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Abstract

In this paper we present the design and implementation of a system that exploits
well-known design patterns to facilitate construction of an extensible system for
comparison and visualization of ordering methodologies for class-based testing of
C++ applications. Using our implementation, we present a comparative study and
evaluation of two advanced ordering methodologies: the edge based approach by
Briand, et al., and the Class Ordering System (COS) introduced in this paper. We
compare two variations of the approach by Briand and three variations of the COS
system and draw conclusions about the number of edges removed, and therefore the
number of stubs that must be constructed, using each approach. We also compare
the run-time efficiency of each approach and raise some interesting questions about
edge type considerations for removal in the presence of cycles in the ORD. Using
the design patterns together with the dot tool from the Graphviz package, we incor-
porate visualization of the ORD and the edge removals into our system. We present
details and graphical visualization of the edge removal process.
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1 Introduction

The current trend in the construction of large scale systems is to exploit object
technology to facilitate reuse, extensibility, maintenance and testing of such
systems. However, testing a complete object-oriented system is a formidable
task with some imposing associated problems. One problem is that the appli-
cation must be available before system testing can begin and this may be late
in the life cycle. A second problem is that during the testing of a large sys-
tem there are risks of complex interactions among errors with a concomitant
destabilization of the corrected classes or components. Finally, system level
testing may be too coarse-grained to permit the tester to meet the adequacy
criteria for some regions of the code (Binder, 2000; Lloyd and Malloy, 2005).

To address these problems many developers prefer a progressive approach
where individual classes are tested early in the development process. Indeed,
some methodologies advocate the use of mock objects to facilitate testing
before design (Martin, 2003). Also, class-based testing attempts to isolate
errors to avoid interactions among the errors and to allow the developer to test
more thoroughly in an effort to meet the adequacy criteria established for each
class or class cluster. In general, however, testing techniques are heuristics and
their performance varies with different scenarios; thus, there is an identified
need for empirical evaluation and comparison of testing strategies (Do et al.,
2004; Harrold, 2000; NIST, 2002; Orso et al., 2004).

One difficulty in class-based testing is that classes interact with other classes;
therefore, a fundamental issue in testing object-oriented systems is the deter-
mination of an integration order for the classes. To determine an order for
class-based testing, previous approaches have constructed an Object Relation
Diagram, ORD, whose nodes are classes and whose edges represent the rela-
tionships between the classes (Kung et al., 1995; Labiche et al., 2000; Malloy
et al., 2003a; Tai and Daniels, 1997). Early research included three (Kung
et al., 1995; Tai and Daniels, 1997) and then four edge types (Briand et al.,
2002; Labiche et al., 2000) in the ORD. However, to accommodate the full
complement of C++ language features, including polymorphism, templates,
and nested classes, we extend the ORD to include six edge types. Since the
ORD is a class diagram (Labiche et al., 2000), five of the edge types are taken
from the UML specification (OMG Unified Modeling Language Specification,
2003); the sixth edge type is taken from (Labiche et al., 2000). If there are no
cycles in the ORD, then a reverse topological ordering of the nodes will yield
a test order that obviates the construction of stubs.

However, in the presence of cycles in the ORD, one or more edges must be
removed and, to test a client class that uses an untested supplier class, stubs

Malloy), www.cs.fiu.edu/clarkep (Peter J. Clarke).
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must be constructed to simulate the behavior of the untested supplier class.
Several researchers have maintained that the most costly aspect of class-based
testing is the construction of stubs, since it is not always feasible to construct
a stub that is simpler than the code it simulates and stub generation cannot
be fully automated (Lloyd and Malloy, 2005; Kung et al., 1995; Labiche et al.,
2000). The problem of removing a minimum number of edges to eliminate cy-
cles in an ORD is equivalent to the feedback arc set problem, which has been
shown to be NP-complete (Garey and Johnson, 1979; Karp, 1979). Neverthe-
less, since stub construction can be the most difficult and expensive aspect
of class-based testing, several ordering methodologies have been proposed for
breaking cycles in an ORD as a component of class-based testing (Briand
et al., 2001; Kung et al., 1995; Labiche et al., 2000; Tai and Daniels, 1997).
Those methodologies differ in: what assumptions they make about how cycles
may be broken; how they break ties when there are several equivalent options
for breaking cycles; and precisely what is stubbed once a cycle is broken. In
particular, all but one of the methodologies are based on removal of edges to
break cycles (Briand et al., 2001; Kung et al., 1995; Labiche et al., 2000; Mal-
loy et al., 2003a), and one methodology is based on removal of nodes (Tai and
Daniels, 1997). Of the methodologies based on edge removal, the methodol-
ogy of Briand et al. (Briand et al., 2001) subsumes that of Kung et al. (Kung
et al., 1995), and Briand et al. (Briand et al., 2001) demonstrated that their
methodology is better than (Labiche et al., 2000).

In this paper we present the design and implementation of a system that
exploits several well-known design patterns to facilitate construction of an ex-
tensible system for comparison and visualization of ordering methodologies for
class-based testing of C++ applications. Using our implementation, we present
a comparative study and evaluation of two advanced ordering methodologies:
the edge based approach by Briand, et al. (Briand et al., 2001), and the Class
Ordering System (COS) approach that we introduce here. We compare two
variations of the approach by Briand and three variations of the COS sys-
tem and draw conclusions about the number of edges removed, and therefore
the number of stubs that must be constructed, using each approach. We also
compare the run-time efficiency of each approach and raise some interesting
questions about edge type considerations for removal in the presence of cycles
in the ORD. Our study addresses the identified need for empirical evaluation
and comparison of testing strategies. Using the design patterns together with
the dot tool from the Graphviz package (AT&T Labs, 2005), we are able to
incorporate visualization of the ORD and the edge removals into our system;
thus, we also present details and graphical visualization of the edge removal
process, which greatly facilitates comprehension, debugging and validation of
the generated ORD and the cycle breaking process.
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The contributions of this paper are as follows:

(1) We provide the design and implementation of an extensible system that
exploits design patterns for documentation and code recognition. This is
the first presentation of an implementation of ordering methodologies.

(2) We show the ease of extension of the system by providing subclasses to
incorporate additional algorithms and to incorporate visualization into
the system.

(3) We conduct a comparative study using seven existing applications cov-
ering a variety of domains. This study provides results about the actual
number of cycles in ORDs and the number of classes and edges contained
in these cycles. These results show that manual computation of an order-
ing for class testing is impractical. This is the first such study described
in the literature.

(4) We show that using our approach to merging edges together with the
undo facility of the Command Pattern (Gamma et al., 1995), we can gain
an appreciable speedup in the computation of a class order.

(5) We show that in six of our seven applications, it is not possible to break
all of the cycles by removing only association and dependency edges.

(6) We show that by including inheritance edges in removal considerations
the number of required stubs can be reduced dramatically. The notion of
choosing inheritance edges contradicts the advice described in previous
research (Briand et al., 2001; Kung et al., 1995; Labiche et al., 2000).

In the next section, we describe an ORD and define the types of edges that
represent relationships between classes in the ORD. In Section 3 we review the
two methodologies that form the basis of our study and in Section 4 we discuss
the implementation of our system. In Section 5 we discuss the particulars of our
experiments, including the test suite and the specific questions addressed by
the experiments. In Section 6 we describe and analyze the experimental results
and provide some insight into the differences between the two methodologies.
Finally, in Section 7, we provide some concluding remarks.

2 The ORD and Edge Types

The most common program representation used in class ordering for class-
based testing is the Object Relation Diagram (ORD) (Kung et al., 1995;
Labiche et al., 2000; Malloy et al., 2003a; Tai and Daniels, 1997). An ORD 1

is a directed graph whose nodes are classes and whose edges represent the

1 The use of the term ORD is a bit of a misnomer, since the nodes are classes, not
objects; however, since the term is used in previous research, we continue its use in
this paper.
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relationships between the classes. In the sections below we describe the edge
types present in the ORD and then give an example.

2.1 Edge type designations

The ORD described in references (Kung et al., 1995; Tai and Daniels, 1997)
uses three types of edges, and reference (Labiche et al., 2000) extends the
ORD to include a fourth type of edge. However, the focus of our work is the
analysis of existing C++ applications which include template functions and
classes and nested classes; thus we require six edges in our ORD including the
addition of ownedElement and composition edges.

These edges capture relationships in the ORD between the classes in the pro-
gram under test and are specified by the syntax and semantics of the data
attributes of classes and the parameters or local variables of member func-
tions. The six types of edges are:

• association, dependency, and inheritance as outlined in (Kung et al., 1995;
Tai and Daniels, 1997),

• polymorphic as described in (Labiche et al., 2000),
• ownedElement and composition, as given in this paper.

The types of edges, other than polymorphic, are used in UML class diagrams
and we base our use of these edges on the UML specification, version 1.5
(OMG Unified Modeling Language Specification, 2003). The polymorphic edge
is presented in reference (Labiche et al., 2000) as a dynamic edge.

Although there is some controversy about the meanings of various edge types,
the differences are in the details and not in regard to the importance of broad
classifications. Among the six edge types utilized in this paper, the definitions
of inheritance, ownedElement and polymorphic edges are straightforward and
are described in the example of Section 2.2. A composition edge is used for a
class data attribute whose lifetime is bound to the lifetime of the containing
object, an association edge is used for a class data attribute that is a reference
or pointer to another class, and a dependency edge is used for a parameter or
local variable of a member function.

2.2 A sample ORD

Figure 1(i) lists a C++ program and illustrates the corresponding ORD for
the program. Most details of the classes are elided for brevity; however, the
information provided is sufficient to demonstrate each of the six edge types
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( 1) template < typename T >
( 2) class Color {
( 3) T r, g, b, a;
( 4) };
( 5)
( 6) class Shape {
( 7) protected:
( 8) class Point { };
( 9) };
(10)
(11) class Circle : public Shape { };
(12) class Rectangle : public Shape { };
(13)
(14) class Toolkit;
(15)
(16) class Brush {
(17) public:
(18) void setColor(

const Color<float>& color);
(19) void setShape(const Shape* shape);
(20) private:
(21) Toolkit *parent;
(22) Color<float> color;
(23) Shape *shape;
(24) };
(25)
(26) class Toolkit {
(27) Brush *brushes[10];
(28) };

( i ) ( ii )

Fig. 1. Sample C++ program and corresponding ORD. This figure lists a sample
C++ program and a corresponding ORD for the program. This ORD illustrates
the six types of edges included in our model: the four dashed lines in the graph are
polymorphic edges, and the other edges are labeled appropriately.

in our ORD. A template class, Color, is listed on lines 1 through 4 of Figure
1(i). A template class has no direct representation in the ORD, due to the fact
that a template class represents only a partial specification of a class whose
arguments can be either primitive types or other classes. Before a template
class can be executed (and subsequently tested) template instantiation must
first be performed by supplying actual arguments for the formal template
parameters. An instance of Color, instantiated with the primitive type float
appears on the right of Figure 1(ii).
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Lines 6 through 9 of Figure 1(i) list class Shape, which contains a nested
class Point. An ownedElement edge from Shape to Point is generated by this
relationship, and is illustrated to the left of center in Figure 1(ii).

Lines 11 and 12 of Figure 1(i) list classes Circle and Rectangle, both derived
publicly from base class Shape. These derivations generate inheritance rela-
tionships illustrated in Figure 1(ii) by the edges from Circle to Shape and
Rectangle to Shape, both of which are labeled inheritance.

Line 14 of Figure 1(i) lists a forward declaration of class Toolkit. Lines 16
through 24 of Figure 1(i) list class Brush, which contains two public methods
and three data attributes. Formal parameters and local variables of methods
form dependency relationships between classes; therefore, there are two depen-
dency edges generated by the methods of class Brush. A dependency edge from
Brush to Color is generated by parameter color of method setColor (line 18
of Figure 1(i)). The second dependency edge, this time from Brush to Shape,
is generated by parameter shape of method setShape (line 19 of Figure 1(i)).
Data attributes form either association or composition relationships between
classes. Class Brush contains three data attributes, the first of which is parent,
a pointer to Toolkit. An association edge from Brush to Toolkit is generated by
this data attribute since Brush has a relationship with Toolkit, but the rela-
tionship can be severed or transferred before destruction of the Brush object.
The association relationship is not as strong as the composition relationship,
which cannot be broken until the object owning the data is destroyed. A com-
position edge from Brush to Color<float> is generated by the second data
attribute of class Brush, color. The final data attribute of Brush is a pointer to
Shape, generating an association edge between Brush and Shape.

When a class has an association edge to the base class of an inheritance hier-
archy, a polymorphic edge is generated. A dependency edge may also generate
a polymorphic edge if the parameter responsible for generating the dependency
relationship is a pointer or a reference to a base class. Polymorphic edges were
first described in (Labiche et al., 2000), and referred to as dynamic edges;
however, these edges can be determined statically, so we refer to them as
polymorphic edges. As described in the previous paragraph, class Brush has a
dependency relationship with class Shape, a base class. This dependency edge
from Brush to Shape generates polymorphic edges from Brush to each of the
classes derived from Shape, because the parameter is a pointer. Also men-
tioned above is the association edge from Brush to Shape that is generated
by data attribute shape. Again, polymorphic edges from Brush to each class
derived from Shape are generated by this association relationship. The four
polymorphic edges are illustrated at the bottom of Figure 1(ii) as unlabeled
dashed lines from Brush to Circle and Brush to Rectangle.

Lastly, class Toolkit is listed on lines 26 through 28 of Figure 1(i). Class Toolkit
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contains a data attribute brushes which is an array of pointers to Brush. This
data attribute generates an association edge from Toolkit to Brush, and creates
a cycle in this example ORD. This cycle is illustrated in the upper right of
Figure 1(ii).

3 Class Ordering Methodologies

In this paper we provide a comparative study of two advanced methodologies
for class ordering, namely, an edge based approach by Briand, et al. (Briand
et al., 2001), and the Class Ordering System (COS) introduced here. In the
remainder of this section we provide detailed descriptions of these two method-
ologies. In the case of Briand, our description is equivalent to that provided
in (Briand et al., 2001), although we have rewritten the specifics to provide a
uniform framework under which the methodology can be compared with our
COS approach. At the end of the section we describe some of the other related
work.

The approach of Briand and our COS can both be described based on a
framework of three stages:

• Stage 1: Build an ORD. That is, construct a multigraph G = (V, E), where
V is a set of nodes representing classes, and E is a set of edges representing
the relationships between the classes. A multigraph may contain multiple
edges between any particular pair of nodes. For each of the C++ applications
in the test suite utilized in this paper, the associated ORD was obtained by
reverse engineering the source code of the application using the Clouseau
API (Matzko et al., 2002).

• Stage 2: Remove edges from G so that all of its cycles are broken. Let G’
be the resulting acyclic ORD.

• Stage 3: Determine a class ordering for testing by ordering the classes in
G’ in reverse topological order.

Note that if an edge (x,y) is removed in stage 2, then the testing of class x
will depend on a stub associated with class y. Both of the methods (Briand
et al., 2001) and (Malloy et al., 2003a) are aimed at minimizing the number
of stubs that must be written. In the sections below we provide details for the
two methods in regard to assumptions and implementation of stages 1 and 2
of the above framework.
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while there is an SCC with more than one node do
Choose an SCC, s, with more than one node
for each association/dependency edge (x, y) in s,

Assign a weight equal to indegree(x)*outdegree(y),
where these degrees are with respect to nodes in
this SCC only. Here, the node degrees refer to
all types of edges, and not just to
association/dependency edges.

Remove from s an edge of maximum weight.

Fig. 2. The Briand Algorithm.

3.1 The Briand approach

The methodology of Briand (Briand et al., 2001) implements stage 1 in a
straight-forward fashion. In stage 2, cycles are broken by partitioning the
ORD into strongly connected components (SCCs) and then selecting edges
within each SCC for removal based on an edge weight meant to reflect the
number of cycles containing that edge. The specifics are illustrated in Figure
2.

Recall that in our classification, there are six possible types of edges between
C++ classes. As evident from the pseudocode in Figure 2, Briand (Briand
et al., 2001) focused exclusively on association and dependency edges, and as
such did not consider polymorphic, inheritance, composition or ownedElement
edges. In implementing the Briand methodology in conjunction with class
diagrams utilizing all six edge types, we need to modify the approach since it
is not always possible to remove all cycles by only removing association and
dependency edges. In fact, among the seven programs in our test suite, there is
only one for which all of the cycles can be removed using only association and
dependency edges. It is the case that all of the cycles in all of the test cases
in our test suite can be broken by removing polymorphic edges in addition to
association and dependency edges. Thus, we implement two modifications to
the Briand approach:

(1) In stage 2, polymorphic, association and dependency edges are all consid-
ered, with no preference being given to any particular edge type. This
variant of (Briand et al., 2001) will be referred to as Briand-A.

(2) In stage 2, once an SCC is chosen, if that SCC contains an association
or dependency edge, then the steps of the algorithm proceed as outlined
in Figure 2. If however that SCC does not contain an association or
dependency edge, then the second and third steps of the Briand while loop
are executed using polymorphic edge in place of association/dependency
edge. This variant of (Briand et al., 2001) will be referred to as Briand-
B, and reflects the argument that it may be better to remove (i.e. easier
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to stub) association and dependency edges.

Since association, dependency and (with the above addition) polymorphic edges
are the primary focus of the Briand approach, we find it convenient throughout
the remainder of this paper to use the term ADP edges when referring to these
three types of edges.

3.2 The Class Ordering System (COS)

The Class Ordering System (COS) described here utilizes a generalized ap-
proach to class ordering that reflects differences in the suitability of various
edge types for stubbing. The following two subsections describe the COS ap-
proach in the context of the three general stages outlined earlier.

3.2.1 The COS cost model applied to the ORD

In the COS methodology, the standard construction of the ORD in stage 1
is augmented using a cost model C =<W , f(e), w(mx,y)>, which is a 3-tuple
consisting of W , a set of weight assignments and functions f(e) and w(mx,y)
defined as follows:

W = {w1, w2, w3, w4, w5, w6} (1)

f : E → W (2)

for a given x, y ∈ V, mx,y = {(x, y) ∈ E} (3)

w(mx,y) =
∑

e∈mx,y

f(e) (4)

Equation (1) is a set of weight assignments for the six edge types of inheritance,
association, composition, dependency, polymorphic and ownedElement edges.
Equation (2) defines a total function f as a mapping from the set of edges, E,
to the set of weights W , so that for edge e, f(e) is the weight assignment for
that edge. Equation (3) defines a merged edge mx,y as a set of edges represented
as ordered pairs (x, y), where each edge in the set has the same source class
and the same destination class. Equation (4) defines w(mx,y), a function w
that computes the weight of a merged edge mx,y as the sum of the weights of
the individual edges in the set mx,y.

Applying this cost model to the standard ORD results in the merging of multi-
edges and the assignment of a weight to each resulting edge as defined by the
cost model. We refer to this modified ORD as the COS ORD and it is the
output of stage 1 using the COS methodology.
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while there is an SCC with more than one node do
Choose an SCC, s, with more than one node;
Remove from s an edge of minimum weight.

Fig. 3. The COS Algorithm.

3.2.2 Stage 2 of the COS methodology

The COS methodology implements stage 2 similarly to that of (Briand et al.,
2001), albeit as applied to the COS ORD with merged and weighted edges.
Specifically, cycles are broken by partitioning that ORD into strongly con-
nected components and then selecting edges within each SCC for removal
based on the weight of an edge. The specifics are illustrated in Figure 3.

A critical question is how to choose among edges of equal weight. Having such
edges is much more likely in this methodology than in (Briand et al., 2001),
since the weights are based on edge types and not on in and out degrees. For
instance, all association edges will have the same weight (unless they have
been merged with other parallel edges). Consequently, we investigate three
versions of COS based on choosing between edges of equal weight:

(1) Among all edges of minimum weight, remove the one having the smallest
index source node. This version is easy to implement, but skews edge
selection toward edges incident to low index nodes. This variant will be
referred to as COS-A.

(2) Among all edges of minimum weight, select an edge at random and remove
it. The goal is to spread the selection of removed edges among all of the
nodes in the ORD. This variant will be referred to as COS-R.

(3) Assign each edge a secondary weight based on the weighting scheme uti-
lized by Briand (Briand et al., 2001). Namely, the secondary weight of
edge (x,y) is equal to the indegree(x)*outdegree(y), where the in and out
degrees take into account only the edges in this SCC. Then, in removing
an edge of minimum weight, if there are several such edges of minimum
weight, choose one with largest secondary weight. This variant will be
referred to as COS-B.

3.3 Other related work

In (Daniels and Tai, 1999), Tai and Daniels study a node based approach to
cycle removal in an ORD. Their method is similar to (Briand et al., 2001) and
(Malloy et al., 2003a) in that they partition the ORD into SCCs (though their
particular partitioning differs a bit). Focusing on association and dependency
edges, they remove nodes from the ORD until all cycles are removed. Here,
the classes associated with removed nodes are stubbed. It is argued in (Briand
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et al., 2001) that the stubbing of nodes is considerably more expensive than
stubbing based on individual edges.

In (Le Traon et al., 2000), Le Traon et al. use an adaptation of Tarjan’s al-
gorithm (Tarjan, 1972) to find strongly connected components in a graph.
While traversing their graph, dependencies are labeled according to a classi-
fication scheme where one type of classification is a frond, which indicates an
edge from a node to an ancestor of the node. Cycles are broken by removing
edges of highest weight, where weight is defined as the sum of the incoming
and outgoing frond dependencies for a given class in the graph. Thus, the
notion of weight is defined on classes rather than edges and they do not in-
clude the edge types that subsequent researchers have incorporated into an
ORD (Kung et al., 1995; Labiche et al., 2000; Malloy et al., 2003a; Tai and
Daniels, 1997). Briand et al. (Briand et al., 2001) showed that their approach
performed consistently better than that of Le Traon et al. (Le Traon et al.,
2000).

Some of the pioneering work on class ordering was accomplished by Kung et al.
(Kung et al., 1995). However, that work is subsumed by Briand et al. (Briand
et al., 2001); hence, we do not review (Kung et al., 1995) in this paper.

A paper describing an approach for maintaining the accuracy and consistency
of software development artifacts is presented in reference Lu and Chu (2003).
The work uses XML to provide interoperability among the development arti-
facts.

4 Design of the System

A preliminary version of our class ordering system, which served as the basis
for the current implementation, was presented in (Malloy et al., 2003a). The
design of the preliminary version was resistant to extension and modification
and only the COS-A methodology was included in the implementation. We
refactored and augmented the preliminary version to include several design
patterns (Gamma et al., 1995), which has resulted in an efficient and extensible
system that is configurable and incorporates new features.

The following subsections present the design and implementation of our con-
figurable and extensible Class Ordering System, COS. We present an overview
of the operations of COS in Section 4.1 and review the important classes and
design patterns in Section 4.2. In Section 4.3 we illustrate the extensibility
of our system to accommodate visualization and to accommodate node-based
removal methodologies.
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Fig. 4. Overview of our Class Ordering System.

4.1 Overview of the System

Figure 4 provides an overview of our Class Ordering System. Inputs to the
system are a configuration file and a C++ application on which class-based
testing is to be performed. The configuration file specifies the desired method-
ology and, if the specified methodology is a variant of the COS methodology,
then one or more cost models are also included.

Depending on the methodology under consideration, we compute an ordering
of classes for testing in four or five steps: each of the Briand variants requires
four steps and each of the COS variants requires five steps. The first step
entails the construction of an ORD for the application using the six edge
type designations that describe the relationships between the classes in the
application. The next step, which is only performed in the COS variants, is to
merge edges in the ORD as described in Equation (3) of Section 3.2.1.

After ORD construction (and the merging of edges for COS variants) is com-
plete, the nodes of the ORD are partitioned into strongly connected compo-
nents, SCCs, using a depth first search as described in (Aho et al., 1974). In
the next step edges are removed from the SCCs and the SCCs are recomputed
until no cycles remain in the ORD. In the final step a reverse topological sort
of the nodes in the modified ORD yields an integration order for class-based
testing of the system under consideration.

To build an ORD for the C++ application under test, the source code for
the application is parsed, and variable and type information is extracted from
the application. To parse our application we use keystone, an ISO conformant
parser and front-end (Malloy et al., 2003b) for the C++ language (ISO/IEC
JTC 1, 1998; Stroustrup, 1997). Keystone includes the Clouseau Application
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Fig. 5. COS Class Diagram. This figure contains a UML class diagram illustrating
the important classes and relationships in our Class Ordering System, COS.

Programmer’s Interface (Matzko et al., 2002), API, which provides the neces-
sary variable and type information required to build an ORD for the applica-
tion.

4.2 The Important Classes in the System

Figure 5 contains a UML class diagram illustrating the classes and important
relationships in our Class Ordering System (COS); some relationships have
been elided from the diagram for readability. Class CosManager, shown in the
lower right of the figure, illustrates the Singleton design pattern and serves as
an access point to the system configuration. The three classes in the upper
left of the figure, Graph, Node, and EdgeTypes, are used to build the nodes and
edges in an ORD. Class EdgeTypes represents the six edge types in our ORD,
described in Section 2.1. The CostModel class, also shown in the upper left of
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the figure, encapsulates the mapping of edge types to weights as defined in
Equation (2) of Section 3.2.1. The class in the middle of the figure, GraphMan-
ager, is another Singleton that choreographs the steps of the selected method-
ology. The six classes in the inheritance hierarchy at the bottom of the fig-
ure, Command, BuildGraphCommand, MergeEdgesCommand, FindSccCommand,
BreakCyclesCommand and FindOrderCommand, illustrate the Command design
pattern and encapsulate the steps of the algorithm for each methodology. The
Clouseau API is shown in the lower left of the figure. The inheritance hier-
archy in the upper right of the figure including Visitor, EdgeCollectingVisitor,
COSVisitor, BriandAVisitor, BriandBVisitor and GraphvizVisitor, illustrate the
Visitor design pattern that we use to gather information about the ORD from
class Graph.

In the following sections we further describe the design of COS using the
design patterns as a focal point.

4.2.1 The Singleton Pattern

The Singleton design pattern is used to provide a global access point to a sin-
gle instance of a class (Gamma et al., 1995). There are two singletons in our
design: CosManager, at the lower right of Figure 5, and GraphManager, in the
middle of Figure 5; each singleton has a static method, Instance, which returns
a pointer to the respective instantiated singleton. The CosManager class is re-
sponsible for reading a configuration file and is queried by the GraphManager
and BreakCyclesCommand classes. The use of the Singleton pattern for Cos-
Manager allows information such as the currently selected methodology and
the name of the file containing the active cost model to be accessible to the
other objects in the system. The GraphManager class is the primary choreog-
rapher of the system: GraphManager contains the ORD, provides the current
cost model (if needed), and invokes the commands that perform the steps of
the selected methodology. In the case of GraphManager, use of the Singleton
allows command invocation without passing data to the individual commands.

4.2.2 The Command Pattern

The Command design pattern provides a common interface for transactions
in a system by encapsulating a series of actions, such as the steps of an al-
gorithm, into a class (Gamma et al., 1995). The Command pattern facilitates
extension of the system to accommodate new commands through subclassing.
By encapsulating the actions in a class, objects of the class can be passed
as parameters or stored to permit efficient reversal or undoing of the actions
of the object. The Command pattern usually takes the form of an abstract
base class, Command, with a pure virtual method, execute(), that provides an
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interface for executing operations. Concrete Command subclasses provide an
implementation of execute() that contains the actions of the particular com-
mand.

The inheritance hierarchy in the lower left of Figure 5 illustrates a Command
pattern consisting of base class Command and derived classes BuildGraph-
Command, MergeEdgesCommand, FindSccCommand, BreakCyclesCommand and
FindOrderCommand. The derived classes encapsulate the steps performed by
each of the ordering methodologies. Instantiation and execution of the dif-
ferent commands is controlled by the GraphManager class, which discerns the
appropriate commands to run by querying the CosManager. This use of the
Command pattern allows both selective execution of existing commands and
the introduction of new commands with minimal change to the system.

Our system exploits the undo capability of the Command pattern to improve
the efficiency of the system. For example, if a variant of the COS methodology
is under investigation, the system can be configured to perform several class
orderings with a series of cost models. The efficiency of this process is improved
by using an undo method in the MergeEdgesCommand. The undo of the edge
merging process allows the internal state of the system to return to a point
where the cost model has yet to be applied to the ORD. The time savings
here are significant because rebuilding of the ORD is no longer required. A
comparison of system running times for several cost models, with and without
the undo capability, is presented in Section 6.5.

4.2.3 The Visitor Pattern

The Visitor design pattern permits encapsulation of operations that are to
be performed on the elements of a data structure (Gamma et al., 1995). The
addition of new operations and modification of the existing operations is per-
formed without changing the classes that represent the elements. This design
pattern is especially useful when the representation of the elements of the data
structure is stable and allows the classes that represent the elements of a data
structure to be decoupled from the algorithms that operate on the elements.
This decoupling prevents the classes representing the elements from becoming
polluted with the algorithms that operate on the elements. Finally, the visitor
pattern facilitates extension of an existing system by permitting the addition
of new operations and algorithms without modifying the classes that repre-
sent the elements of a data structure. To incorporate new functionality into
an existing structure, each element of the structure accepts a visitor, which
sends a message to the visitor that includes the element class. Using this dou-
ble dispatch, the visitor then executes its algorithm on the elements of the
structure.
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Our Visitor hierarchy is shown in the upper right of Figure 5 consisting of
base class Visitor and five derived classes EdgeCollectingVisitor, COSVisitor,
BriandAVisitor, BriandBVisitor and GraphvizVisitor. Each of the visitor classes
listed in the figure contains a method, visit(const Graph *), to allow visitation
of the ORD represented by class Graph (upper left of the figure). The Graph
class contains a corresponding accept method, accept(Visitor *), which calls the
visit method passing an instance of the visited class through the this pointer
(Gamma et al., 1995).

Our Visitor hierarchy incorporates the features, described above, into the COS.
In particular, the three edge collecting visitors encapsulate the collection of
edges which are candidates for removal during cycle breaking, decouple the
cycle breaking methodologies from the Graph class and enable extension to
other edge-based cycle breaking methodologies through subclassing. In Section
4.3.2 we describe an approach to extend the Visitor hierarchy to accommo-
date node-based removal methodologies. The GraphvizVisitor class illustrates a
different kind of extension that enables us to visualize our ORD and the cycle
breaking process, facilitating comprehension, debugging and validation of the
ORD and the cycle breaking process. We describe the actions and output of
the GraphvizVisitor in Section 4.3.1.

There are two phases to the cycle breaking process: the first phase entails an
edge collecting strategy and the second phase entails an edge removal policy.
The classes in our EdgeCollectingVisitor subhierarchy implement an edge col-
lecting strategy for each methodology in the system. For example, the common
edge collecting strategy of the COS variants is implemented in class COSVis-
itor. The visit method of COSVisitor collects all edges of lowest weight from
the SCC under consideration. Note that each variant selects an edge to be
removed from among the collected edges in a different manner. Alternatively,
the distinguishing characteristic of the Briand variants is the edge collecting
strategy rather than the removal policy; therefore, the Briand variants each
require their own visitor class.

4.3 Extensibility of the System

In this section we illustrate the extensibility of our system by presenting an
extension to accommodate visualization and an extension to accommodate
node-based removal methodologies.

4.3.1 Extension to Accommodate Visualization

During early development of COS we performed debugging and correctness
evaluation of the ORD and the cycle breaking process using a textual rep-
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Fig. 6. Visualization of the cycle breaking process. This figure illustrates a pro-
gression of edge and node removals as the COS is used to break cycles for the
IV-Graphdraw test case using the COS-A methodology. The placement of nodes
and edges in this figure is computed automatically by our GraphvizVisitor to-
gether with the dot tool in the graphviz package: this sequence of graphs illustrates
the excellent placement strategy of the dot tool and facilitates comprehension, de-
bugging and validation of the ORD and edge removal process.

resentation of the ORD. However, this method of evaluation proved to be
tedious and error-prone. To address this difficulty of validating the COS out-
put, we extended the system to include visualization. The visitor hierarchy,
described in Section 4.2.3, facilitated this extension through the addition of a
GraphvizVisitor class as a subclass of the Visitor class.

Visualization for our system is accomplished by producing graphical output
using the dot tool, included in the Graphviz package (AT&T Labs, 2005).
The class GraphvizVisitor builds a file containing a dot language representa-
tion of the graphs in our system, which are encapsulated by class Graph. By
modifying the configuration file, the system can be directed to produce a dot
representation for any of the following graphs: the ORD, the ORD with edges
merged, each individual SCC, and the cycle-free graph upon which the reverse
topological sort is applied.

Figure 6 illustrates a progression of edge removals that occur when the COS
is used to break cycles for the IV-Graphdraw (Vlissides and Linton, 2002)
test case using the COS-A methodology. Each graph in Figure 6 is an ORD
representing an SCC: the ellipses are nodes that represent classes and the
edges represent relationships between the classes. Each node is labeled with
the name of the class that it represents and the edges are labeled with the
edge type and the associated weight of the edge. All of the edges in Figure
6 are merged edges so each edge is labeled M, for merged edge. For example,
in Figure 6(i), the edge connecting ivMonoGlyph and ivGlyph is labeled M:34,
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indicating that it is a merged edge with a weight of 34, the lowest weighted
edge in Figure 6.

To visualize the cycle breaking process for the COS-A methodology applied
to the IV-Graphdraw test case, Figure 6(i) shows a starting point with four
classes and nine edges. The edge connecting ivMonoGlyph and ivGlyph is labeled
M:34, the edge with lowest weight and this edge is chosen for removal, also
removing the node representing class ivGlyph from the graph since it is no
longer involved in a cycle. Figure 6(ii) illustrates the next step in the cycle
breaking process with three classes and six edges. The edge connecting classes
ivEditor and ivMonoGlyph has weight 40, the edge with lowest weight in the
graph of Figure 6(ii); this edge together with class ivMonoGlyph is removed
from the graph 2 . Figure 6(iii) illustrates the next phase in the cycle breaking
process, with two classes and two edges remaining in the SCC. The next edge
to be removed is the one from class ivEditor to ivInputHandler, representing the
final edge removal from the original SCC presented in this figure.

The placement of all nodes and edges in Figure 6 is computed automatically
by the dot tool; the sequence of graphs illustrates the excellent placement
strategy of dot. We found the visualization of the cycle breaking process to be
easier to debug and validate than the corresponding text based representation.
Appendix A contains a figure illustrating a visualization overview of the ORD
for the vkey test case (Wampler, 2001). The ORD in this figure graphically
illustrates the tight coupling among the classes in the vkey test case. The SCC
shown in the middle of the figure consists of 27 classes; the clusters of classes
shown in the upper left and the lower right of the figure are not SCCs. We
provide further discussion of the vkey test case in Section 6. However, the
figure in the appendix, like those in Figure 6, was also drawn automatically
and further illustrates the advantage of the visualization capability of COS
and the excellent node and edge placement strategy of the dot tool.

4.3.2 Extension to Accommodate Node-Based Removal Methodologies: Tai/-
Daniels

In this section we further illustrate the extensibility of COS by presenting a
strategy to accommodate node-based removal methodologies into the system.
The only node-based removal methodology presented in the literature is that of
Tai and Daniels (Tai and Daniels, 1997). This early work on class ordering, like
the methodology of Briand (Briand et al., 2001), fails to include polymorphic
edges in their graph representation and in their removal considerations. By
not including polymorphic edges in their graph and removal strategy, impor-

2 When the SCCs are recomputed, the self-loop on node ivMonoGlyph represents a
cycle that must also be broken; otherwise, we cannot compute a reverse topological
sort of the nodes in the reduced ORD.
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tant class dependencies are also not represented. Nevertheless, the approach is
interesting both in its novelty and in the fact that, ultimately, it is classes that
are stubbed. To accommodate the approach of Tai and Daniels, we must mod-
ify their approach to include polymorphic edges in their graph representation
and in their cycle breaking considerations.

Moreover, to accommodate the approach of Tai and Daniels, we extend the
COS in the obvious way: the addition of a new command in the Command
hierarchy and the addition of a new visitor in the Visitor hierarchy. Like the
COS variants, the methodology of Tai and Daniels entails five steps; however,
instead of executing the merge edges command, the Tai and Daniels method-
ology executes a new command that assigns level numbers. Therefore, the
Command hierarchy is extended to include class LevelAdgCommand, a com-
mand to encapsulate algorithm Level ADG as presented in (Tai and Daniels,
1997).

The second extension to COS is a subclass of Visitor, class TaiDanielsVisitor. As
described in Section 4.2.3, the edge collecting strategy of each methodology
is implemented by a graph visitor. The TaiDanielsVisitor determines the node
to be removed under the Tai and Daniels methodology, and then collects all
edges originating or terminating at that node. The final addition is a private
method of BreakCyclesCommand implementing the straightforward policy of
removing all collected edges.

5 A Comparative Study

In this section we provide specifics of our experimental study undertaken here,
beginning with a description of our test suite and following with a discussion
of stub creation as it relates to edge type.

5.1 The test suite

Our experiments use a suite of seven test cases that we label as Adol-C, Class
Ordering System (COS), matrix, vkey, Edraw, Graphdraw and Drawserv. In our
study, a test case is a program that we use as input to the COS and Briand
systems. The test cases were chosen for their range and variety of application.
Specifically, test case Adol-C is a package for automatic differentiation of algo-
rithms (A. Griewank and O. Vogel, 2003) and COS is the preliminary version
of the Class Ordering System described in (Malloy et al., 2003a). The matrix
test case is an extended precision matrix application that uses NTL, a high
performance portable CPP number theory library (Shoup, 2002). vkey is a GUI
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Table 1. Test Suite and Statistics about Strongly Connected Components (SCC). For
the test cases there were very few (no more than 3) SCCs containing more than one
class. On the other hand, those few SCCs can be very large, containing nearly 5000
edges in the case case of the Drawserv test case. The matrix test case, listed on line
3, did not contain any cycles, although there are self loops for some of the classes;
some classes contain as many as four (4) of these self loop edges, as illustrated on
the third row, last column of data in this table.
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Adol-C 699 16 111 7 2 5 63

COS 1304 43 138 40 1 3 11

matrix 4944 50 164 50 0 1 4

vkey 8588 46 226 27 1 19 143

Edraw 832 44 252 30 2 12 117

Graphdraw 4354 151 1340 106 3 39 673

Drawserv 5687 236 6460 118 3 110 4722

application that uses the V GUI library (Wampler, 2001), a multi-platform
CPP graph framework for GUI applications. The final three test cases, Edraw,
Graphdraw and Drawserv, are GUI applications generated from the Tools draw-
ing application (Vlissides and Linton, 2002), a suite of free XWindows drawing
editors for Postscript, TeX and web graphics production.

Table 5.1 lists summary information about the ORDs and the cycles in the
ORDs for the test cases in our study. The first column of data lists the lines of
code in each test case, the next two columns of data list information about the
respective ORD and the final four columns list information about the strongly
connected components (SCCs) present in the ORD. It is interesting to note
that in all test cases there were very few (no more than 3) SCCs containing
more than one class. On the other hand, those few SCCs can be very large,
containing nearly 5000 edges in the Drawserv test case.

The matrix test case, listed on line 3 of Table 5.1, did not contain any SCCs
with more than one class; thus, there are no cycles in this test case. Nev-
ertheless, for some of the singleton SCCs with only one class, there are self
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Table 2. Edge types in each test case.
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Inheritance edges 7 11 0 14 10 42 110

Association edges 1 7 18 33 8 93 167

Composition edges 0 39 27 8 4 7 9

Dependence edges 38 79 119 88 150 527 1387

Polymorphic edges 65 2 0 83 80 671 4787

Owned Element edges 0 0 0 0 0 0 0

loops for the class so that some classes had as many as four (4) edges, as
illustrated on the third row, last column of data in the table. Self loops occur
frequently in real applications, generated by self-referential functions whose
parameter(s) are instances of the class. Examples of self-referential functions
are copy constructors, overloaded assignment operators and other functions for
binary operators.

Table 5.1 lists the number of edges of each type in each test case. Note that
the vast majority of edges are ADP edges (97% overall). Nonetheless, as noted
earlier, in six out of seven test cases (matrix being the exception) it is not pos-
sible to break all of the cycles using just association and dependency edges.
One fact that does not appear in the results shown in Table 5.1 concerns com-
position edges, namely that although our test cases contain some composition
edges, none of those composition edges is located in a cycle.

All of our experiments were executed on a workstation equipped with two
Intel c© Pentium c© III 1.0 GHz processors, 1 GB of SDRAM, and running
the Suse Linux 9.0 operating system.

5.2 The difficulty of stubbing vs edge type

There is considerable uncertainty about the cost of creating stubs relative to
various types of edges. Further, when considering the stubbing necessary to
accomplish class-based testing of a large program, there may be a trade-off
between the effort required to stub an individual method and the total effort
taken over all stubs needed for the testing. For instance, it might be preferable
to create three difficult stubs rather than 40 easy stubs.

Thus, in this study we investigate the cost of stubbing using two measures of
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the goodness of the stubbing:

• The number of stubs: What is the total number of stubs that are created
(i.e. the number of edges removed), and how does this number of stubs com-
pare with stubbing based exclusively on ADP edges? For this experiment
we run Briand-A, Briand-B, and use two COS cost models with the three
versions of COS. The first cost model uses a cost of 2 for ADP edges, and a
cost of 9999 for all other edges. The effect of using these costs is to disallow
the stubbing of non-ADP edges. This will allow a direct comparison of the
Briand and COS approaches, since only ADP edges will be removed. The
second COS cost model uses a cost of 2 for all edges. Since all edge costs
are identical, this will allow a direct evaluation of the advantage (if any),
in terms of the total number of stubs, of stubbing all types of edges versus
just stubbing ADP edges.

• The overall cost of stubbing: Since the ultimate goal of this work is
to reduce the total cost of class-based testing, an alternative measure of
stubbing is to reflect both the number of stubs and the cost of producing
those stubs. From (Briand et al., 2001; Kung et al., 1995) there is gen-
eral agreement that the stubbing of association, dependency and polymor-
phic edges can be relatively straight-forward, and that such ADP edges
are the cheapest to stub among all edge types. Further, it seems that
stubbing composition 3 edges is considered to be more difficult than for
ADP edges. The biggest uncertainty is in regard to the stubbing of in-
heritance edges. On the one hand, it is stated in (Briand et al., 2001)
that the stubbing of inheritance edges is not “economically viable”. On
the other hand, recent work (Malloy et al., 2003a; Lloyd and Malloy, 2005)
suggests that stubbing of inheritance edges may be reasonable in some cir-
cumstances. Thus, in enumerating appropriate COS cost models based on
the cost of creating stubs for different types of edges we have the following re-
lationships 4 : cost(dependency) = cost(association) = cost(polymorphic) <
cost(composition) = cost(ownedElement) << cost(inheritance). The overall
cost of stubbing is then the sum over all removed edges of the cost associated
with edges of that type.

Clearly, the overall cost of stubbing obtained from experiments will be
highly dependent on the specific COS cost model that is used. Since there is
no way to determine precise values, we consider five COS cost models, each
of which conforms to the cost relationships given above, but which differ in
the exact cost values that are used for inheritance edges in relation to the
cost of ADP and composition edges. In each of those five cost models, ADP

3 In (Briand et al., 2001), composition edges are denoted as aggregation edges,
which are distinguished from simple aggregations that are labeled there as a type of
association.
4 For completeness we include ownedElement in these costs, although no such edges
actually appear in any of our test cases.
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edges are assigned a cost of 2, and composition and ownedElement edges
are assigned a cost of 4. The cost of inheritance edges is set to be 80, 40,
20, 10 and 5 respectively, for the five cost models. The variation in the cost
assigned to inheritance edges allows us to explore general trends in regard
to overall costs, rather than specifics related to a given inheritance cost.

6 The Implementation: Results and Discussion

In this section we describe and analyze the results of our experiments. Through-
out this section we provide tables showing the number of edges removed by the
variants of the Briand and COS algorithms. For both methodologies, the num-
ber of edges shown is the number of individual edges. This is straight-forward
for Briand, but requires some explanation in the case of COS which utilizes
the COS ORD with merged edges. For the variants of COS, the number of
individual edges that are removed is computed by summing, over all removed
merged edges, the number of individual edges included in each merged edge.
For instance, if one inheritance, one polymorphic and two dependency edges
from the standard ORD were merged to create a merged edge e, then if e
is removed by COS, the result is that 4 stubs will need to be created - one
for each of the individual edges that constitute that merged edge. Although
it is natural to think that perhaps these four edges could be handled using
a single stub, that is not usually the case. For instance, the two dependency
edges may reflect calls of different methods in the supplier class. Thus, with
the exception of Section 6.3 where we address an issue for which the number
of merged edges is a consideration, all of our results refer to individual edges
(and hence to the actual number of stubs that need to be created).

In the subsections that follow we address four specific issues.

6.1 Minimizing the number of stubs

Table 6 provides a direct comparison of the Briand and COS approaches to
edge selection for breaking cycles in an ORD, and hence to stubbing. There
are three aspects to that comparison.

First, recall that there are two versions of Briand based on how that method-
ology is extended to apply to polymorphic edges. In all test cases the one pass
method of Briand-A, which treats polymorphic, association and dependency
edges as equally desirable for breaking cycles, is equal or superior to Briand-B,
which only breaks polymorphic edges if no association or dependency edges
are available. However, the differences between the two methods are relatively
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Table 3. Number of removed edges: Briand and COS. The cost model 6-tuple gives
the costs (in order) for: inheritance, association, composition, dependency, poly-
morphic, and ownedElement edges. There were 88 edges removed for the matrix test
case for all four models; these edges are all self loops induced by functions such as
copy constructors and overloaded assignment operators.

Edges removed in: A
do

l-
C

C
O

S

m
at

ri
x

vk
ey

E
dr

aw

G
ra

ph
dr

D
ra

w
se

rv

Briand-A 73 16 88 85 84 539 3497

Briand-B 77 17 88 92 97 539 3497

COS-A (9999,2,9999,2,2,9999) 86 16 88 75 80 504 3540

COS-A (2,2,2,2,2,2) 39 15 88 50 56 237 1489

small in all test cases. We conclude that using Briand-A is preferable due to
its single pass, and in the remainder of the results described here we utilize
Briand-A as the representative of the Briand approach.

Comparing the lines in Table 6 corresponding to Briand-A and to COS-A with
costs (9999, 2, 9999, 2, 2, 9999) allows a direct comparison of the two methods
when they are applied only to ADP edges. Those results show no substantial
difference between the two methods, with Briand-A being superior in two test
cases, COS-A being superior in three test cases and the two methods being
equal in one test case. Since both methods take the same general approach
in breaking the ORD into strongly connected components and then selecting
edges to break the cycles in those SCCs, the equality may not be a surprise. On
the other hand, the two methods select the edges for removal in very different
ways. Recall that the Briand weights are based on the product of in and out
degrees, while the COS weights are based on the edge types.

The third aspect of comparison arising from Table 6 comes in comparing
Briand-A to COS-A with costs (2,2,2,2,2,2). This measures the advantage
that can be gained in terms of the total number of stubs that need to be
written by allowing the stubbing of all types of edges, rather than just ADP
edges. And, the reduction in the number of stubs is quite significant in five of
the seven test cases, ranging from 33% to 64% reductions. Further, the largest
percentage decrease also occurred in the test case having the largest absolute
number of stubs, dropping from 3497 stubs for Briand-A down to 1489 stubs
for COS-A. The only test cases where there was not a significant difference
between Briand-A and COS-A were for COS, where the number of edges to be
removed is small (16 for Briand-A and 15 for COS-A), and for matrix where
the ORD contains no inheritance edges, hence both algorithms remove only
ADP edges.
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Table 4. Edge types removed by COS-A for cost model (20,2,4,2,2,4).
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Inheritance edges 0 0 0 0 0 1 15

Association edges 0 1 0 19 1 12 36

Composition edges 0 0 0 0 0 0 0

Dependency edges 30 13 88 22 28 75 381

Polymorphic edges 56 2 0 34 51 406 2356

Owned Element edges 0 0 0 0 0 0 0

Table 5. Number of removed edges for several cost models. The entry for
(80,2,4,2,2,4) is identical to that for (40,2,4,2,2,4) and is omitted. The numbers
in parentheses indicate the number of inheritance edges that were removed.

Edges removed in: Adol-C COS matrix vkey Edraw Graphdraw Drawserv

Briand-A 73 16 88 85 84 539 3497

COS-A (40,2,4,2,2,4) 86 (0) 16 (0) 88 (0) 75 (0) 80 (0) 504 (0) 2900 (9)

COS-A (20,2,4,2,2,4) 86 (0) 16 (0) 88 (0) 75 (0) 80 (0) 494 (1) 2788 (15)

COS-A (10,2,4,2,2,4) 68 (2) 16 (0) 88 (0) 75 (0) 74 (1) 430 (4) 2653 (20)

COS-A (5,2,4,2,2,4) 46 (6) 16 (0) 88 (0) 68 (1) 56 (3) 307 (10) 2184 (51)

COS-A (2,2,20,5,20,20) 37 (7) 15 (2) 88 (0) 49 (10) 72 (8) 183 (26) 1073 (82)

We also note that by using different COS cost models, it is possible to cre-
ate even fewer total stubs. For instance, using COS-A with the cost model
(2,2,20,5,20,20), only 1073 edges are removed for Drawserv (see the last row,
last column of Table 6.1). The argument in favor of breaking ADP edges has
of course been that inheritance edges are difficult to stub. From these results
it seems that rethinking the stubbing of inheritance edges is in order.

6.2 Minimizing the overall cost of stubbing

Tables 6.1 and 6.1

provide insights into the overall cost of stubbing the programs in our test suite.

Table 6.1 shows, for one cost model, the number of edges of each type that
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are removed by COS-A. There, it is interesting to note the dominance of ADP
edges in all of the test cases. This is not surprising since that cost model
assigns a weight of 2 to ADP edges, and a weight of 20 to inheritance edges.
Even so, for the largest application Drawserv, COS-A selected 15 inheritance
edges for removal, and this resulted in removing about 700 fewer ADP edges
than if no inheritance edges were removed (from Table 6). Note also that no
composition edges were selected for removal in any test case, since as noted
earlier, no composition edges are located in a cycle in any test case.

Table 6.1 shows the total number of edges and (in parentheses) the number
of inheritance edges removed for a set of cost models that vary the cost of
inheritance edges. From this figure there are three observations. The first is
that as the cost of the inheritance edges decreases, the number of inheritance
edges removed increases, and the total number of stubs decreases, as many
fewer ADP edges are removed. The second observation, is that by removing
just a few inheritance edges, the number of stubbed ADP edges (and the total
stubbed edges) may drop dramatically. For the Drawserv test case, Briand-A
removes 3497 edges, while COS-A with a cost of 40 for inheritance edges, re-
moves only 9 inheritance edges, and yet the total number of removed edges
drops to 2908. That is a savings of almost 600 edges! Even if inheritance edges
are difficult to stub, it seems that creating 9 stubs versus 600 stubs is a po-
tentially large advantage. The third observation is that by using different cost
models the overall number of removed edges can drop dramatically, as in the
final line of that table; the cost model for this final line of results also appeared
in reference (Malloy et al., 2003a). There, the total number of removed edges
is just under 1100, and there are 82 removed inheritance edges. The trade-off
between the edges removed here, and those removed when only ADP edges
are considered is dramatic: stubbing 991 ADP edges and 82 inheritance edges
versus stubbing about 3500 ADP edges. In terms of actually creating stubs,
the savings of the former over the latter is considerable, even allowing for the
possibility that inheritance edges may be an order of magnitude more difficult
to stub.

6.3 Which version of COS?

The results in Table 6 allow a comparison of the effectiveness of the three
versions of the COS algorithm. In this table we show the number of edges
(individual edges) removed by the COS variants using two cost models. As
is apparent from those numbers there are only slight differences between the
three versions. For any given test case and cost model, any one of the three
variants might break fewer edges than the other two, and in most cases the
differences are small (a few percent or so). Below we consider why there are
generally no appreciable differences in the performance of the three versions.

27



Table 6. Comparing the variants of COS - Removed edges.
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Cost Model (2,2,2,2,2,2)

COS-A (arbitrary) 39 15 88 50 56 237 1489

COS-R (random) 39 15 88 48 76 236 1612

COS-B (Briand) 39 15 88 46 56 216 1262

Cost Model (40,2,4,2,2,4)

COS-A (arbitrary) 86 16 88 75 80 504 2900

COS-R (random) 86 17 88 76 103 538 2960

COS-B (Briand) 86 16 88 70 80 514 2908

First consider COS-R (which selects a random minimum weight edge) in com-
parison with COS-A (which selects a minimum weight edge incident to the
lowest index node). Although COS-A favors the selection of edges incident to
nodes of lower index, while COS-R tends to spread the selection among all
edges, the bottom line is that ultimately all cycles need to be broken. The
edges removed to accomplish this are not particularly relevant - if an edge is
in a cycle, then it can be removed. Spreading the edges across the ORD seems
not to be an advantage, and in fact, selecting multiple edges associated with
a single node may be an advantage to the programmer when they are writ-
ing the actual stubs (i.e. it is probably easier to stub six methods associated
with one class rather than one method in each of six classes, since the former
requires understanding one class versus understanding six in the latter case).
Thus, COS-A is preferred to COS-R due to ease of implementation.

The same conclusion can be reached in comparing COS-A with COS-B (which
utilizes a secondary weight to select among minimum weight edges). Although
it would seem to be advantageous to remove edges based on a measure of the
number of cycles containing that edge, it seems not to help in this case. This
apparently stems from the fact that in the COS ORD with merged edges, the
majority of the nodes have low incoming and outgoing degrees. Specifically,
taken over all seven test cases, our data (not shown here) shows that 65% of
the nodes have indegrees of 3 or less, and 69% of the nodes have outdegrees of
3 or less. As a result, the secondary weights of many edges tend to be similar
in value. This means that there is not much distinction between the edges in
terms of their ability to break cycles. Since the secondary weight is only an
estimate of the ability of the edge to break cycles, small differences appear
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Fig. 7. Reduction in the size of the COS ORD. This figure illustrates the percentage
reduction in the total number of edges in a COS ORD when edges of the same type
with the same source and destination are merged.

not to be significant.

6.4 What about running times?

One unanticipated advantage of the COS system as compared with the Briand
system, is that the running time of the COS algorithms is considerably faster
than that of the Briand algorithm. This advantage arises because the COS
algorithms work with the COS ORD and its merged edges, rather than with
the full set of individual edges appearing in a standard ORD. This advantage
manifests itself in two ways.

First, the size of the COS ORD manipulated by COS is smaller than a standard
ORD. Figure 7 illustrates the reduction in the the number of edges in a COS
ORD as compared to a standard ORD. In the figure, the test cases are listed
along the X axis, and the percentage reduction in the number of edges in the
COS ORD is listed along the Y axis. For example, for the Adol-C test case
there were 111 individual edges and 41 merged edges; the first bar of the graph
in Figure 7 shows a 63% reduction in the size of the COS ORD as compared
to a standard ORD. For the Drawserv test case, there were 6460 individual
edges and 2118 merged edges; the last bar of the graph in Figure 7 shows a
67% reduction in the size of the COS ORD as compared to a standard ORD.
The reduction in the number of edges in the COS ORD as compared to a
standard ORD averages 54%. This reduction in the number of edges is most
advantagous for the last two test cases shown in the graph, since they have the
most edges, Graphdraw and Drawserv. There, the size of the COS ORDs were
reduced by 62% and 67% respectively over the number of edges in standard

29



ORDs. As a result of using fewer edges, when computing strongly connected
components, the time required is proportionally less for the COS ORD.

The second advantage of using merged edges is that the COS approach deter-
mines which stubs are necessary based on the removal of merged edges. That
is, when a merged edge e is removed from the ORD, the methods associated
with the individual edges that were merged to create edge e are stubbed. Thus,
a number of stubs are associated with a single merged edge. The advantage is
that COS removes only that one merged edge, whereas the Briand methods
would remove the individual edges one at a time. Recall that in both Briand
and COS, the removal of an edge causes the recomputation of the SCCs where
the edge was removed. Each such SCC computation requires time proportional
to the number of nodes and edges in that SCC. By removing merged edges
the number of such recomputations is significantly smaller in COS than when
individual edges are removed in Briand.

Table 6.4 shows a comparison of the number of edges removed by the two
algorithms (individual edges by Briand-A, merged edges by COS-A) using
two cost models. For the larger test cases, the differences in the number of
removed edges is significant, running as high as 4:1. Since the running times
of both algorithms are proportional to the number of removed edges, the
COS algorithm has a significant running time advantage. The advantage is
magnified by the fact that the COS ORD is also significantly smaller than
a standard ORD. Timing results shown in Table 6.4 on actual runs of the
two algorithms confirm this advantage. In that figure, timings are shown for
Briand-A and for three representative cost models in conjunction with COS-
A. The measurement for these timings begins immediately after the common
step of constructing the ORD.

Although the specific time advantage of COS-A over Briand-A varies with
the particular cost model, in all cases the running time of COS-A was signif-
icantly lower than the running time of Briand-A. For example, for the first
of three COS-A models listed in Table 6.4, consider the model with param-
eters (9999,2,9999,2,2,9999) for the Drawserv test case: the running time for
this model is 292,870 ms as compared to 862,590 ms for the Briand-A model,
which means that the running time for the COS-A model is only 33% of the
running time for the Briand-A model. Moreover, for the COS-A model with
parameters (2,2,20,5,20,20) for the Drawserv test case: the running time for
this model is 37,790 ms as compared to the 862,590 ms for the Briand-A
model, which means that the running time for the COS-A model is only 4%
of the running time for the Briand-A model.
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Table 7. Number of removed edges: individual versus merged.

Number of: A
do

l-
C

C
O

S

m
at

ri
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E
dr

aw

G
ra

ph
dr

D
ra

w
se

rv

Individual edges (Briand-A) 73 16 88 85 84 539 3497

Cost Model (2,2,2,2,2,2)

Merged edges (COS-A) 20 9 34 37 29 128 873

Cost Model (80,2,4,2,2,4)

Merged edges (COS-A) 27 9 34 53 32 194 1321

Table 8. Running times.

Running time (ms): A
do

l-
C

C
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S
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at
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rv

Briand-A 90 20 30 340 200 8600 862590

COS-A (9999,2,9999,2,2,9999) 30 10 20 180 60 2830 292870

COS-A (2,2,2,2,2,2) 20 10 20 80 60 1790 172390

COS-A (2,2,20,5,20,20) 10 10 10 70 100 840 37790

6.5 The Command pattern: the performance effects of undo

Figure 8 shows a comparison of the total running times for COS-A using
a series of three cost models with and without the undo functionality of the
Command pattern in the COS. The timings in this figure measure execution
time for all three stages of the ordering methodologies, including the time to
construct the ORD, break all cycles and compute a class ordering. In constrast,
the timings shown in Table 6.4 do not include the time to build an ORD since
that time is the same for all methodologies. The first row of the table in Figure
8 lists each of the seven test cases. The second and third rows of the table
list timings for three iterations through the COS-A method without undo and
with undo, respectively. The final row of the table lists timings for the second
stage of the methodology: the time spent in SCC computation.

The second and third rows of the table in Figure 8 illustrate the time savings
advantage of the undo functionality in the Command pattern. For example,
consider the running time of the Adol-C test case without undo, 1448 ms
(all timings are in milliseconds), and with undo, 532 ms, as illustrated in
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Total run time (ms): A
do
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rv

Without undo 1448 770 125450 60945 1684 26645 551040

With undo 532 276 41268 19624 710 12692 523210

SCC Computation 44 24 26 218 148 4138 355470

Fig. 8. Total running times of COS-A for cost models (9999,2,9999,2,2,9999),
(2,2,2,2,2,2), and (2,2,20,5,20,20): with and without undo

the second and third rows. The execution time using undo is almost three
times faster than the time without using undo, or a 63% improvement in
execution time. The bar chart at the top of Figure 8 further emphasizes this
improvement. There are similar improvements for the other test cases with
the best improvement of 68% for the vkey test case. The exception to this
improvement in execution time is the Drawserv test case where the execution
time without undo is 551,040 ms compared to 523,210 ms with undo: using
undo gained only 5% improvement over the execution time without undo. This
small improvement derives from the fact that the SCCs for this test case are
very large and the time to build the SCCs dominated the computation time.
The time to compute and recompute the SCCs for the Drawserv test case
across all three cost models is 355,470 ms, which dominated the total running
time and eroded the time savings from using the undo to eliminate the time
to re-build the ORD during the cycle breaking process.
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7 Concluding Remarks

We have presented the design and implementation of a system that exploits
well-known design patterns to facilitate construction of an extensible system
for comparison and visualization of ordering methodologies for class-based
testing of C++ applications. Using the design patterns together with the dot
tool from the Graphviz package (AT&T Labs, 2005), we incorporated visual-
ization of the ORD and the edge removals into our system. This visualization
enabled detailed presentation and graphical visualization, and facilitated com-
prehension, debugging and validation of the ORD and edge removal process.

There are four ordering methodologies presented in the literature; three of the
methodologies are based on removal of edges to break cycles (Briand et al.,
2001; Kung et al., 1995; Labiche et al., 2000) and one methodology is based on
removal of nodes (Tai and Daniels, 1997). Of the three methodologies based on
edge removal, the methodology of Briand et al. (Briand et al., 2001) subsumes
that of Kung et al. (Kung et al., 1995), and Briand et al. (Briand et al.,
2001) demonstrated that their methodology is better than that of Labiche et
al. (Labiche et al., 2000). Thus, using our implemented system, we have also
presented a comparative study and evaluation of the remaining methodology of
Briand, et al. (Briand et al., 2001) and a new methodology, COS, for generating
an integration order of classes to minimize the cost of stub construction. Our
study addresses the identified need for empirical evaluation and comparison
of testing strategies (Do et al., 2004; Harrold, 2000; NIST, 2002; Orso et al.,
2004). We have also demonstrated the extensibility of our COS system to both
visualization and node-based removal methodologies.

All methodologies, except for Labiche et al. (Labiche et al., 2000) and COS,
fail to include polymorphic edges in their ORD and cycle breaking consid-
erations. By not including polymorphic edges, dependencies between classes
are omitted and the generated class ordering is incorrect. Thus, to generate a
correct class order and to ensure that the cycle breaking algorithm terminates,
the approach of Briand, et al. (Briand et al., 2001) required modification to
include polymorphic edges in the ORD and edge removal considerations.

The main results of the comparative study of Briand, et al. (Briand et al.,
2001) and COS were:

• The number of stubs can be drastically reduced by allowing the stubbing
of inheritance edges. Using the COS cost model approach, the trade-off be-
tween the number of removed inheritance edges and the number of removed
ADP edges can be controlled. Based on these results, additional research
into the stubbing of inheritance edges seems appropriate.

• When restricted to the removal of ADP edges, the Briand approach and
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COS were equivalent in the number of removed edges.
• The running time of the COS algorithms is considerably less than those of

Briand, due primarily to the use of merged edges. Similarly, the size of the
COS ORD is considerably smaller than an ordinary ORD.

• The three variants of COS perform equivalently in terms of the number of
edges removed, thus COS-A is preferred due to having the simplest imple-
mentation.

The code for the COS implementation is available upon request or from the
first author’s web page.
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Appendix A

Fig. 9. Visualizing cycles. The ORD in this figure is generated automatically by our
GraphvizVisitor and the dot tool, providing a visualization overview of the cycles
in the ORD for the vkey test case.
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