
1

A Distributed Protocol For Adaptive Link Scheduling in Ad-hoc Networks1

Rui Liu, Errol L. Lloyd
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

Abstract -- A full y distributed protocol for adaptive link scheduling in multi-hop ad-hoc networks is
presented. The distributed and adaptive nature of ad-hoc networks makes centralized algorithms
inappropriate for use in practice. The protocol presented here is full y distributed and does not require any
global information other than an assumption of time synchronization. The protocol handles incremental
changes in the network topology through local actions without involving or affecting stations that are
geographicall y removed from the change. Concurrent topology changes are permitted if they are
separated by at least three hops. Experimental results establi sh that the protocol is competiti ve with
centralized non-adaptive methods both in running time and in the quality of the schedule.

Keywords—Ad-hoc network, link scheduling, distributed protocol, adaptive algorithm

1. Introduction and background

An ad-hoc network is a wireless network infrastructure that supports mobile communication.

Such networks are fully distributed, quickly deployable, multi-hop systems. Communication

channels are shared by all of the stations in an ad-hoc network, thereby enabling the transmission

of a station to be received by all stations within its transmission range. To achieve robust and

collision free communication, there are two alternatives. One is to utili ze a random access MAC

layer scheme. The other is to construct a transmission schedule. One variant, link scheduling in

the context of time division multiplexing (TDM) is the subject of this paper.

1.1 Link scheduling fundamentals

In link scheduling, it is guaranteed that a scheduled transmission on a link x→y wil l not result

in a collision at either x or y. In this context, two types of collisions must be avoided. Primary

interference occurs when a station transmits and receives at the same time. Secondary

interference occurs when a station simultaneously receives two or more separate transmissions.

Thus, two links assigned to the same time slot conflict if they are adjacent to the same station

(primary interference) or if there exists a third link from the transmitter of one link to the

receiver of the other link (secondary interference). In a link schedule, there may be no conflicts.

Formally, a link schedule consists of a sequence of fixed-length time slots, where each link is

assigned a time slot and a transmission cycle. A station may transmit over a link in the time slot

assigned to that link once every transmission cycle. Since the transmission of a station is

1 Prepared through participation in the Advanced Telecommunications-Information Distribution Research Program (ATIRP)
Consortium sponsored by the U.S. Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0002.

2

intended for a particular neighbor (i.e. links are being scheduled), the schedule must be such that

there are no collisions at the endpoints of the links scheduled in a particular time slot. Note that

transmission cycles may vary from link to link.

As in prior works, we assume that the network

is a unit disk network: links are bi-directional,

each station has an identical transmission range

R, and that the transmissions of a station will be

received by all stations within a Euclidean

distance of R. An example of a link schedule

appears in Figure 1. There, using the algorithm

of section 2.1, link E→C has transmission cycle

of 4, while all other links have transmission cycles of 8.

1.2 Adaptive link scheduling

 Classic applications of ad-hoc networks are battlefield communication, disaster recovery, and

search and rescue. In these situations, ad-hoc networks must be rapidly deployable and highly

scalable. Unfortunately, all of the existing link scheduling algorithms are centralized off-line

methods that require global knowledge of the network2. Whenever the topology of the network

changes, all of the stations in the network will have to wait until a new schedule is centrally

produced. This makes the network highly non-scalable.

An alternative approach is to utilize adaptive algorithms, which, given a link schedule for the

network, and a change in the network (by the joining or leaving of a station), appropriately

updates the schedule to correspond to the modified network. The twin objectives of adaptive

algorithms are much faster execution (than an off-line algorithm that computes a complete new

schedule) and the production of a high quality schedule. Note that the joining of a station will

introduce new links between the new station and its one-hop neighbors. These new links must be

assigned time slots before they can be utilized.

1.3 An overview of earlier results

A natural goal for link scheduling is to produce a schedule where the maximum transmission

cycle is minimized. Unfortunately, producing such optimal schedules is NP-complete [1], even

2 The one existing distributed algorithm [8] for related problems operates under the strong assumptions that: 1) each station uses
a unique quasi-orthogonal CDMA channel, and 2) the total number of stations in the network must be known by every station.
As such, the algorithm is not compatible with the problem framework utilized in this paper.

 5

 F A B C
 6 1 2 3 4

 3 2

 4 1
 D
 D E

Slot 1 2 3 4 5 6

A B D F
B A C
C E B
D A
E C C
F A

Fig. 1. Example of link scheduling.

3

for networks that may be modeled by a planar graph. For that reason, the research focus has been

on heuristic algorithms [2,4,7,9,10]. Two notable heuristics (both of which utilize a uniform

transmission cycle that is equal to the largest time slot used by any link) are:

• Pure Greedy [2]: Links are scheduled one at a time in an arbitrary order, with a link

assigned the lowest numbered time slot that does not create any conflict with the links

that have already been assigned time slots. Pure greedy is often the method of choice for

link scheduling due to its simplicity. It has a worst case running time of O(ρ2e) in unit

disk networks, where e is the number of edges in the network, and ρ is the maximum

degree of any station in the network.

• DLS [2]: This algorithm distributes the computation of the schedule (by use of a token),

but does not allow parallel computation of the schedule. Its performance is related to the

thickness of the network (thickness is the minimum number of planar graphs into which

the network can be partitioned). This is the only link scheduling algorithm that does not

rely upon the existence of a central site for computing the schedule. It does require the

use of global information at each station (passed along with the token). It has a worst case

running time of O(n logn + θρe) in unit disk networks, where n is the number of stations

in the network.

2. FUDIL - Fully Distributed Link Scheduling

 The primary result of this paper is a fully distributed link scheduling algorithm (FUDIL).

Notable features of FUDIL are:

• No global information is required. This means both that there is no central site, nor do

the individual sites require any global information.

• The method is fully distributed, allowing stations that are not geographically close to run

the scheduler simultaneously.

• Standard TDM slot synchronization is utilized. It is assumed that this is available

through GPS or analogous technology. Since this requires only that each station be

capable of reading a GPS signal, no uplink to the GPS satellite is necessary.

The specification of FUDIL is given in three phases. In section 2.1, we describe the scheduling

method as a centralized, nonadaptive algorithm. In section 2.2, we describe how to make the

method adaptive. Finally (section 2.3), we indicate how to make the method fully distributed.

4

2.1 The basic scheduling method of FUDIL

 In this section we describe the basic scheduling method as a centralized, nonadaptive method.

Recall that nonadaptive means that information about all of the network stations is available at

the outset to the centralized site. Using this information, each link is first assigned a

transmission slot according to the following algorithm.

Method Assign_All_Slots()
Mark every link as unassigned;
For each station A do

T_Slot_Assign(A);

Method T_Slot_Assign(A) // A is a station
 Let Link_List(A) contain all outgoing links of A;

 For every
�

 in Link_List(A) do

Conflict_Link_List(
�

) ← all links that conflict3 with
�

;

Con(
�

) ← Number of different transmission slots utilized by links in Conflict_Link_List(
�

);

Sort Link_List(A) in non-increasing order according to Con(
�

);
While Link_List(A) ≠ ∅∅ do

Let
�

 be the first link in Link_List(A);

T_Slot(
�

) ← Least transmission slot not utilized by links in Conflict_Link_List(
�

);

Delete
�

 from Link_List(A);

 Note that in this transmission slot assignment, the uncolored links around a given station are

assigned slots from the most to the least constrained. This allows for the highest likelihood that a

low numbered slot will be utilized for each link. The running time of T_Slot_Assign is O(ρ3) in

networks modeled by unit disk graphs.

 Once each link has been assigned a transmission slot, links are assigned transmission cycles.

Method Assign_All_Cycles()
// Conflict_Link_List(

�
) information should be available for every link

�
;

For every link
�

 do

 Max_C(
�

) ← max(T_Slot(u): u ∈∈ {
�

, Conflict_Link_List(
�

)});

 T_cycle(
�

) ← min{2i: 2i ≥≥ Max_C(
�

)}

 Clearly, the transmission cycle of a link is equal to the least power of two4 that is greater than

or equal to the largest of the transmission slots utili zed by
�

 or utilized by a link that conflicts

with
�

. The order in which links are assigned transmission cycles is irrelevant – the same set of

cycles will be assigned regardless of the order. The running time of Assign_All_Cycles is O(eρ2)

3 Recall from section 1.1 that two links conflict if either: 1) they are adjacent to the same station (primary interference); or, 2)
there exists a third link from the transmitter of one link to the receiver of the other link (secondary interference).
4 Actuall y, it follows from the proof of Theorem 1 that any integer i>1 wil l work in place of 2, provided all stations utilize the
same i. Intuitively however, 2 provides the highest level of schedule eff iciency, hence it is the value we utili ze.

5

which is O(nρ3). It follows that the total time for executing the basic scheduling algorithm is

O(nρ3) in a unit disk network

 That the algorithm produces a functionally correct schedule follows from the next theorem. A

proof of this result appears in the Appendix.

Theorem 1 For any two links A and B that conflict, if A and B are assigned transmission slots
and cycles as specified above, then A and B never transmit in the same slot.

2.2 Towards FUDIL: making the basic method adaptive

In this section we describe modifications to the basic scheduling method so that it adaptively

handles the joining or leaving of a station.

Joining of Stations: Consider adjusting the schedule when a single station, and its up to 2ρ

links, joins the network. Since these new links cannot introduce conflicts between existing links,

the schedule can be updated by executing T_Slot_Assign and then re-computing the transmission

cycles for each link that is in conflict with one of the newly added links. The worst case running

time for the joining of a station is O(ρ3), which is an order of magnitude (i.e. a factor of n) less

than simply rerunning either pure greedy, O(eρ2), or our basic scheduling method, O(nρ3).

Leaving of Stations: Consider adjusting the schedule when a single station (and all of its links)

leave the network. Such a change will never introduce conflicts into the schedule. It may be

however that some links will have a transmission slot/cycle that is larger than necessary. Such

links may be far removed from the station that leaves the network, due to a potentially long

sequence of links whose transmission slot may be reduced, and then whose neighbors may have

their slots reduced. We believe that such sequences are rare and we make adjustments in the

schedule only for links that are in conflict with deleted links. The method is as follows:

Method Delete(A) // A is the station that is leaving
Conflict_List(A) ← all links that conflict with a link incident on A;

For every
�

 in Conflict_List(A) do

 Conflict_Link_List(
�

) ← all links that conflict with
�

;

 Con(
�

) ← Number of different transmission slots utilized by links in Conflict_Link_List(
�

);

 If T_Slot(
�

) > Con(
�

) // checks if a change is needed

 Then T_Slot(
�

) ← Least transmission slot not utilized by links in Conflict_Link_List(
�

);

For every
�

 in Conflict_List(A) do

 Max_C(
�

) ← max(T_Slot(u): u ∈∈ {
�

, Conflict_Link_List(
�

)});

 If T_cycle(
�

) ≥≥ Max_C(
�

)*2 // checks if a change is needed

Then T_cycle(
�

) ← min{2i: 2i ≥≥ Max_C(
�

)};

6

 From a judicious maintenance for every link of it’s Conflict_Link_List, as well as information

on the transmission slots utilized by links in that list, and the use of dynamic tables, Delete can

be implemented in time O(ρ4) for a unit disk graph.

2.3 FUDIL: A fully distributed protocol

Although both the basic scheduling method and the adaptive version are centralized

algorithms, neither requires global network knowledge to schedule any individual link. Rather,

only information about that link, and links that conflict with that link, is required. This fact

enables a fully distributed protocol for link scheduling. Specifically, from the perspective of a

single station joining the network, scheduling the links associated with the station is easy, since

the station simply needs to execute the relevant adaptive algorithm from the previous section.

However, complications arise when changes in close-by portions of the network occur close

together with respect to time. In that situation, significant coordination is required to ensure that

conflicts do not occur. That coordination is the subject of this section.

• Distributed Method- Joining of Stations: The joining process utili zes two steps. The first,

registration, ensures that one and two-hop neighbors are prevented from joining the network

simultaneously. In the second, resolution, the actual schedule modifications are performed. To

facil itate these steps, we introduce a special time slot (a J_slot) into the schedule every k slots,

where k is a constant. A J_slot contains 5 sub-slots named B, R, C, H, and A. The lengths of

these 5 sub-slots are not necessarily the same.

Registration: Two sets of actions need to be described: those of the joining station A, and those

of online stations.

In regard to joining station A, at the first J-slot, A listens to sub-slot B. If A detects a

transmission in B, then A knows there is a station within two hops that is in the process of joining

the network. In this case, A will wait a random number of J-slots and try again. If there are no

transmissions in B, then A will broadcast a registration request in sub-slot R. This transmission

is heard (perhaps by recognizing a collision in case of multiple stations making such a

transmission) by all one-hop neighbors of A. If A does not detect any colli sion in that broadcast,

then it listens to sub-slot C. If there are no transmissions in C, then A will claim itself as a head

by broadcasting its ID in the subsequent H sub-slot. This transmission will be heard collision

free by all of the one-hop neighbors of A. If A detects a colli sion in sub-slot R or hears anything

in sub-slot C, then A knows that other stations within two hops are attempting to join the network.

7

Thus, A will wait a random number of J-slots and try again (to execute the full Registration

procedure).

In regard to an online station S, if S detects a collision in sub-slot R, then S will broadcast in

sub-slot C, otherwise S will remain silent. If S hears A’s registration information in sub-slot H,

then S will record A as it’s head and broadcast in all following sub-slots B until the joining

process is complete.

Note that registration will be completed in one J-slot if no stations that are within two hops

are simultaneously attempting to join the network.

Resolution: In this step a station that is now a head completes the scheduling of its links and also

initiates subsequent changes in the schedules of nearby links. In so doing, the joining station A

(a head): collects information on the schedule from its one and two hop neighbors; uses that

information to schedule its own links; and, transmits its schedule back to its one and two hop

neighbors, whereby those neighbors update the transmission cycles (but not slots!) of their links.

The collection and transmission of information by station A is complicated by two factors:

• The links of A are not yet scheduled, so A must communicate with its neighbors by other

means.

• Two heads that are three hops away need to

coordinate their scheduling so as to avoid conflicts. For

example, in Figure 2, suppose A and D are joining

stations, and B and C are online stations. The link(A→B)

conflicts with link(C→D).

These complications are handled by having A communicate with its one hop neighbors via

particular subslots of the J-slots, and by having its one and two hop neighbors utili ze their

already scheduled links to transmit information to and from the two hop neighbors of A. The

details of this coordination are omitted due to space constraints.

Distributed Method - Leaving of Stations: Due to space constraints we omit the specification

of the method for handling the deletion of stations. We note only that the total number of

messages sent in processing the deletion of a station is O(ρ3).

 A B C D

 Fig. 2

8

3. Experimental Results

 Recall that the alternative to the use of fully distributed adaptive algorithms is to utilize off-

line centralized algorithms that re-compute the entire schedule after each change to the network.

In that regard, the primary performance issue for fully distributed algorithms is:

What is the quality of the generated schedule relative to a schedule produced off-line?

Recall from section 1 that the two primary off-line algorithms are Pure Greedy and DLS. In this

paper the performance of FUDIL is compared only against Pure Greedy. There are two reasons.

First, the running time of DLS is prohibitive even for networks of moderate size [2]. Second,

prior work [2] established that DLS outperformed Pure Greedy in practice by only 4 to 12%.

These two facts make Pure Greedy the algorithm of choice for practical purposes.

 This section details results for 24 sets of experiments, each of which is generated and

maintained on a 400 by 400 grid. The experiments were generated by varying:

1. Station placement within the network – there are two alternatives:

• Stations are placed in the network area using a uniform random distribution.

• The placement of stations in the network area is determined as follows: 20% of the

stations are uniformly randomly placed into two 100 by 100 areas which are at two

diagonal corners, and the other 80% of the stations are placed in the whole 400 by 400

area using a uniform random distribution (i.e. 30% of the stations are in 12.5% of the

area). This placement pattern is referred to as a skewed placement.

2. The station generation pattern – there are three alternatives:

• The initial network is empty. Then, 1000 stations join (one at a time). After each

insertion, the schedule is updated using FUDIL. Pure Greedy is run on the complete

network of 1000 stations.

• The initial network consists of 1500 stations, scheduled using pure greedy. Then, 500

randomly chosen stations are deleted (one at a time). After each deletion, the schedule

is updated using FUDIL. Pure Greedy is run on the final network of 1000 stations.

• The initial network consists of 1000 stations, scheduled using pure greedy. Then, 300

changes are made (one at a time). Each change consists of, with equal probability, one

station either joining or leaving the network. After each change, the schedule is updated

using FUDIL. Pure greedy is run on the final network of 1000 stations.

9

3. The station transmission range: The station transmission range was varied between 15, 25, 35

and 45 grid units. Within each trial all stations have an identical transmission range.

 The networks generated as a result of these experiments varied in average maximum one-hop

degree from 12 to 56 when the stations are uniformly distributed and from 19 to 110 in the

skewed placement. The results of the experiments are shown in Graphs 1 and 2. There, in

evaluating the algorithm performance we utilize a performance ratio obtained by comparing:

The average transmission cycle of a station as produced by FUDIL, against the average
 transmission slot of a station as produced by Pure Greedy.

Graph 1 shows the results of each experiment based on a uniform placement of stations, and

graph 2 shows the results for the skewed placement. In each graph there are three curves,

corresponding to the three station generation patterns. Each curve plots the performance ratio of

FUDIL for that station generation pattern for the four possible transmission ranges. Each point

on those curves represents an average over ten trials using those parameters. From graphs 1 and

2 we make the following observations and conclusions:

• In a sparsely connected network (small transmission range) FUDIL consistently produces

higher quality schedules than does pure greedy. This finding is significant since sparsity

is often the norm in ad-hoc networks (and FUDIL is fully distributed!).

• In the network with skewed placement of stations, FUDIL has a consistently superior

performance to Pure Greedy, even when the transmission range is large (hence the

maximum one-hop degree is large).

Graph 1

��� �

��� �

��� 	

��

��� �

��� �

15 25 35 45

Transmission Range

P
er

fo
rm

an
ce

 R
at

io

Add only Random Change Delete only

Graph 2

0.5

0.6

0.7

0.8

0.9

1

15 25 35 45

Transmission Range

P
er

fo
rm

an
ce

 R
at

io

10

• The quality the schedule produced by of FUDIL is quite uniform, in that it does not

depend on the type and order of network changes (i.e. joinings and leavings of stations).

Also of interest is the relationship between various network and schedule parameters:

• In a sparse network, the maximum transmission cycle is many times the minimum

transmission cycle. When the transmission range is 15, the average transmission cycle is

about 40% of the sum of the maximum and minimum transmission cycles. In a crowded

network, the maximum transmission cycle is two to four times larger than the minimum

transmission cycle. When the transmission range is 45, the average transmission cycle is

about 80% of the sum of the maximum and minimum transmission cycles.

• Since Pure Greedy assigns the same transmission cycle to all stations, while FUDIL does

not, it may seem that FUDIL is unfair. We argue that this is not the case, since the reason

that some stations can transmit less frequently is that they are in a crowded area, which

fundamentally restricts the frequency of transmissions in that area. By contrast, there is

no reason to penalize stations in uncrowded areas by insisting that they utili ze the same

cycle as stations in crowded areas. By allowing for different transmission cycles, FUDIL

significantly decreases the average transmission cycle.

Bibliography

[1] S. Ramanathan and Errol L. Lloyd, “Scheduling algorithms for multi-hop radio networks” , IEEE/ACM
Transactions on networking, VOL 1, NO.2, April,1993.
[2] Errol L. Lloyd and S. Ramanathan, “Eff icient distributed algorithms for channel assignment in multihop radio
networks” , Journal of High Speed Networks, 2:405-423, 1993.
[3] D. Bersekas and R. Gallager, Data Networks. Englewood Cli ffs, NJ: Prentice-Hall , 1987.
[4] I. Chlamtac and S. Kutten, “A Link Allocation Protocol for Mobile Multi -Hop Radio Networks” , in Proc.
GLOBECOM, 1985.
[5] Xiaopeng Ma and Errol L. Lloyd. “Practical adaptive algorithms for channel assignment in multihop radio
networks” , ATIRP Conference, 1998.
[6] Xiaopeng Ma and Errol L. Lloyd. A distributed protocol for adaptive broadcast scheduling in packet radio
networks
[7] I. Chlamtac and S. Lerner, “A Link Allocation Protocol for Mobile Multi-Hop Radio Networks” , in Proc.
GLOBECOM, 1985
[8] D. J. Baker, A. Ephremides, and J. A. Flynn, “The Design and Simulation of a Mobile Radio Network with
Distributed Control” , in IEEE journal on selected areas in cummunications, VOL. SAC-2, NO. 1, Jan 1984
[9]A.Ephremedis, J. E. Wieselthier and D.J. Baker, “A Design Concept for Reliable Mobile Radio Networks with
Frequency Hopping Signalling” , Proc. IEEE 75(1), (Jan. 1987), 56-73.
[10] R. Ogier, “A decomposition method for optimal scheduling” , in Proc. 24th Allerton Conf., Oct 1986.

11

APPENDIX

The Proof of Theorem 1

Let A and B be arbitrary links that conflict. Suppose that after executing Assign_All_Slots and

Assign_All_Cycles the transmission slot for A (B) is SA (SB) and the Max_C() value for A (B)

in Assign_All_Cycles is CA (CB). It follows from the specification of Assign_All_Slots that:

 SA ≠ SB (1)

Obviously, ACAS ≤≤1 , BCBS ≤≤1 (2)

Further, because A and B conflict, it follows from Assign_All_Cycles that:

BCAS ≤≤1 , ACBS ≤≤1 (3)

From Assign_All_Cycles, the transmission cycles TA and TB can be written as:

 TA = AC
p ≥2 , TB = BC

q ≥2 (4)

where p, q are the smallest integers that satisfy the inequalities.

From (2), (3) and (4): 12 −≤− p
BSAS (5)

Suppose by the way of contradiction that links A and B have a collision in the schedule. Then,

there are natural numbers s1 and t1 such that SA + 2ps1 = SB + 2qt1. Thus:

 SA - SB = 2qt1 - 2
ps1 (6)

From (6), there are two cases:

Case 1: p=q

Here SA-SB= 2p(t1 - s1). Thus, if t1=s1, then SA=SB, which is a contradiction to (1). If 11 st ≠ ,

then since t1-s1 is a nonzero integer, |SA-SB| p2≥ which is a contradiction to (5).

Case 2: qp ≠

Without loss of generality, assume q>p, hence q = p + r where r is a positive integer. Then,

SA - SB = 2p(2rt1 - s1). Thus, if 2rt1 - s1 = 0, then SA=SB which is a contradiction to (1). But if

02 11 ≠− str , since 2rt1 - s1 is an integer, then |SA-SB| p2≥ which is a contradiction to (5). ÿ

