G of t groups, a flow size f; for each group, a
set H of n hosts, traffic capacity bounds b; for each
host, and values ¢;; for 1 <i <tand 1 < j < n,
where ¢;; indicates the network cost that is incurred
if host Hj serves as the RP for group G;.

e QOutput: An injective mapping ¢ from G to H for
Whichtthe traffic bounds for each host are inviolate

and Z Cig(i)> the total network cost, is minimized.
i=1

4 Channelization Considerations

The fundamental question addressed in this paper is how
to assign groups to hosts so as to minimize network costs.
A key question then is: What is the network cost of
assigning a group to a particular host? While making
this determination is somewhat orthogonal to the main
question that we study, it remains a critical factor in
the overall cost of the solution that we produce. In this
section we discuss how we determine this cost. At the
outset we note that the algorithms and solutions we give
in subsequent sections are not dependent on the use of
these particular costs.

The value that we utilize in this paper as the cost of
assigning a group G; to a host H; is based on the cost of
transmitting these two sets of data: 1) for each flow in
G, the information provided by that flow is transmitted
from the source of the flow to H;; and 2) those flows are
then transmitted using multicast to the users who are
subscribing to G;.

In this paper our goal is to have the cost associated
with assigning G; to Hj reflect as closely as possible the
total network traffic created by that assignment. Ac-
cordingly, we sum the costs for the two components item-
ized above. We compute those two costs as follows:

1. We take the cost of transmitting a flow Fj to H;
to be s, * leny;, where s, is the size of Fy, in bytes

(as defined in section 2.2) and leny; is the length
of the shortest path in the network from the source
of Fj, to H;. Note that the shortest paths between
Hj and all of the flows from all of the groups can
be computed with a single run of Dijkstra’s shortest
path algorithm.

2. The cost of transmitting the flows from H; to the
users depends on the multicast tree that is utilized.
Such trees are most often based on Steiner trees
rooted at Hj;. Since finding optimal Steiner trees
is NP-hard, the use of a heuristic is required. Note
that the main algorithmic results of this paper are
independent of which heuristic is utilized. However,
for definiteness we choose to use, for group G;, the
Steiner tree that results from merging the shortest
paths (in terms of the number of links) from each
user in G; to the prospective host H;. Thus, the
cost of transmitting the flows from H; to the users
in G; is the combined size of those flows multiplied
by the number of links in the constructed Steiner
tree.

Theorem 4.1 The total cost of assigning each group G;
to each host H; can be determined in time O(e+vlogv+
') where there are e links and v nodes and €' is the sum
of the sizes of the computed Steiner trees.

We conclude this section by noting that there are a
multitude of other possibilities for the network cost.

5 BHA in Polynomial Time

This section describes a polynomial time algorithm for
solving the BH A problem. The approach we take is to
construct a complete bipartite graph, where one set of
nodes corresponds to the groups and one set of nodes
corresponds to hosts. The edge between a group and
a host is weighted with the network cost if that host is
the RP for that group. The problem then becomes one
of finding a minimum cost mazimum matching® for the
constructed graph. The details are given in Algorithm 1.

In the remainder of this section we analyze Algo-

rithm 1. The following theorem follows directly from
the statement of the algorithm:

3In minimum cost maximum matching, the objective is to find
a 1:1 matching with as many matches as possible, and among all
such matchings, to find one that minimizes the sum of the costs of
the edges in the matching.
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Algorithm 1 - OPTIMAL BHA ALGORITHM
Input: An instance (G, H,c;;) of BHA.
Output: An injective mapping f from G to H.

1: Construct a complete bipartite graph BG = (Vy, Vj,, E)
where there is one vertex in V, for each group in G, and
one vertex in V}, for each host in H. The edge between
the vertices corresponding to group G; and host H; has
weight ¢;;;

2: Compute a min cost mazimum matching f of BG;

3: returnf;

Theorem 5.1 The running time of Algorithm 1 is O(tx
N+ Towm) where O(Twm) is the running time of an
algorithm for minimum weight mazimum matching.

The present best running time for minimum weight
maximum matching is O(n(m + nlogn)) [G90].

Next we discuss the correctness of the algorithm. We
begin by noting that since the graph constructed in step
1 is a complete bipartite graph, and since we assume that
|G| < |H|, it follows that the matching computed in step
2 is of cardinality |G|. Thus, every group is matched
with a host. Furthermore, since the graph constructed
in step 1 contains a edge between every group and ev-
ery host, it is possible for any group to be matched with
any host, and more generally, any matching between the
groups and the hosts is possible. Since step 2 finds the
minimum cost matching of cardinality |G|, this assign-
ment of groups to hosts is, as desired, of minimum total
cost. Thus, we have:

Theorem 5.2 Algorithm 1 computes an injective map-
ping from G to H such that the total network cost is
minimaized.

In the remainder of this section we relax the constraint
that each host can be the RP for a single group by allow-
ing each host to specify the maximum number of groups
for which it is willing to serve as the RP. Accordingly
we associate a non-negative integer d; with host H; in-
dicating that H; is willing to serve as the RP for up to
d; groups. To solve this relaxed version of problem, we
extend Algorithm 1 as follows:

1. For each host Hj, create hj nodes in V. We say
that each of these nodes mirrors H;.

2. The edge between the vertex corresponding to
group G; and any vertex that mirrors host H; has
Weight Cij-

The correctness of the extended algorithm follows
from the construction and the proof of the correctness
of Algorithm 1. The running time of the extended al-
gorithm is based on the number of vertices in V} and
Vy:

Theorem 5.3 The running time of extended Algo-
n

rithm 1 is O(t x d' + Tpwm) where d = Zdj and
j=1

O(Tiwm) 18 the running time of an algorithm for mini-
mum weight maximum matching.

6 HTCA Complexity

In this section we consider the RP selection problem
when there is a bound for each potential host in H of
the total traffic that may be handled by that host. Such
constraints are related to quality of service issues in not
overloading a particular host.

We begin by noting that associated with each group
there is a set of flows provided by that group and a set of
users who subscribe to the group. Note that if there is a
bound on the traffic handled by a host and if each host
can only be assigned a single group, then the problem
can be handled by the algorithm of the prior section by
simply not including a (group, host) edge in the bipartite
graph for a host that cannot handle a particular group
because the total size of the flows for that group is larger
than the traffic bound for that host.

Thus, we assume that there is no apriori bound on
the number of groups that may be handled by any given

RP-host. Rather, there is only a constraint on the total
size of the flows handled by the RP-host.

6.1 The complexity of HTCA

In this section we consider complexity issues associated
with HTCA. We begin by establishing:

Theorem 6.1 RP-host traffic constrained assignment
(HTCA) is strongly NP-complete.

The proof is based on a reduction from the 3-Partition
problem [GJ79]. The details are omitted here due to
space constraints.

Note that because HT'CA is strongly NP-complete,
there is no possibility of a pseudo-polynomial algorithm
when the number of hosts is not fixed. Also, by doing the
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reduction from Partition instead of 3-Partition, we can
show that the host assignment problem is NP-complete
even there are just two hosts.

6.2 Approximation algorithms for HTC A

In this section we consider approximation approaches for
two versions of HT'C'A where we do (do not) consider the
issue of minimizing the network cost as well as meeting
the host capacity bounds.

6.2.1 HTCA without network costs

We begin by considering HT'C' A when minimizing the
network cost is not an issue. That is, the goal is to
assign groups to hosts so that a maximum number of
groups are assigned to hosts and so that all of the host
capacity bounds are respected. We will refer to this as
MAG-HTC A (Maximize Assigned Groups). Relevant to
MAG-HCT A is the Multiple Knapsack Problem (MKP):

e Instance: A pair (B, S) where B is a set of m knap-
sacks and S is set of n items. Associated with each
knapsack is a capacity and associated with each
item is a size and a profit.

e Question: Find a subset U of S of maximum profit
such that the U has a feasible packing in B.

It is straight-forward to change an instance of MAG-
HTCA into an instance of MKP by letting hosts be-
come knapsacks, letting host capacity constraints be-
come knapsack capacities, and letting groups be items
with sizes equal to flow sizes and with all profits being
1. Note that the profit of 1 reflects the assignment of
the group to a host. Since there is a PTAS for MKP
[CK2000], we have:

Theorem 6.2 There is a PTAS (polynomial time ap-
proximation scheme) for MAG-HTC A.

Thus, given any ¢ > 0, there is a polynomial time
algorithm that produces a solution to MAG-HTC A that
is within a 1+ ¢ factor of the maximum number of groups
assigned to hosts.

6.2.2 HTCA with network costs

Here we consider the assignment of groups to hosts so
that the host capacity bounds are respected and so that

the network cost is minimized. This is a difficult dual op-
timization problem since HT'C'A is NP-hard even with-
out trying to minimize the network cost. In this sec-
tion we consider four approaches to HT'CA with net-
work costs:

1. Reduction to Generalized Assignment: In the
Generalized Assignment Problem (GAP) [ST93], the in-
put is a set of independent jobs and a set of unrelated
parallel machines where job 7 requires time p;; when pro-
cessed on machine j and incurs a cost of ¢;;. Further,
each machine has a maximum processing time, and the
goal is to assign jobs to machines so that for each ma-
chine, the total time of its assigned jobs does not exceed
its maximum processing time and such that the total
incurred cost is minimized. The reduction of HTCA
with network costs to GAP is accomplished by map-
ping groups to jobs, hosts to tasks, flow sizes to times,
host traffic constraints to maximum processing times,
and network costs to costs. Note that this reduction
is approximation preserving, so that any approximation
algorithm for GAP will apply to HT'C A with network
costs. Indeed, an approximation algorithm for GAP is
given in [ST93]. That algorithm takes as input a value
C, and returns an assignment for which the total cost
does not exceed C' and in which the maximum process-
ing times are not exceeded by more than a factor of
2. Unfortunately, it is not clear how to utilize this for
HTCA. In HTCA, the host bounds are inviolate, hence
the only possible way to apply the algorithm of [ST93]
is to set the host capacity bounds to half of their actual
values. But, even then there is an issue in how to set C.
There is no apriori value for C and no apparent way of
estimating that value.

2. Greedy assignment on network cost: In this ap-
proach, for each group and each host we calculate a rela-
tive assignment cost (RAC) which is the network cost of
assigning that group to that host multiplied by the per-
centage of the host capacity used by that group. Then,
assignments of groups to hosts are done in increasing
order of RAC values. The details are in Algorithm 2.
It is easy to see that the running time Algorithm 2 is

Algorithm 2 — GREEDY RAC ASSIGNMENT

for each group ¢ and host j do
RAC;; « cij x (fi/b));
Sort the ¢ * n RAC values into non-decreasing order;
for each RAC;; in the sorted list do
if group i has not yet been assigned
and residual-capacity; > f; then
Assign G; to Hj;
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O(t * nlogtn) since sorting dominates. Details omitted
due to limited space we can also show:

Theorem 6.3 The worst case approrimation ratio of
Algorithm 2 is unbounded.

3. Geographic assignment: This method of assigning
groups to hosts is related to the geographic locations of
the flows and users associated with each group. Specifi-
cally, for each group and each host we calculate the Eu-
clidean distance from the Geographic centroid [H95] of
that group to that host. Then, we assign groups to hosts
in increasing order by distnace. The details are given
in Algorithm 3. Since the lower bound for computing
a convex hull in two-dimensions is O(nlogn) [Yao81],
we can show that the running time of Algorithm 3 is
O(Mazx(t * nlogtn, (m + p)log(m + p))). Details omit-
ted due to space constraints we can also show:

Theorem 6.4 The worst case approrimation ratio of
Algorithm 3 is unbounded.

Algorithm 3 - GEOGRAPHIC ASSIGNMENT
1: for each group i do
Compute the convex hull containing all of the flow
sources and users in group ¢;
Find the geographic centroid gc; of that convex hull;

o

for each group ¢ and host j do
dist;; < distance(ge;, Hj);
Sort the t x n dist values into non-decreasing order;
for each dist;; in the sorted list do
if group 7 has not yet been assigned
and residual-capacity; > f; then
10: Assign G; to Hj;

4. Using 0-1 Integer Programming (0-1 IP): Here,
we express HT'C A with network costs as a 0-1 Integer
Programming problem [GJ79]. This is done as follows:
Let x;; be a 0-1 variable indicating whether or not group
G; is assigned to host H;. Then:

Minimize 3 '_, D i1 Cij * Ty
subject to for each group ¢ and host 7,
t

Y wy<land Y fixa; < by, ay € {0,1}

j=1 i=1

Unfortunately, 0-1 IP is NP-hard [GJ79]. But, there
are efficient solvers such as CPLEX, GLPK, and
MINTO etc. Those solvers will often find an optimal
solution fairly quickly, though in the worst case the run-
ning time is exponential.

7 Simulation Results

In this section we describe simulation results for the
problem HTC A with network costs. Recall that in sub-
section 6.2.2 we describe four approaches to HT'C'A with
network costs. In this section we compare the perfor-
mance of the last three methods: the greedy algorithm
on RAC (referred to as RAC), the algorithm using Ge-
ographic centroid (referred to as Geocenter) and 0-1 In-
teger Programming.

Our experiments are based on channelization in-
stances generated by running the channelization algo-
rithm, Flow Based Merge (FBM) [AGO1]. That algo-
rithm works as follows: initially assign each flow to a
different multicast group. Then iteratively merge two
groups that least increase the network cost (considering
only the total bandwidth delivering flows to groups and
then to corresponding users). Once we have generated a
channelization solution, then RAC, Geocenter and a 0-1
IP solver CPLEX [CPL] are run on the groups of that
channelization solution. Some details of the experimen-
tal setup follow.

We begin by randomly generating an instance of chan-
nelization. Here, the flows and users are generated with
regard to the following parameters:

e high rate or low rate — Each flow, once created,
is assigned either high flow rate g with probability
Prob, or low flow rate r;, with probability 1— Prob,.

e user preference — Each flow is either popular with
probability Prob, or wunpopular with probability
1 — Prob,. Note that the popularity of a flow is
uncorrelated to its rate. A user will add a popular
flow to its preferences with probability Prob,, and
an unpopular flow with probability Proby,,. Usu-
ally, Probyop >> Probyyyp.

The network cost of assigning a group G; to a host H;
is ¢ijj = Zk:erGi si *leng; + fi* |Ts| where sy, is the size
of Fy in bytes, leny; is the length of the shortest path in
the network from the flow source Fj, to Hj, f; is the sum
of sizes of all of the flows in G; and |7%| is the number of
links in the Steiner tree rooted at H; with users as either
interior nodes or leaves. It follows that the final network
cost of assigning groups to hosts is Zle,j:g(i) cij where
g(7) is the mapping from G; to a host.

In Figure 1, we plot results of 30 different instances
with the following parameters: For each instance, 400
network nodes are randomly distributed in a square area.
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Figure 1: Cost comparison on different approaches

Then, 120 flows, 200 users and 20 hosts are randomly se-
lected from those nodes. Associated with flows and users
are their flow rates and user preferences generated with
rg = 10,7 = 1, Prob, = 0.3, Prob, = 0.4, Proby,, =
0.6, Probyy,, = 0.1. Also, associated with each host is a
capacity randomly generated in the range [60,80). The
FBM algorithm runs on this instance to produce an as-
signment of flows and users to 30 groups. RAC, Geo-
center and IP solver are then applied to map groups to
those hosts. The x-axis of Figure 1 shows the experiment
number, the y-axis shows the total network cost and the
table below shows the cost values (in thousands).

From the Figure 1, the two primary observations are
that 1) RAC performs nearly as well as optimal and 2)
that Geocenter does a bit worse than RAC. Note also
that Figure 1 shows cases for both RAC and Geocenter
where not all groups can be assigned to some host.

In the figure we only display results for 30 groups and
20 hosts due to space constraints. Results for other com-
binations of groups and hosts show the same trends as
in this figure.

8 Conclusions

In this paper we studied RP selection problems based on
an underlying channelization problem where groups have
been established. Two versions of the problem were con-
sidered. For BH A, we gave a polynomial time algorithm
based on the use of minimum cost maximum matching.
For HT'C A, we first established its NP-completeness and
then gave approximation algorithms for two versions of
HTCA where we do (or do not) consider the issue of
minimizing the network cost. For HT'C' A without net-
work costs (MAG-HTCA), we show that it is reducible
to MKP and thus there exist a PTAS for MAG-HTC A.

While for HT'C A with network costs, we show that it is
reducible to GAP. Beyond that, we present two greedy
algorithms, RAC and Geocenter, and also apply 0-1 TP
to the problem. We compare the performance of the four
approaches for the problem HTC A with network costs
and the results show that RAC is a good approximation.
Improvements to the results given here seem to depend

on improvements to approximation results to the MKP
or to the GAP.
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