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Abstract— Existing work on placing additional relay nodes
in wireless sensor networks to improve network connectivity
typically assumes homogeneous wireless sensor nodes with an
identical transmission radius. In contrast, this paper addresses
the problem of deploying relay nodes to provide fault-tolerance
with higher network connectivity in heterogeneous wireless sensor
networks, where sensor nodes possess different transmission radii.
Depending on the level of desired fault-tolerance, such problems
can be categorized as: (1)full fault-tolerance relay node placement,
which aims to deploy a minimum number of relay nodes to
establish k (k ≥ 1) vertex-disjoint paths between every pair of
sensor and/or relay nodes; (2)partial fault-tolerance relay node
placement, which aims to deploy a minimum number of relay
nodes to establishk (k ≥ 1) vertex-disjoint paths only between
every pair of sensor nodes. Due to the different transmission
radii of sensor nodes, these problems are further complicated
by the existence of two different kinds of communication paths in
heterogeneous wireless sensor networks, namelytwo-way paths,
along which wireless communications exist in both directions;
and one-way paths, along which wireless communications exist
in only one direction. Assuming that sensor nodes have different
transmission radii, while relay nodes use the same transmission
radius, this paper comprehensively analyzes the range of problems
introduced by the different levels of fault-tolerance (full or
partial) coupled with the different types of path (one-way or
two-way). Since each of these problems is NP-hard, we develop
O(σk

2)-approximation algorithms for both one-way and two-way
partial fault-tolerance relay node placement, as well asO(σk

3)-
approximation algorithms for both one-way and two-way full
fault-tolerance relay node placement (σ is the best performance
ratio of existing approximation algorithms for finding a min imum
k-vertex connected spanning graph). To facilitate the applications
in higher dimensions, we also extend these algorithms and derive
their performance ratios in d-dimensional heterogeneous wireless
sensor networks (d ≥ 3). Finally, heuristic implementations of
these algorithms are evaluated via simulations.

I. I NTRODUCTION

Heterogeneouswireless sensor networks (H-WSNs) are com-
posed of a large number of wireless devices equipped with
different communication and computing capabilities. In com-
parison withhomogeneouswireless sensor networks, where all
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of the devices possess the same communication and computing
capability, H-WSNs allow for a variety of operating environ-
ments, and hence are useful for many practical applications.

However, in real applications, unpredictable events, suchas
battery depletion and environmental impairment, may cause
these wireless devices to fail, partitioning the network and
disrupting normal network functions. Therefore, fault tolerance
becomes a critical factor for the successful deployment of wire-
less sensor networks. One approach to achieve fault tolerance
in wireless sensor networks is to deploy a small number of
additionalrelay nodesto providek (k ≥ 1) vertex-disjointpaths
between every pair of functioning devices (including sensors,
data sinks, and other wireless equipments, all termedtarget
nodesin this paper) so that the network can survive the failure
of fewer thank nodes. This problem is known asrelay node
placementin the literature [1][2][3][4][5][6][7].

Most of the existing work considers relay node placement
in the context of homogeneous wireless sensor networks where
both target nodes and relay nodes use an identical transmission
radius. Before reviewing these results, we first introduce akey
definition of approximation algorithm that will be used in this
paper.

Definition 1.1: [Approximation Algorithm][8]: An algorithm
solving a minimization problem is ap-approximation algorithm
(or has a performance ratiop), if the solution provided by the
algorithm is no more thanp times the optimal solution.

Relay node placement has been well studied for the case of
k = 1, i.e.,using a minimum number of relay nodes to bridge a
partitioned network. For instance, Lin and Xue [1] proved this
problem to be NP-hard, and proposed a minimum spanning
tree (MST) based 5-approximation algorithm. Chenet al. [2]
showed that the performance ratio of the algorithm described
in [1] is actually 4, and they also proposed a 3-approximation
algorithm for this problem. In [3], Chenget al. proposed a
faster 3-approximation algorithm and a randomized algorithm
with a performance ratio of 2.5.

Recently, work on relay node placement has also been done
for the general case ofk ≥ 2. For example, Bredinet al. [5]
studied thefull fault-tolerance relay node placement (FFRP),
which aims to deploy a minimum number of relay nodes to
create a fullk-vertex connected network such that the resulting
network containsk vertex-disjoint paths between every pair of
target and/or relaynodes. Figure 1(a) gives an example of a
full 2-vertex connected network. The authors of [5] presented
a σ(9k4 + 36(k3 + k2))-approximation algorithm for FFRP.
Hereσ is the best performance ratio of existing approximation
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Fig. 1. Hollow circles stand for target nodes, and solid circles stand for relay
nodes. (a) A full 2-vertex connected network which contains2 vertex-disjoint
paths between every pair of target and/or relay nodes. (b) A partial 3-vertex
connected network. In this network, there exist 3 vertex-disjoint paths between
every pair of target nodes, while for some pairs of relay nodes, like nodeu
and nodev, there exist only 2 vertex-disjoint paths between them.

algorithms for finding aminimumk-vertex connected spanning
graph (see Section II-D for the definition). In [6], Kashyap
et al. proposed approximation algorithms for deploying relay
nodes to create partialk-edge (vertex) connected networks for
the cluster heads in wireless sensor networks. The problem
defined in [6] is termedpartial fault-tolerance relay node
placement (PFRP)where thek edge (vertex)-disjoint paths
are only guaranteed between every pair of target nodes. Figure
1(b) shows an example of a partial 3-vertex connected network.
The authors of [6] proved that the performance ratios of their
algorithms are 10 whenk = 2. However, the performance ratios
of their algorithms for the case ofk > 2 remain open.

In addition to the above work assuming that both target nodes
and relay nodes use an identical transmission radius, relaynode
placement has also been studied intwo-tiered homogeneous
wireless sensor networks under the assumption that all of the
relay nodes use transmission radiusR and can communicate
with either relay or target nodes, while all of the target
nodes use transmission radiusr and only communicate with
relay nodes. Relay node placement in two-tiered homogeneous
wireless sensor networks aims to create a backbone containing
only relay nodes to providek vertex-disjoint paths between
every pair of target nodes. For this particular problem, Tang
et al. [7] proposed 4.5-approximation algorithms for the cases
of k = 1 and k = 2, providedR ≥ 4r. For the more general
situation ofR ≥ r, Lloyd and Xue [4]1 recently gave a(5+ε)-
approximation algorithm for the case ofk = 1.

To the best of our knowledge, this paper is the first effort to
address relay node placement in the context ofheterogeneous

wireless sensor networks (H-WSNs). In H-WSNs, target nodes
may have different transmission radii, while all of the relay
nodes use an identical transmission radius. The different trans-
mission radii of target nodes introduceasymmetric communi-
cation linksbetween neighboring nodes, which raise two non-
trivial issues. First, asymmetric links result in the existence of
two kinds of paths in H-WSNs, namelyone-waypaths and
two-waypaths. For a two-way path, wireless communications
exist in both directions, while for a one-way path, wireless
communications exist only in one direction. Second, since no
constraints are imposed on the relation between the transmis-

1The authors of [4] also presented a MST-based 7-approximation algorithm
provided that target nodes are also capable of communicating with each other.

sion radius of relay nodes and the transmission radii of target
nodes, as discussed further in Section II-B, placing relay nodes
in the network to connect two particular target nodes becomes
much more complicated.

Given a set of target nodesV in the context of H-WSNs,
and a desired connectivity levelk (k ≥ 1) (assume that the
cardinality of V is larger thank), this paper systematically
addresses the following problems.
• One-way / Two-way partial fault-tolerance relay node

placement (One-way / Two-way PFRP). We seek to deploy a
minimum number of relay nodes to form a one-way / two-
way partialk-vertex connected network forV , such that the
resulting network containsk vertex-disjoint one-way / two-way
paths from any target node to any other target node.
• One-way / Two-way full fault-tolerance relay node place-

ment (One-way / Two-way FFRP). We seek to deploy a min-
imum number of relay nodes to form a one-way / two-way
full k-vertex connected network forV , such that the resulting
network containsk vertex-disjoint one-way / two-way paths
from any node to any other node.

The contributions of this paper are summarized as fol-
lows: (1) we giveO(σk2)-approximation algorithms for both
One-way PFRP and Two-way PFRP; (2) we giveO(σk3)-
approximation algorithms for both One-way FFRP and Two-
way FFRP; (3) we extend each of these algorithms to net-
works in d-dimensional(d ≥ 3) metric space, and generalize
the approximation ratios of the extended algorithms; (4) we
evaluate heuristic implementations of the proposed algorithms
with realistic sensor network scenarios, and show that their
performance is much better than the proven performance ratios
suggest.

The remainder of this paper is organized as follows. Section
II presents the network model and preliminaries. Section III
first describes the algorithm for One-way PFRP, then proves
its approximation ratio. Section IV gives the algorithm for
Two-way PFRP, as well as the proof of its performance ratio.
Section V provides approximation algorithms for both One-way
and Two-way FFRP, and analyzes their approximation ratios.
Section VI extends the approximation algorithms to higher
dimensional networks and derives the corresponding perfor-
mance ratios. Section VII discusses heuristics for the practical
implementations of the presented approximation algorithms.
These heuristic implementations are simulated in QualNet 3.8
[9] and the results are evaluated in Section VIII. Finally, Section
IX concludes the paper with future research directions.

II. N ETWORK MODEL AND PRELIMINARIES

This section describes the model of heterogeneous wireless
sensor networks, as well as some basic operations and prelim-
inary knowledge that will be used in this paper.

A. Model of Heterogeneous Wireless Sensor Networks

We consider stationary heterogeneous wireless sensor net-
works with omni-directional transceivers. Each target node x

possesses a (possibly different) transmission radiusT (x), and



‖N‖, ‖E‖ The cardinality of setsN andE
−→uv Directed edge fromu to v

cuv Undirected edge betweenu andv

|uv| Euclidean distance betweenu andv

in-neighbor x is an in-neighbor ofu if −→xu ∈ E

out-neighbor x is an out-neighbor ofu if −→ux ∈ E

neighbor x is a neighbor ofu if cux ∈ E

PG(−→u, v) A directed path fromu to v in G

P i

G
(−→u, v) i-th directed path fromu to v in G

PG(du, v) An undirected path betweenu andv in G

TABLE I

TERMS, SYMBOLS AND THEIR SEMANTICS

all of the relay nodes use the same transmission radiusT(relay).
T(min) and T(max)represent the minimum and the maximum
transmission radius among all of the relay nodes and target
nodes. Correspondingly, we define constantsα = ⌈T (max)

T (min) ⌉,

β = ⌈ T (max)
T (relay)⌉, and γ = ⌈T (relay)

T (min) ⌉. Furthermore, each
wireless nodex has a transmission range, which is a circle
in a 2D plane (or a sphere in a 3D space) centered atx with
radiusT (x). Given these terms and notations, we model a H-
WSN as a directed graphG = (V ∪ R, E), whereV , R, and
E are the set of target nodes, the set of additionally deployed
relay nodes, and the set of directed edges, respectively. For any
two nodesu andv in V ∪R, there is a directed edge−→uv from
u to v in E if and only if v is in u’s transmission range.

Relative to an arbitrary graphG = (N , E), either directed
or undirected, whereN is the set of nodes andE is the set of
edges, and two nodesu and v in N , Table I lists the terms,
notations, and their semantics used in this paper. Note thatthe
term neighbor is defined and used for undirected graphs, and
the termsin-neighborand out-neighborare defined and used
for directed graphs.

B. Steinerization of Edges

For two target nodesu andv, one common scenario in this
paper is that we want to create a one-way path fromu to
v, or a two-way path betweenu and v, using as few relay
nodes as possible, while ignoring all the other target nodesand
any previously deployed relay nodes. To facilitate creating such
paths, we define the following two operations.
(1) One-way Steinerization. We create an edge−→uv and One-
way Steinerize−→uv as follows. Compute the weight of−→uv using
Equation 1.

weight(−→uv)=

{
0 if T (u)≥|uv|

⌈ |uv|−T (u)
T (relay) ⌉ if T (u)<|uv|

(1)

If weight(−→uv) ≥ 1, then place one relay nodex on the
straight line betweenu andv such that|ux| = T (u), and then
evenly placeweight(−→uv)−1 relay nodes along the straight line
betweenx andv. In this way, we create a one-way path from
u to v. Figure 2(a) depicts this operation.

(2) Two-way Steinerization: We defineδ = min{T (u), T (v)},
λ = min{T (u), T (relay)} and ω = min{T (v), T (relay)}.

(a) (b)

Fig. 2. (a) One-way Steinerize the directed edge~uv and create a one-way
path fromu to v. (b) Two-way Steinerize the undirected edgecuv and create
a two-way path betweenu andv.

(a) (b)

Fig. 3. Segmentation of the neighborhood of nodeu with (r1, r2). (a) The
encompassing square can be evenly segmented by cells. (a) The encompassing
square cannot be evenly segmented by cells.

We create an edgêuv and Two-way Steinerizêuv as follows.
Compute the weight of̂uv using Equation 2.

weight(ûv)=

{
0 if |uv| ≤ δ

⌈ |uv|−λ−ω

T (relay) ⌉+ 1 if |uv| > δ
(2)

If weight(ûv) = 1, then place one relay nodex on the straight
line betweenu andv such that|ux| = λ. If weight(ûv) ≥ 2,
then place two relay nodesx andy on the straight line between
u and v such that|ux| = λ and |vy| = ω, and then evenly
distributeweight(ûv) − 2 relay nodes along the straight line
betweenx andy. In this way, we create a two-way path between
u andv. Figure 2(b) depicts this operation.

C. Segmentation of Neighborhood

Another operation frequently used in this paper is to divide
a certain neighborhood area of a particular node into small
regions such that the nodes within the same region are con-
nected by directed or undirected one-hop communication links.
Specifically, for a nodeu, we segmentits neighborhood with
a pair of positive values (r1, r2) in a 2D plane as follows. We
first create a circle centered atu with radius r1, along with
a square just large enough to encompass the circle. Then, we
evenly segment this square (from top to bottom, and from left
to right) into small squarecells with the length of the diagonal
of each cell being equal tor2 (or shorter thanr2 for somecells
if the encompassing square cannot be evenly segmented). As
depicted in Figures 3(a) and 3(b), this segmentation operation
guarantees that the Euclidean distance between every pair of
nodes in the samecell is no more thanr2.

D. Minimumk-Vertex Connected Spanning Graph

An important problem related to the relay node placement
is to find a minimum k-vertex connected spanning graph
(MKCSG). This concept depends on the following definition.



Definition 2.1: [k-Vertex Connected Graph]: Consider a
graphG = (N, E), whereN and E are the node set and the
edge set, respectively. ThenG is a k-vertex connected graph
(for short, G is k-vertex connected), if for any two nodesu
andv in N , there existk vertex-disjoint paths betweenu and
v in G (or there existk vertex-disjoint directed paths fromu
to v in G, if G is a directed graph).

Then, the MKCSG problem is to compute ak-vertex con-
nected spanning graph of weighted complete graph with min-
imum total weight. For undirected graphs, whenk = 1, this
problem is exactly that of finding the minimum spanning tree;
whenk ≥ 2, this problem is NP-hard, and the following results
are known. Ravi and Williamson [10] claimed the first constant
approximation algorithm with performance ratio(2

∑k

i=1
1
i
).

However, their proof was later found [11] to contain errors.
In [12], Kortsarz and Nutov presented ak-approximation al-
gorithm, and a(k+1

2 )-approximation algorithm for the case of
k ≤ 7. Most recently, Cheriyanet al. [13] developed anO(lgk)-
approximation algorithm, provided the complete graph contains
at least6k2 nodes. For directed graphs, this problem is NP-
hard whenk ≥ 1. Kortsarz and Nutov [12] presented a (1+k)-
approximation algorithm, along with a (2+ k

‖N‖ )-approximation
algorithm (N is the node set) if the edge weights satisfy the
triangle inequality.

Aside from the above algorithms with provable performance
guarantees, Li and Hou [14] proposed an easily implemented
heuristic algorithm, which works by iteratively adding edges
in increasing order of edge weight until the resulting graphis
k-vertex connected. Bredinet. al [5] improved the algorithm
of [14] by imposing an optimization step, which tests each
added edge in decreasing order of edge weight and removes any
edge whose removal does not destroy thek-vertex connectivity.
The simulation results in [5] show that the performance of the
heuristic algorithms are typically close to the optimal.

III. O NE-WAY PARTIAL FAULT-TOLERANCE RELAY NODE

PLACEMENT

This section presents an approximation algorithm for One-
way PFRP in H-WSNs, and analyzes the quality of the result
produced by the algorithm with respect to the optimal solution.

A. Algorithm for One-way PFRP

In brief, given a set of target nodesV , the algorithm first
finds a directed MKCSGM of a complete graph overV , then
One-way Steinerizes each edge inM . We leave the choice of
an approximation algorithm for computing MKCSG as an open
option, and assume that the approximation ratio of the selected
algorithm isσ in our analysis. The complete algorithm is stated
in Algorithm 1, and Theorem 3.1 states the performance ratio
of Algorithm 1.

Theorem 3.1:Let V be a set of target nodes. Algorithm 1 is
an O(σk2)-approximation algorithm in terms of the number
of relay nodes required to form a one-way partialk-vertex
connected network forV .

Algorithm 1 Algorithm for One-way PFRP
1: INPUT: Integer k and a set of target nodesV .
2: OUTPUT: A set of relay nodesR.
3: R ← φ (empty set);W ← {−→uv | u,v (u 6= v) ∈ V };
4: Define the weight of each edge−→uv ∈ W according to

Equation 1;
5: C ← (V, W );
6: Compute an approximate directed MKCSGM of C using

a σ-approximation algorithm;
7: One-way Steinerizeeach edge−→uv ∈M and place the relay

nodes intoR;
8: OutputR;

B. Proof of the Performance Ratio

Although Algorithm 1 is relatively straightforward, the anal-
ysis of its performance ratio is complicated. We first give two
definitions.

Definition 3.2: [One-way Partial k-Vertex Connected
Graph]: Let V be a set of target nodes, andG = (V ∪R, E) be
a directed graph, whereR is the set of additionally deployed
relay nodes, andE is the set of directed edges. Then,G is a
one-way partialk-vertex connected graph forV , if for every
pair of target nodesu andv in V , there existk vertex-disjoint
one-way paths fromu to v in G (i.e., there exists at least one
one-way path inG from u to v after the removal of fewer
thank arbitrary nodes other thanu andv).

Definition 3.3: [Super Path][4]: Let V be a set of target
nodes, andG = (V ∪ R, E) be a one-way partialk-vertex
connected graph forV . Then, a one-way pathPG(−→u, v) in G

is a super path, ifu andv are target nodes and every interior
node (if any) ofPG(−→u, v) is a relay node.

From the description of Algorithm 1, we have an important
observation that:every relay node placed by Algorithm 1 is
on exactly one super path. We use this fact to help establish
the quantitative relationship between the result producedby
Algorithm 1 and the optimal solution. The entire analysis
consists of three steps.

B.1 Step One
In this step, we prove that if there exists a one-way partial

k-vertex connected graphG = (V ∪ R, E) for V where each
relay node inR is on exactly one super path, then the number
of relay nodes computed by Algorithm 1 onV is at mostσ‖R‖.
The analysis proceeds by first establishing Lemma 3.4 and
Lemma 3.5, which show that duplicate super paths from the
same starting node to the same ending node are unnecessary, if
each relay node is on exactly one super path. Finally, Lemma
3.6 proves the result of Step One.

Lemma 3.4:Let G = (N , E) (‖N‖ > k) be a directedk-
vertex connected graph. For two nodesu andv in N , if there are
multiple directed edges fromu to v in G, then if we keep one
of these edges and remove the others, then the resulting graph
G′ = (N , E′) remains a directedk-vertex connected graph. Due
to the space limitation, the proof of this lemma is omitted.



Lemma 3.5:Let V be a set of target nodes, andG = (V ∪R,
E) be a one-way partialk-vertex connected graph forV where
each relay node inR is on exactly one super path. For any
pair of target nodesu andv in R, if in G there exist multiple
super paths fromu to v, then if we keep one of these super
paths and remove the others, and denote the resulting graph as
G′ = (V ∪R′, E′), thenG′ remains a one-way partialk-vertex
connected graph forV .
Proof: Since each relay node inR is on exactly one super path,
by treating each super path as an edge, all of the target nodes
and super paths inG form a directedk-vertex connected graph.
From Lemma 3.4, it follows that after removing the redundant
super paths, the target nodes and the remaining super paths in
G′ still form a directedk-vertex connected graph. This means
that, in G′, there existk vertex-disjoint one-way paths from
any target node to any other target node. Therefore,G′ is a
one-way partialk-vertex connected graph forV .

Lemma 3.6:Let V be a set of target nodes, andG = (V ∪R,
E) be a one-way partialk-vertex connected graph forV where
each relay node inR is on exactly one super path inG. Then,
the number of relay nodes computed by Algorithm 1 onV is
at mostσ‖R‖.
Proof: For any pair of target nodesu andv in R, if in G there
exist multiple super paths fromu to v, we keep one of these
super paths and remove the others, and denote the resulting
graph asG′ = (V ∪ R′, E′). By Lemma 3.5,G′ remains a
one-way partialk-vertex connected graph forV , and we have
‖R′‖≤‖R‖.

Now consider the result produced by Algorithm 1. For two
arbitrary target nodesu and v in V , Equation 1 defines the
minimum number of relay nodes required to create a one-
way path fromu to v. Furthermore, Algorithm 1 uses aσ-
approximation algorithm to compute an approximate directed
MKCSG M . Therefore, the number of relay nodes computed
by Algorithm 1 is at mostσ‖R′‖ ≤ σ‖R‖.

B.2 Step Two
Let V be a set of target nodes, andGo = (V ∪ Ro, Eo) be

an optimal one-way partialk-vertex connected graph forV .
In this step, motivated by the analysis in [5], we perform a
sequence of transformations onGo, and create a new one-way
partial k-vertex connected graphGf = (V ∪ Rf , Ef ) for V

where each relay node inRf is on exactly one super path, and
‖Rf‖ ≤ ((32βα2 + 1

2 )k2 +3k+4)‖Ro‖ (Note thatα andβ are
defined in section II-A). Our analysis uses two transformation
rules, which are defined in the following paragraphs.
• Transformation Rule 1: For relay noder, we segment

its neighborhood with (T (max), T (min)), and get at most
8α2 cells. In each cell, noder randomly selectsk target in-
neighbors andk target out-neighbors (or select all of the target
in-neighbors or out-neighbors if there are fewer thank of them)
as its new target in-neighbors and out-neighbors, as well asall
of the edges associated with the selected target nodes.

Denote graphG′
o = (V ∪ Ro, E′

o) as the graph that results
by performing Transformation Rule 1 onGo. We have the
following lemma.

Lemma 3.7:The graphG′
o = (V ∪ Ro, E′

o) is a one-way
partial k-vertex connected graph forV , and each relay node
in Ro has at most8α2k target in-neighbors and8α2k target
out-neighbors.
Proof: Let G = (N , E) be a graph whereN and E are the
sets of nodes and edges, respectively, and letX be a set of
nodes (or edges). We defineG\X as the graph that results by
removing the nodes inN ∩X plus their incident edges fromG
(or by removing the edges inE ∩X from G, if X is an edge
set).

For two target nodesu andv in V , andk−1 arbitrary nodes
A = {n1, n2, .., nk−1} other thanu andv in G′

o, we prove that
there is a path fromu to v in G′

o \A.
Obviously, there is a one-way pathPGo

(−→u, v) from u to v

in Go \ A. For an arbitrary hop onPGo
(−→u, v), say−→xy, if both

x andy are target nodes or relay nodes, then−→xy still exists in
G′

o\A. Now, consider the situation wherex is a relay node and
y is a target node: (1) ifx choosesy as its new out-neighbor
in G′

o, then−→xy exists inG′
o \A; (2) if y is not chosen, then in

the cell ofx wherey resides,x must selectk other target out-
neighbors, and at least one of these target out-neighborsz is
not in A. Since|zy| ≤ T (min), −→zy exists inG′

o \A. Therefore,
we replace−→xy with −→xz plus−→zy in G′

o \ A. We can perform a
similar replacement for the situation wherex is a target node
andy is a relay node.

Because each hop onPGo
(−→u, v) is valid in G′

o \A, there is a
one-way path fromu to v in G′

o\A. Therefore,G′
o is a one-way

partial k-vertex connected graph forV . Moreover, since there
are at mostk target in-neighbors andk target out-neighbors
in each cell, each relay node inG′

o has at most8α2k target
in-neighbors and8α2k target out-neighbors.

Before stating the second transformation rule, we first pro-
vide three additional definitions.

Definition 3.8: [Relay Component][5]: Let V be a set of
target nodes, andG = (V ∪ R, E) be a one-way partialk-
vertex connected graph forV . For a relay noder ∈ R, the relay
component ofr can be derived as follows. We start atr, travel
along each edge incident tor in G (when we travel, we omit
the direction of each edge, and traverse in either direction).
If we meet a relay node, we repeat the process; if we meet
a target node, we stop. Finally, all of the nodes (target or
relay) and edges visited in this recursive process form a relay
component ofr. Intuitively, all of the boundary nodes in the
relay component are target nodes.

Definition 3.9: [Undirected Spanning Tree of Relay Compo-
nent]: Let Ci = (Vi ∪Ri, Ei) be a relay component, whereVi,
Ri, andEi are the sets of target nodes, relay nodes and directed
edges inCi, respectively. We first create a new undirected graph
C′

i from Ci by omitting the direction of each edge inEi. Then,
an undirected spanning tree ofCi, denoted asTree(Ci), is a
spanning tree ofC′

i rooted at an arbitrary relay node and having
all of the target nodes inVi as leaves.

Definition 3.10: [Harary Graph]: Let V be a set of nodes.
We can construct a Harary graph ofV as follows. We place all
of the nodes inV into a circular doubly-linked listL. For each
nodex in L, we add undirected edges between node x andk



nearest nodes ofx in L. A Harary graph is ak-vertex connected
graph. If we replace each undirected edge in a Harary graph
with a pair of opposite directed edges, the resulting graph is a
directedk-vertex connected graph.

Assume thatG′
o = (V ∪ Ro, E′

o) hasm relay components,
denoted asCi=(Vi ∪Ri, Ei) (1 ≤ i ≤ m). Now we define the
second transformation rule, which is performed on each relay
component.
• Transformation Rule 2: For each relay componentCi =

(Vi ∪ Ri, Ei): (1) if ‖Vi‖ > k, we first make a clockwise
Eulerian tour ofTree(Ci), and place the target nodes in a
circular doubly-linked listL in the order in which they are
visited in this Eulerian tour. Then, we remove all of the relay
nodes inCi, and create a Harary Graph inCi by connecting
each target node withk nearest target nodes inL; (2) if ‖Vi‖ ≤
k, we first remove all of the relay nodes inCi, and create a
complete undirected graph inCi by connecting each target node
with all of the other target nodes. Then, we addk − ‖Vi‖+ 1
duplicate edges for each edge in this complete graph. Finally,
after creating a Harary graph or a complete graph with duplicate
edges, we replace each edge with two opposite directed edges,
and One-way Steinerize all of the directed edges.

Let C′
i = (Vi∪R′

i, E′
i) (1 ≤ i ≤ m) be the graph that results

by performing Transformation Rule 2 on relay componentCi,
and let graphG′′

o = (V ∪R′′
o , E′′

o ) be the graph that results by
performing Transformation Rule 2 on each relay component in
G′

o. We have the following lemma.
Lemma 3.11:The graphG′′

o is a one-way partialk-vertex
connected graph forV , and each relay node inG′′

o is on exactly
one super path.
Proof: For two target nodesu andv in V , andk− 1 arbitrary
nodesA = {n1, n2, .., nk−1} other thanu and v in G′′

o , we
prove that there is a path inG′′

o \ A from u to v. By Lemma
3.7, there is a one-way pathPG′

o
(−→u, v) from u to v in G′

o \A.
We partitionPG′

o
(−→u, v) into multiple sub-paths, where each sub-

path is a super path. For an arbitrary sub-pathPG′

o
(−→x, y): (1)

if PG′

o
(−→x, y) does not contain any relay nodes, thenPG′

o
(−→x, y)

exists inG′′
o \ A; (2) if PG′

o
(−→x, y) contains some relay nodes,

x andy must be in the same relay componentCj in G′
o, and

hencex and y are in C′
j . Transformation Rule 2 guarantees

that there is at least one one-way path fromx to y in C′
j \A,

which can be used to replace the sub-pathPG′

o
(−→x, y) in G′′

o .
Since each sub-path ofPG′

o
(−→u, v) is still valid in G′′

o , there is
a one-way path fromu to v in G′′

o \ A, which meansG′′
o is

a one-way partialk-vertex connected graph forV . Moreover,
each relay node inG′′

o is on exactly one super path.
Finally, we generate the graphGf =(V ∪Rf , Ef ) as follows.

For two arbitrary target nodesu andv in G′′
o = (V ∪R′′

o , E′′
o ),

if there are multiple super paths fromu to v in G′′
o , we keep

one of those super paths and remove the others. By Lemma
3.5, Gf remains a one-way partialk-vertex connected graph
for V . Furthermore, each relay node inGf is on exactly one
super path. Lemma 3.12 presents the result of Step Two.

Lemma 3.12:‖Rf‖ ≤ ((32βα2 + 1
2 )k2 + 3k + 4)‖Ro‖.

Proof: For any relay componentCi = (Vi ∪ Ri, Ei) in G′
o,

by Lemma 3.7, we have‖Vi‖ ≤ 16α2k‖Ri‖. After applying

Transformation Rule 2 onCi, we haveC′
i=(Vi ∪R′

i, E′
i).

When ‖Vi‖ > k, Gf containsC′
i. We useTree(Ci) to

count the number of relay nodes inR′
i. For an arbitrary super

path fromu to v added by Transformation Rule 2 inC′
i, we

spread the weight of−→uv on the pathPTree(Ci)(û, v) between
u and v in Tree(Ci) by chargingβ on the first and the
last hop, and chargingone on each interior hop. For each
edgex̂y in Tree(Ci): (1) if x̂y is incident to a target node,
then x̂y is totally charged2βk; (2) otherwise, we denote the
target descendants ofx in Tree(Ci) from left to right as
{t1, t2, · · ·, tn}. For the nodes fromt1 to t⌈ k

2
⌉, x̂y is charged

2⌈k
2 ⌉, 2(⌈k

2⌉− 1), · · ·, 1, respectively. And for the nodes from
tn to tn−⌈ k

2
⌉+1, x̂y is also charged2⌈k

2 ⌉, 2(⌈k
2 ⌉ − 1), · · ·, 1,

respectively. Therefore,̂xy is charged at most(1
2k2 + 3k + 4).

As a result, all of the edges inTree(Ci) are charged a total
of at most2βk‖Vi‖+ (1

2k2 + 3k + 4)‖Ri‖, which is no more
than ((32βα2 + 1

2 )k2 + 3k + 4)‖Ri‖.
When‖Vi‖ ≤ k, Gf keeps a one-way path from any target

node to any other target node. In this case, all of the edges
in Tree(Ci) are charged a total of no more than((32βα2 +
1
2 )k2 + 3k + 4)‖Ri‖.

Summing up all of the relay components, we have‖Rf‖ ≤
((32βα2 + 1

2 )k2 + 3k + 4)‖Ro‖.

B.3 Step Three
Proof of Theorem 3.1:By Lemma 3.6 and Lemma 3.12,
the number of relay nodes added in Algorithm 1 is at most
σ((32βα2 + 1

2 )k2 +3k +4) times the optimal solution. There-
fore, Algorithm 1 is anO(σk2)-approximation algorithm.

IV. T WO-WAY PARTIAL FAULT-TOLERANCE RELAY NODE

PLACEMENT

This section provides an approximation algorithm for Two-
way PFRP, and derives the performance ratio of the algorithm
by following the framework used for analyzing Algorithm
1. The complete algorithm is presented in Algorithm 2, and
Theorem 4.1 describes its performance ratio.

Algorithm 2 Algorithm for Two-way PFRP
1: INPUT: Integer k and a set of target nodesV .
2: OUTPUT: A set of relay nodesR.
3: R ← φ; W ← {ûv | u, v (u 6= v) ∈ V };
4: Define the weight of each edgêuv ∈ W according to

Equation 2;
5: C ← (V, W );
6: Compute an approximate undirected MKCSGM of C

using aσ-approximation algorithm;
7: Two-way Steinerizeeach edgêuv ∈ M and place the relay

nodes inR;
8: OutputR;

Theorem 4.1:Let V be a set of target nodes. Algorithm 2 is
an O(σk2)-approximation algorithm in terms of the number
of relay nodes required to form a two-way partialk-vertex
connected network forV .



Note that Algorithm 2 assumes the use of an undirected
graph. We can analogously definetwo-way partial k-vertex
connected graphand super path for undirected graph, and
Lemma 4.2 follows directly.

Lemma 4.2:Let V be a set of target nodes, and letG =
(V ∪R, E ) be a two-way partialk-vertex connected graph for
V where each relay node inR is on exactly one super path.
Then, the number of relay nodes computed by Algorithm 2 on
V is at mostσ‖R‖.

Further, we modify the transformation rules in previ-
ous sections as follows: (1) in Transformation Rule 1,
for each relay noder, we segment its neighborhood with
(T (relay), T (min)), and letr selectk target neighbors in each
cell; (2) in Transformation Rule 2, for each relay component
Ci, after creating a Harary graph or a complete graph with
duplicate edges, we directly two-way Steinerize each edge.
Moreover, when we count the number of relay nodes for Two-
way Steinerizing each added edgêuv with Tree(Ci), we charge
oneon every hop in the path betweenu andv in Tree(Ci).

Then, it immediately follows:
Lemma 4.3:Let V be a set of target nodes, andGo =

(V ∪Ro, Eo) be an optimal two-way partialk-vertex connected
graph forV . There exists a two-way partialk-vertex connected
graphGf = (V ∪Rf , Ef ) for V where each relay node inRf

is on exactly one super-path, and‖Rf‖ ≤ ((8γ2 + 1
4 )k2 + 3

2k+
2)‖Ro‖.

Proof of Theorem 4.1:By Lemma 4.2 and Lemma 4.3, the
number of relay nodes added in Algorithm 1 is at most
σ((8γ2 + 1

4 )k2 + 3
2k+2) times the optimal solution. Therefore,

Algorithm 2 is anO(σk2)-approximation algorithm.

V. ONE-WAY AND TWO-WAY FULL FAULT-TOLERANCE

RELAY NODE PLACEMENT

In this section, based on the work for One-way PFRP and
Two-way PFRP, we propose approximation algorithms for both
One-way FFRP and Two-way FFRP, and present the analysis
of their performance ratios. The algorithms are described in
Algorithm 3.

We first analyze the performance of Algorithm 3 for One-way
FFRP. Algorithm 3 executes the One-way PFRP algorithm on
V and produces a resulting networkG = (V ∪R, E). Then, for
each super pathPG(−→u, v) in G, Algorithm 3 replicates each
relay node onPG(−→u, v) with k − 1 additional relay nodes.
Furthermore, in Step 6, Algorithm 3 connects the relay nodes
on PG(−→u, v) with u and v as well as their in-neighbors and
out-neighbors. We term the operation in Step 6full-connection.
Althoughfull-connectionis costly, it guarantees that there arek

vertex-disjoint one-way paths from any node to any other node
in the resulting network. Finally, in Step 7, Algorithm 3 tests
each cluster of relay nodes deployed in Step 6, and removes the
cluster if the graph of the resulting network remains a directed
k-vertex connected graph. Simulation results show that Step
7 on the average removes83.6% of the relay nodes deployed
in Step 6. Theorem 5.1 presents the approximation ratio of
Algorithm 3 for One-way FFRP.

Algorithm 3 Algorithm for One-way (Two-way) FFRP
1: INPUT: Integer k and a set of target nodesV
2: OUTPUT: A set of relay nodesF

3: F ← φ;
4: Execute the One-way (Two-way) PFRP algorithm onV

and obtain a set of relay nodesR, as well as the resulting
networkG = (V ∪R, E);

5: For each super pathPG(−→u, v) (PG(û, v) for Two-way
FFRP) inG, at the position of every relay node inPG(−→u, v)
(PG(û, v)), placek−1 additional relay nodes, and add the
new relay nodes intoF ;

6: For each target nodeu in V , if u is the starting or the
ending node of a super path containing relay nodes inG,
then segmentu’s neighborhood with (T (u), T (relay)), and
place a cluster ofk − 1 relay nodes at the position ofu,
and a cluster ofk relay nodes at thecenter of each cell.
Add every cluster of relay nodes intoF ;

7: For each cluster of relay nodes deployed in Step 6
• Remove all of the relay nodes in the cluster fromF ;
• If the resulting network is not k-vertex connected, restore
all of the relay nodes in the cluster;
End For

8: OutputF=F ∪R;

Theorem 5.1:Let V be a set of target nodes. Algorithm 3 is
anO(σk3)-approximation algorithm in terms of the number of
relay nodes required to form a one-way fullk-vertex connected
network forV .
Proof: DenoteR and F as the relay nodes sets that result
by respectively running the One-way PFRP algorithm and the
One-way FFRP algorithm onV , and denoteG = (V ∪R, E) as
the network that results by deployingR in V .

Now consider the optimal setFo of relay nodes for One-
way FFRP. SinceFo is also a solution to One-way PFRP, we
have‖R‖ < σ((32βα2 + 1

2 )k2 +3k +4)‖Fo‖. For an arbitrary
super pathPG(−→u, v) in G, Algorithm 3 adds at most(8β2 +
1)k + weight(−→uv)k + (8β2 + 1)k relay nodes. Therefore, for
all of the super paths inG, Algorithm 3 totally adds at most
(16β2 + 2)k‖R‖ + ‖R‖k relay nodes. As a result, we have
‖F‖ ≤ σk(16β2+3)((32βα2+ 1

2 )k2+3k+4)‖Fo‖. Therefore,
Algorithm 3 is anO(σk3)-approximation algorithm.

The analysis of Algorithm 3 for Two-way FFRP can be
conducted in a similar manner, and Theorem 5.2 states the
result.

Theorem 5.2:Let V be a set of target nodes. Algorithm 3 is
anO(σk3)-approximation algorithm in terms of the number of
relay nodes required to form a two-way fullk-vertex connected
network forV .

VI. EXTENSIONS TOHIGHER DIMENSIONS

This section discusses extending the approximation algo-
rithms presented in previous sections to higher dimensional H-
WSNs, and derives the approximation ratio of each of these
extended algorithms.



Algorithms Performance Ratio ind-dimensional H-WSNs
One-way PFRP O(σ(2

√
dα)dk2)

Two-way PFRP O(σ(2
√

dγ)dk2)

One-way FFRP O(σ(4dαβ)dk3)

Two-way FFRP O(σ(4dγβ)dk3)

TABLE II

PERFORMANCERATIOS IN HIGHER DIMENSIONS

We first modify the method of segmenting the neighborhood
of a nodex with (r1, r2) in d-dimensional (d ≥ 3) metric
space as follows. We create ad-dimensional sphere centered at
x with radiusr1, along with ad-dimensional cube just large
enough to encompass this sphere. Then, we evenly segment this
d-dimensional cube into smalld-dimensional cubecells where
the length of the diagonal of eachcell equalsr2.

With this extended segmentation method, we can apply
the algorithms and the corresponding analysis presented in
previous sections to tackle the relay node placement in the
situation where heterogeneous target nodes are deployed in
high-dimensional metric space. The performance ratios of these
algorithms ind-dimensional H-WSNs are listed in Table II.

VII. H EURISTIC IMPLEMENTATIONS

All of the approximation algorithms discussed in the previous
sections are based on an approximation algorithm for finding
a MKCSG. However, most existing approximation algorithms
for MKCSG problem uses the Frank and Tardos algorithm [15]
or its variations as the subroutine, and are quite complicated
and difficult to implement in computation- and communication-
constrained sensor networks [5]. Thus, motivated by the heuris-
tic algorithms described in [14] and [5], we present a greedy
heuristic algorithm in this section as a practical alternative for
the MKCSG problem.

The basic idea of this greedy algorithm is to repeatedly add
the edges that can best help to improve the graph connectivity
until the graph becomesk-vertex connected. To quantitatively
measure the improvement of each edge on the graph connec-
tivity, we define the concept of thecontributionof the edges.

Definition 7.1: [Contribution]: In a graph that isnotk-vertex
connected, there must exist some node pairs which can be
partitioned by the removal of fewer thank nodes, which means
the connectivity between such node pairs is lower thank. We
term these node pairsunsaturated node pairs. Consequently, the
contribution of an edge−→uv (or ûv) is defined as the number
of unsaturated node pairswhose connectivity can be improved
by the deployment of edge−→uv (or ûv) in this graph.

The greedy algorithm is stated in Algorithm 4. One key
step in Algorithm 4 is to the check the connectivity between
node pairs and the connectivity of the entire graph. This can
be achieved by using the well-known maximum network flow
based checking algorithm presented in [10].

VIII. E XPERIMENTAL RESULTS

This section evaluates the performance of our algorithms
using heuristic implementations described in Section VII.We

Algorithm 4 Greedy Algorithm for MKCSG
1: INPUT: Integer k, an undirected (or directed) weighted

complete graphG = (V , E).
2: OUTPUT: An undirected (or directed) k-vertex con-

nected spanning graphM of G.
3: S ← φ;
4: M ← (V , S);
5: Place all of the edges inG with weight zero intoS;
6: While M is not k-vertex connected
• Add the edge inG\S with highest contribution toS (If
multiple edges have the same highest contribution, add an
edge with the lowest weight);
End While

7: Test each edgêuv (or −→uv) ∈ M in decreasing order of
weight, and deletêuv (or −→uv) from M if M\ûv (or −→uv) is
k-vertex connected;

8: OutputM

use Qualnet 3.8[9] as the simulation platform. In each of these
simulations, we randomly place target nodes in a1000m ×
1000m 2D terrain. To model a H-WSN, we setT (min) =
200m and T (max) = 500m, and let every target node use a
random transmission radius betweenT (min) and T (max) in
each simulation. Each of the results presented in this section is
the average of 50 runs.

In the first simulation, we useT (relay) = 350m, and gradu-
ally increase the number of target nodes in the network from 5
to 50. Figures 4(a) and 4(b) depict the performance of each of
the described algorithms. We have follow observations: (1)The
number of relay nodes computed by all of the algorithms first
increases, then decreases when the network size goes beyond
a threshold. (2) On the average, the One-way FFRP algorithm
requires 5.9 times and 10.2 times more relay nodes than the
One-way PFRP algorithm for the cases ofk = 2 and k = 4,
respectively. (3) Likewise, on the average, the Two-way FFRP
algorithm requires 4.6 times and 7.7 times more relay nodes
than the Two-way PFRP algorithm for the cases ofk = 2 and
k = 4, respectively. We further continue the first simulation by
increasing the number of target nodes in the network from 50
to 100, and the number of relay nodes computed by all of the
algorithms converges to small values fewer than 9.

In the second simulation, we gradually increaseT (relay)
from T (min) to T (max), and evaluate the algorithms for the
case ofk = 4 in two networks containing 20 and 60 target
nodes, respectively. As depicted in Figures 5(a) and 5(b), the
increase ofT (relay) can effectively improve the performance
of all of the algorithms. Specifically, we have the following
observations: (1) In a sparse network with 20 target nodes,
when T(relay) increases fromT (min) to T (max), the edge
weight drops steadily, and the number of relay nodes computed
by the One-way and the Two-way PFRP algorithms drops36%
and 42%, respectively. (2) In a dense network with 60 target
nodes, most edges selected by the One-way and the Two-way
PFRP algorithms carry weight 1, as a result, whenT (relay)
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Fig. 4. (a) Results of the One-way PFRP and the One-way FFRP Algorithms
(b) Results of the Two-way PFRP and the Two-way FFRP Algorithms

200 260 320 380 440 500
0

10

20

30

40

 

 

Transmission Radius of Relay Nodes

N
um

be
r 

of
 R

el
ay

 N
od

es

One−way PFRP N = 20

Two−way PFRP N = 20

One−way PFRP N = 60

Two−way PFRP N = 60

200 260 320 380 440 500
0

100

200

300

400

Transmission Radius of Relay Nodes

N
um

be
r 

of
 R

el
ay

 N
od

es

 

 

One−way FFRP N = 20

Two−way FFRP N = 20

One−way FFRP N = 60

Two−way FFRP N = 60

(a) (b)

Fig. 5. The case ofk = 4. N stands for the network size. (a) Results of the
One-way and the Two-way PFRP Algorithms. (b) Results of the One-way and
the Two-way FFRP Algorithms.

increases, the performance of the One-way and the Two-way
PFRP algorithms remain stable. (3) For full fault-tolerance, the
increase ofT (relay) exponentially reduces the cost of thefull-
connectionoperation in Step 6 of Algorithm 3. Therefore, in
a sparse network, the number of relay nodes computed by the
One-way FFRP and the Two-way FFRP algorithms drops74%
and64%, respectively; and in a dense network, the number of
relay nodes computed by the One-way and the Two-way FFRP
algorithms drops82% and67%, respectively.

Overall, the simulation results show that the expected be-
haviors of the described algorithms are much better than the
performance ratios suggest, which indicates that these algo-
rithms work well in real sensor networking applications where
the target nodes are usually densely deployed.

IX. CONCLUSION AND FUTURE WORK

This paper systematically addresses the problem of deploying
a minimum number of relay nodes to achieve diverse levels of
fault-tolerance in the context of heterogeneous wireless sensor
networks, where target nodes have different transmission radii.
The different transmission radii of the target nodes introduce
asymmetric communication linksbetween neighboring nodes,
resulting in one-way and two-way paths. The problem is
further complicated by the need to facilitate the desired fault-
tolerance levels between every pair of (target and/or relay)
nodes, or every pair of target nodes. Specifically, we de-
velopO(σk2)-approximation algorithms for one-way and two-
way partial fault-tolerance relay node placement, andO(σk3)-
approximation algorithms for one-way and two-way full fault-
tolerance relay node placement. Furthermore, we extend these
algorithms tod-dimensional networks (d ≥ 3), and generalize
the approximation ratios of the extended algorithms. To support

real applications, we also provide heuristic implementations of
these algorithms, and evaluate their performance via simula-
tions. The results show that the performance of the proposed
algorithms is much better than the performance ratios derived,
suggesting that these algorithms work well in real sensor
networking scenarios. In ongoing work, we are pursuing tighter
performance ratios of the approximation algorithms, as well as
better heuristic implementations.
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