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Abstract— Existing work on placing additional relay nodes of the devices possess the same communication and computing
in wireless sensor networks to improve network connectivit capability, H-WSNs allow for a variety of operating environ
typically assumes homogeneous wireless sensor nodes with @ments, and hence are useful for many practical applications

identical transmission radius. In contrast, this paper addesses H . | licati dictabl i h
the problem of deploying relay nodes to provide fault-toleance Owever, In real applications, unpredictable events, g

with higher network connectivity in heterogeneous wireless sensor battery depletion and environmental impairment, may cause
networks, where sensor nodes possess different transmissiradii. these wireless devices to fail, partitioning the networld an
Depending on the level of desired fault-tolerance, such pllems  disrupting normal network functions. Therefore, fauletance

can be categorized as: (1jull fault-tolerance relay node placement, acomes a critical factor for the successful deploymentigd-w

which aims to deploy a minimum number of relay nodes to | tworks. O ht hi fault tal
establish & (k > 1) vertex-disjoint paths between every pair of €SS Sensor networks. Une approach to achieve fau eran

sensor and/or relay nodes; (2)partial fault-tolerance relay node in wireless sensor networks is to deploy a small number of
placement, which aims to deploy a minimum number of relay additionalrelay nodego providek (k > 1) vertex-disjoinpaths

nodes to establishk (k > 1) vertex-disjoint paths only between petween every pair of functioning devices (including sesso
every pair of sensor nodes. Due to the different transmissi®  45i5 sinks. and other wireless equipments, all terrzeget

radii of sensor nodes, these problems are further complicad . . . .
by the existence of two different kinds of communication pats in nodesin this paper) so that the network can survive the failure

heterogeneous wireless sensor networks, nametwo-way paths, Of fewer thank nodes. This problem is known aslay node
along which wireless communications exist in both directins; placemenin the literature [1][2][3][4][5][6][7].

and one-way paths, along which wireless communications exist  Most of the existing work considers relay node placement
in only one direction. Assuming that sensor nodes have diffent ;, the context of homogeneous wireless sensor networksevher
transmission radii, while relay nodes use the same transmsfon . . ..
radius, this paper comprehensively analyzes the range of pblems bOt_h target nodes _a”‘?‘ relay nodes use an |(_jent_|cal trariemiss
introduced by the different levels of fault-tolerance (ful or radius. Before reviewing these results, we first introdusey
partial) coupled with the different types of path (one-way o definition of approximation algorithm that will be used irish
two-way). Since each of these problems is NP-hard, we devplo paper.

O(ok?)-approximation algorithms for both one-way and wo-way "~ pefinition 1.1 [Approximation Algorithii8]: An algorithm

partial fault-tolerance relay node placement, as well asO(ok?)- Vi inimizati bl . ‘mati lorith
approximation algorithms for both one-way and two-way full ~SO'VINg aminimization probiem Isgrapproximation aigorithm

fault-tolerance relay node placement ¢ is the best performance (Or has a performance ratjg, if the solution provided by the
ratio of existing approximation algorithms for finding a minimum  algorithm is no more thap times the optimal solution.
k-vertex connected spanning graph). To facilitate the appéations Relay node placement has been well studied for the case of
in higher dimensions, we also extend these algorithms and dee ;. _ 1 & ysing a minimum number of relay nodes to bridge a
their performance ratios in d-dimensional heterogeneous wireless . . . )
sensor networks (d > 3). Finally, heuristic implementations of partitioned network. For instance, Lin and Xu_e _[1] proveis th_
these algorithms are evaluated via simulations. problem to be NP-hard, and proposed a minimum spanning
tree (MST) based 5-approximation algorithm. Chetnal. [2]
showed that the performance ratio of the algorithm desdribe
in [1] is actually 4, and they also proposed a 3-approxinmatio
Heterogeneouwireless sensor networks (H-WSNs) are comalgorithm for this problem. In [3], Chengt al. proposed a
posed of a large number of wireless devices equipped witister 3-approximation algorithm and a randomized alorit
different communication and computing capabilities. Inmeo with a performance ratio of 2.5.
parison withhomogeneouwireless sensor networks, where all Recently, work on relay node placement has also been done
*The research of these authors is supported in part by themtScience for t.he general case of > 2. For example, Brediret al. [5]
Foundation under grant CNS-0347460. studied thefull fault-tolerance relay node placement (FFRP)
*Prepared through collaborative participation in the Comications and Wwhich aims to deploy a minimum number of relay nodes to
Networks Consortium sponsored by the U. S. Army Researctorairy  create a fullk-vertex connected network such that the resulting
under the Collaborative Technology Alliance Program, Guafive Agreement . L .
DAAD19-01-2-0011. The U. S. Government is authorized torsdpce and network containg: vertex-disjoint paths between every pair of
distribute reprints for Government purposes not withseancany copyright target and/or relaynodes. Figure 1(a) gives an example of a

nogagggatr';;ree;n- of Computer and Information Sciences, Unitersi full 2-vertex connected network. The authors of [5] presdnt
’ 4 3 2 H H H
of Delaware, Newark, DE 19716, U.S.A. Emaikhan, cao, elloyd, a (9% 4 36(k” + k*))-approximation algorithm for FFRP.

csher} @cis.udel.edu. Hereo is the best performance ratio of existing approximation
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sion radius of relay nodes and the transmission radii ofetarg
nodes, as discussed further in Section 1I-B, placing retzges
in the network to connect two particular target nodes besome
much more complicated.
Given a set of target nodds in the context of H-WSNs,
and a desired connectivity levél (k > 1) (assume that the
(@) (b) cardinality of V' is larger thank), this paper systematically

Fig. 1. Hollow circles stand for target nodes, and solidlescstand for relay addresses the followmg prOble.ms'
nodes. (a) A full 2-vertex connected network which contdngertex-disjoint e One-way / Two-way partial fault-tolerance relay node

paths between every pair of target and/or relay nodes. (bpriiab 3-vertex placement (One-way / Two-way PFRRYe seek to deploy a
connecte_d network. In this netv\_/ork, there exist_3 vertesjedhit paths between minimum number of relay nodes to form a one-way / two-
every pair of target nodes, while for some pairs of relay sodike nodeu .
and nodev, there exist only 2 vertex-disjoint paths between them. way partial k-vertex connected network fdr, such that the
resulting network containk vertex-disjoint one-way / two-way
algorithms for finding aminimumk-vertex connected spanningpaths from any target node to any other target node.
graph (see Section II-D for the definition). In [6], Kashyap e One-way / Two-way full fault-tolerance relay node place-
et al. proposed approximation algorithms for deploying relagnent (One-way / Two-way FFRPJ\e seek to deploy a min-
nodes to create partidledge (vertex) connected networks foimum number of relay nodes to form a one-way / two-way
the cluster heads in wireless sensor networks. The problémi %-vertex connected network fdr, such that the resulting
defined in [6] is termedpartial fault-tolerance relay node network containsk vertex-disjoint one-way / two-way paths
placement (PFRP)here thek edge (vertex)-disjoint paths from any node to any other node.
are only guaranteed between every pair of target nodesrd=igu The contributions of this paper are summarized as fol-
1(b) shows an example of a partial 3-vertex connected n&twolows: (1) we giveO(ok?)-approximation algorithms for both
The authors of [6] proved that the performance ratios ofrtheédne-way PFRP and Two-way PFRP; (2) we gi@€ok?)-
algorithms are 10 wheh = 2. However, the performance ratiosapproximation algorithms for both One-way FFRP and Two-
of their algorithms for the case @f > 2 remain open. way FFRP; (3) we extend each of these algorithms to net-
In addition to the above work assuming that both target nodesrks in d-dimensional(d > 3) metric space, and generalize
and relay nodes use an identical transmission radius, neldg the approximation ratios of the extended algorithms; (4) we
placement has also been studiedtio-tiered homogeneous evaluate heuristic implementations of the proposed dlyos
wireless sensor networks under the assumption that alleof thith realistic sensor network scenarios, and show that thei
relay nodes use transmission radidsand can communicate performance is much better than the proven performanaesrati
with either relay or target nodes, while all of the targetuggest.
nodes use transmission radiusand only communicate with  The remainder of this paper is organized as follows. Section
relay nodes. Relay node placement in two-tiered homogenedupresents the network model and preliminaries. Section I
wireless sensor networks aims to create a backbone camgairfirst describes the algorithm for One-way PFRP, then proves
only relay nodes to providé vertex-disjoint paths betweenits approximation ratio. Section IV gives the algorithm for
every pair of target nodes. For this particular problem,gramfwo-way PFRP, as well as the proof of its performance ratio.
et al. [7] proposed 4.5-approximation algorithms for the case®ection V provides approximation algorithms for both Oreyw
of k =1 andk = 2, providedR > 4r. For the more general and Two-way FFRP, and analyzes their approximation ratios.
situation of R > r, Lloyd and Xue [4} recently gave 45 +¢)- Section VI extends the approximation algorithms to higher
approximation algorithm for the case bf= 1. dimensional networks and derives the corresponding perfor
To the best of our knowledge, this paper is the first effort tmance ratios. Section VIl discusses heuristics for thetjmalc
address relay node placement in the context@trogencous implementations of the presented approximation algosthm
wireless sensor networks (H-WSNs). In H-WSNs, target nodébese heuristic implementations are simulated in QualN&t 3
may have different transmission radii, while all of the yela[9] and the results are evaluated in Section VIII. Finallgcon
nodes use an identical transmission radius. The differanst 1X concludes the paper with future research directions.
mission radii of target nodes introduesymmetric communi-
cation linksbetween neighboring nodes, which raise two non- Il. NETWORK MODEL AND PRELIMINARIES

trivial issues. First, asymmetric links result in the esiste of  This section describes the model of heterogeneous wireless
two kinds of paths in H-WSNs, namelgne-waypaths and sensor networks, as well as some basic operations and prelim

two-waypaths. For a two-way path, wireless communicationgary knowledge that will be used in this paper.
exist in both directions, while for a one-way path, wireless

communications exist only in one direction. Second, singe "\ Model of Heterogeneous Wireless Sensor Networks

constraints are imposed on the relation between the traasmi ] ) )
We consider stationary heterogeneous wireless sensor net-

1The authors of [4] also presented a MST-based 7-approximatigorithm works with omnl-d|_rect|o_nal transcewerg. I_Each target enad
provided that target nodes are also capable of communipatith each other. possesses a (possibly different) transmission radiss), and



[N, TEN The cardinality of setsV and E S B R BT
uv Directed edge from: to v " Tw < Telay) .’-,.".T(re/ay),”‘ 2 C ot e . e
uv Undirected edge betweenandv Ot @) D ros o rger®
[uv] Euclidean distance betweenandv : P T T
in-neighbor z is an in-neighbor ofu if zu €
out-neighbor x is an out-neighbor of, if uz € E : :
neighbor z is a neighbor ofu If uz € E €) (b)
Pg (u,0) A directed path fromu to v in G
P (u, 0) i-th directed path fromu to v in & Fig. 2. (a) One-way Steinerize the directed edgeand create a one-way
P (u,v) An undirected path betweem andv in G path fromu to v. (b) Two-way Steinerize the undirected edge and create

a two-way path between andwv.
TABLE |

TERMS, SYMBOLS AND THEIR SEMANTICS

all of the relay nodes use the same transmission radiesay).
T(min) and T(max)represent the minimum and the maximum
transmission radius among all of the relay nodes and target

nodes. Correspondingly, we define constamts- [ 7244},
B = [—TT(STZ;;?)L and y = (TT((T;%’))}. Furthermore, each (b)

wireless noder has a transmission range, which is a circlgig. 3. segmentation of the neighborhood of nadeith (r1, 2). (a) The
in a 2D plane (or a sphere in a 3D space) centered w&tth  encompassing square can be evenly segmented by cells. égrEompassing
radiusT(z). Given these terms and notations, we model a Fjguare cannot be evenly segmented by cells.
WSN as a directed grapy = (V U R, E), whereV, R, and
E are the set of target nodes, the set of additionally deploy
relay nodes, and the set of directed edges, respectivalyario
two nodesu andv in V U R, there is a directed edge from 1o
u to v in E if and only if v is in u’s transmission range. weight(uv)= {I—uv—k—w] 11
Relative to an arbitrary grap' = (IV, E), either directed T(relay)
or undirected, wheréV is the set of nodes anH is the set of If weight(uv) = 1, then place one relay nodeon the straight
edges, and two nodes andv in N, Table | lists the terms, line betweenu andv such thatjuz| = \. If weight(uv) > 2,
notations, and their semantics used in this paper. Notethleat then place two relay nodesandy on the straight line between
term neighboris defined and used for undirected graphs, andand v such thatjuz| = A and |vy| = w, and then evenly
the termsin-neighborand out-neighborare defined and useddistribute weight(uv) — 2 relay nodes along the straight line
for directed graphs. betweenz andy. In this way, we create a two-way path between
u andwv. Figure 2(b) depicts this operation.

create an edgev and Two-way Steineriz&v as follows.
ompute the weight ofiv using Equation 2.

if |uv| <48
if luv| > 6

()

B. Steinerization of Edges C. Segmentation of Neighborhood

For two target nodes andv, one common scenario in this - Angther operation frequently used in this paper is to divide
paper is that we want to create a one-way path frend 5 cerain neighborhood area of a particular node into small
v, or a two-way path between and v, using as few relay regions such that the nodes within the same region are con-
nodes as possible, while ignoring all the other target natiels qc1ed by directed or undirected one-hop communicatides lin
any previously deployed relay nodes. To facilitate cr@asinch - gpecifically, for a node:, we segmenits neighborhood with
paths, we define the following two operatmns._} a pair of positive valuesr(, r2) in a 2D plane as follows. We
(1) One-way S_t)emerlzanorWe create an edgev and One- st create a circle centered atwith radiusr, along with
way Steinerize.o as follows. Compute the weight o using 4 square just large enough to encompass the circle. Then, we
Equation 1. evenly segment this square (from top to bottom, and from left
0 it T(u)>|uv] to right) into small squareells with the length of the diagonal

ol Ty = (1) pf each cell belng.equal ta, (or shorter tham, for somecells
fw] if T'(u)<|uv| if the encompassing square cannot be evenly segmented). As
depicted in Figures 3(a) and 3(b), this segmentation ojoerat
guarantees that the Euclidean distance between every pair o
nodes in the sameell is no more tharms.

weight (uv)= {

If weight(uv) > 1, then place one relay node on the
straight line betweem andv such thafjux| = T'(u), and then
evenly placeweight(ut) — 1 relay nodes along the straight line

betweenx andw. In this way, we create a one-way path from o )
u to v. Figure 2(a) depicts this operation. D. Minimumk-Vertex Connected Spanning Graph

An important problem related to the relay node placement

(2) Two-way SteinerizationWe defined = min{T(u), T (v)}, is to find a minimum k-vertex connected spanning graph
A = min{T(u),T(relay)} and w = min{T(v), T (relay)}. (MKCSG). This concept depends on the following definition.



Definition 2.1: [k-Vertex Connected Grajth Consider a Algorithm 1 Algorithm for One-way PFRP
graphG = (N, E), where N and E are the node set and the 1: INPUT: Integer k and a set of target nodesl.
edge set, respectively. Then is a k-vertex connected graph 2: OUTPUT: A set of relay nodes R.
(for short, G is k-vertex connected), if for any two nodes 3: R < ¢ (empty set);W «— {uv | uw (u # v) € V};
andv in N, there existc vertex-disjoint paths betweemand  4: Define the weight of each edges € W according to
v in G (or there existk vertex-disjoint directed paths from Equation 1;
towv in G, if G is a directed graph). 5. C «— (V, W);

Then, the MKCSG problem is to computekavertex con- 6: Compute an approximate directed MKCSW of C' using
nected spanning graph of weighted complete graph with min- a o-approximation algorithm;
imum total weight. For undirected graphs, wher= 1, this  7: One-way Steinerizeach edge:v € M and place the relay
problem is exactly that of finding the minimum spanning tree; nodes intoR;
whenk > 2, this problem is NP-hard, and the following results 8: Output i;
are known. Ravi and Williamson [10] claimed the first constan
approximation algorithm with performance rati@ Zle 1).
However, their proof was later found [11] to cgntai_n errorsy. Proof of the Performance Ratio
'gnor[iﬂ%,ﬁorfésiriﬁ?fjaypﬂ?xvirﬁéﬁ(S)in;?;o]ﬁtahprﬁ r%ﬁ'ﬁaet'ﬁgsi' of _A'thfo_ugh A'fgor“hm 1is relatively S:_raighéforwa;q, the n
k < 7. Most recently, Cheriyaat al. [13] developed ad(Igk)- ysis of its performance ratio is complicated. We first give tw
approximation algorithm, provided the complete graph awrst def|n|t-|o.n.s. ) .
at least6k? nodes. For directed graphs, this problem is NP- Definition 3.2: [One-way  Partial k-Vertex ~ Connected

hard whent > 1. Kortsarz and Nutov [12] presented b k)- Grgpfﬂ:tLgt v bi a Sﬁt cg t.ar?r(]et nocties]:, a(;iéj_? (VLIJIR(’jE)I be d
approximation algorithm, along with a{-%”)-approximation a directed graph, wher 1S the set of additionally deploye

: . : ; : relay nodes, and’ is the set of directed edges. The®,is a
algorithm (V is the node set) if the edge weights satisfy th(E)}ne-way partialk-vertex connected graph fdr, if for every

triangle inequality. i of t t nod dvin V. th istt: vertex-disioint
Aside from the above algorithms with provable performan&;eag_oaarg;hg(?roel;ﬂm ?2 U.r']n G ( erteh:r)gse \;f; Zz[(-lelz?s(tjlgne

guarantees, Li and Hou [14] proposed an easily implementgﬁe_way path i fromv ! to Z;;‘.t,er the r()a(:no al of fewer

heuristic algorithm, which works by iteratively adding edg way p ! v v W

L . ) . ) .~ thank arbitrary nodes other tham and v).

in increasing order of edge weight until the resulting graph

k-vertex connected. Brediat. al [5] improved the algorithm @]oggzmgsgbl&f: ([‘S/uge]; Pg;ng]e: ;e(;n‘e/ v\l/);y To;ret}i;l?fv:ritgxet
of [14] by imposing an optimization step, which tests eac ected graph fov’. Then, a one-way patle(ic.%) in G

added edge in decreasing order of edge weight and removes %%? th i, and i t nod d interi
edge whose removal does not destroykheertex connectivity. IS & super pain, It andv are target hodes and every interior

. —
The simulation results in [5] show that the performance ef t Oge (i ta;]ny)dong(th_, V) '? /3 rel?’} nmlje. h . tant
heuristic algorithms are typically close to the optimal. rom the description ot Algorithm 1, We have an Importan

observation thatevery relay node placed by Algorithm 1 is

on exactly one super patiWe use this fact to help establish

I1l. ONE-WAY PARTIAL FAULT-TOLERANCERELAY NODE  the quantitative relationship between the result produogd
PLACEMENT Algorithm 1 and the optimal solution. The entire analysis

This section presents an approximation algorithm for Ongonsists of three steps.
way PFRP in H-WSNs, and analyzes the quality of the result

produced by the algorithm with respect to the optimal soluti B.1 Step One
In this step, we prove that if there exists a one-way partial

, k-vertex connected grapfi = (V U R, FE) for V where each
A. Algorithm for One-way PFRP relay node inR is on exactly one super path, then the number
In brief, given a set of target nodds, the algorithm first of relay nodes computed by Algorithm 1 &his at mosts|| R||.
finds a directed MKCSGV of a complete graph ovédr, then The analysis proceeds by first establishing Lemma 3.4 and
One-way Steinerizes each edgelifi. We leave the choice of Lemma 3.5, which show that duplicate super paths from the
an approximation algorithm for computing MKCSG as an opesame starting node to the same ending node are unnecegsary, i
option, and assume that the approximation ratio of the ssdeceach relay node is on exactly one super path. Finally, Lemma
algorithm ise in our analysis. The complete algorithm is stated.6 proves the result of Step One.
in Algorithm 1, and Theorem 3.1 states the performance ratioLemma 3.4:Let G = (N, E) (||N|| > k) be a directedk-
of Algorithm 1. vertex connected graph. For two nodeandv in NV, if there are
Theorem 3.1:Let V be a set of target nodes. Algorithm 1 ismultiple directed edges from to v in G, then if we keep one
an O(ok?)-approximation algorithm in terms of the numbenf these edges and remove the others, then the resulting grap
of relay nodes required to form a one-way partiaertex G’ = (N, E’) remains a directefl-vertex connected graph. Due
connected network foV’. to the space limitation, the proof of this lemma is omitted.




Lemma 3.5:Let V' be a set of target nodes, a6d= (VUR, Lemma 3.7:The graphG, = (V U R,, E!) is a one-way
FE) be a one-way partidt-vertex connected graph féf where partial k-vertex connected graph fdr, and each relay node
each relay node irR is on exactly one super path. For anyn R, has at mosB8a?k target in-neighbors anda?k target
pair of target nodes andv in R, if in G there exist multiple out-neighbors.
super paths from: to v, then if we keep one of these supeProof: Let G = (IV, E) be a graph wheréV and E are the
paths and remove the others, and denote the resulting gsaplsets of nodes and edges, respectively, andXlebe a set of
G' = (VUR', E'), thenG’ remains a one-way partiatvertex nodes (or edges). We defidé\ X as the graph that results by
connected graph fov'. removing the nodes itN N X plus their incident edges fro@
Proof: Since each relay node iR is on exactly one super path,(or by removing the edges iF N X from G, if X is an edge
by treating each super path as an edge, all of the target nogey.
and super paths i@ form a directed:-vertex connected graph. For two target nodes andv in V', andk — 1 arbitrary nodes
From Lemma 3.4, it follows that after removing the redundamt = {n1, ns,..,nx_1} other thanu andv in G/, we prove that
super paths, the target nodes and the remaining super paththére is a path from: to v in G, \ A.

G’ still form a directedk-vertex connected graph. This means Obviously, there is a one-way patf;, (u,v) from v to v
that, in (, there existk vertex-disjoint one-way paths fromin G, \ A. For an arbitrary hop o, (u, ), sayzy, if both
any target node to any other target node. Theref6fejs a = andy are target nodes or relay nodes, thenstill exists in
one-way partiak-vertex connected graph fdr. m G\ A. Now, consider the situation whesels a relay node and

Lemma 3.6:Let V' be a set of target nodes, at= (VUR, v is a target node: (1) iz choosesy as its new out-neighbor
E) be a one-way partial-vertex connected graph faf where in G, thenzy exists inG” \ 4; (2) if y is not chosen, then in
each relay node iR is on exactly one super path @&. Then, the cell ofx wherey resides, must select other target out-
the number of relay nodes computed by Algorithm 11oris neighbors, and at least one of these target out-neighb@ss
at mosto|| R|. not in A. Since|zy| < T(min), zy exists inG’,\ A. Therefore,
Proof: For any pair of target nodesandv in R, if in G there we replacery with zZ plus zy in G/ \ A. We can perform a
exist multiple super paths from to v, we keep one of these similar replacement for the situation whetels a target node
super paths and remove the others, and denote the resulingy is a relay node.
graph asG’ = (V U R’, E'). By Lemma 3.5,G remains a  Because each hop df, (u, v) is valid in G%) \ A, there is a
one-way partiak-vertex connected graph faf, and we have one-way path fromu to v in G\ A. Therefore(7 is a one-way
IR |I<||R]. partial k-vertex connected graph fdr. Moreover, since there

Now consider the result produced by Algorithm 1. For tware at mostk target in-neighbors ané target out-neighbors
arbitrary target nodes and v in V, Equation 1 defines thein each cell, each relay node @@/ has at mos8a?k target
minimum number of relay nodes required to create a onie-neighbors anda?k target out-neighbors. [ |
way path fromu to v. Furthermore, Algorithm 1 uses & Before stating the second transformation rule, we first pro-
approximation algorithm to compute an approximate dimbctevide three additional definitions.

MKCSG M. Therefore, the number of relay nodes computed Definition 3.8: [Relay Compone}ig]: Let V' be a set of

—
u, 0

by Algorithm 1 is at most||R'|| < o||R]|. m target nodes, and’ = (V U R, E) be a one-way partiak-
vertex connected graph féf. For a relay node € R, the relay
B.2 Step Two component of- can be derived as follows. We startrattravel

Let V be a set of target nodes, adf, = (V U R,, E,) be along each edge incident toin G (when we travel, we omit
an optimal one-way partiak-vertex connected graph fdr. the direction of each edge, and traverse in either diregtion
In this step, motivated by the analysis in [5], we perform H we meet a relay node, we repeat the process; if we meet
sequence of transformations 6#,, and create a new one-waya target node, we stop. Finally, all of the nodes (target or
partial k-vertex connected grap&yy = (V U Ry, Ey) for V' relay) and edges visited in this recursive process formayrel
where each relay node iRi; is on exactly one super path, anccomponent ofr. Intuitively, all of the boundary nodes in the
|Rs| < ((32Ba%+1)k*+3k+4)| Ro|| (Note that and3 are  relay component are target nodes.
defined in section II-A). Our analysis uses two transforomati  Definition 3.9: [Undirected Spanning Tree of Relay Compo-
rules, which are defined in the following paragraphs. neni: Let C; = (V; UR;, E;) be a relay component, whetg,

e Transformation Rule 1 For relay noder, we segment R;, andE; are the sets of target nodes, relay nodes and directed
its neighborhood with T(maz), T (min)), and get at most edges inC;, respectively. We first create a new undirected graph
8a? cells. In each cell, node randomly selects: target in- C! from C; by omitting the direction of each edge it}. Then,
neighbors ana: target out-neighbors (or select all of the targedn undirected spanning tree 6f, denoted ad'ree(C;), is a
in-neighbors or out-neighbors if there are fewer tivasf them) spanning tree of/ rooted at an arbitrary relay node and having
as its new target in-neighbors and out-neighbors, as welllasall of the target nodes i; as leaves.
of the edges associated with the selected target nodes. Definition 3.10: [Harary GrapH: Let V' be a set of nodes.

Denote grapha!, = (V U R,, E!) as the graph that resultsWe can construct a Harary graphéfas follows. We place all
by performing Transformation Rule 1 off,. We have the of the nodes irV/ into a circular doubly-linked list. For each
following lemma. nodex in L, we add undirected edges between node x and



nearest nodes afin L. A Harary graph is &-vertex connected Transformation Rule 2 of;, we haveC/=(V; U R, E).

graph. If we replace each undirected edge in a Harary grapfWhen ||Vi|| > k, G; containsCj. We useT'ree(C;) to
with a pair of opposite directed edges, the resulting graph i count the number of relay nodes R{. For an arbitrary super
directedk-vertex connected graph. path fromu to v added by Transformation Rule 2 ifi/, we

Assume that?/, = (V U R,, E’) hasm relay components, spread the weight ofiv on the pathPr,...(c,)(u,v) between
denoted ag”;=(V; U R;, E;) (1 <i < 'm). Now we define the « and v in Tree(C;) by charging on the first and the
second transformation rule, which is performed on eactyrelst hop, and chargingne on each interior hop. For each
component. edgezy in Tree(C;): (1) if zy is incident to a target node,

e Transformation Rule 2 For each relay componedt; = thenzy is totally charged®23k; (2) otherwise, we denote the
(Vi U R;, Ey): (1) if ||Vi]| > k, we first make a clockwise target descendants of in Tree(C;) from left to right as
Eulerian tour ofTree(C;), and place the target nodes in &ty,t,,- - -, t,}. For the nodes fron; to trsys 7y is charged
c?rgular_ dou_bly-linkgd listL in the order in which they are 2[@’ 2((%1 —1), ---, 1, respectively. And for the nodes from
visited in this Eulerian tour. Then, we remove all of the_yelatn 0 t, (5741, 7y is also charge@[£7, 2([&] — 1), -, 1,
nodes inC;, and create a Harary Graph @} by connecting oqhectively. Thereforesj is charged at mosti k2 + 3k + 4).
each target node with nearest target nodes-In @it Vill = as'a result, all of the edges ifiree(C;) are charged a total
k, we first remove all of th_e relay node_s @;, and create a of at most28k| V| + (%k2 + 3k + 4)|| ||, which is no more
complete undirected graph @, by connecting each target ”Odethan ((328a? + %)k2 + 3k + 4)|| Ry

with all of the other target nodes. Then, we add- IVill + 1 When||Vi|| < k, G; keeps a one-way path from any target
duplicate edges for each edge in this complete graph. ¥inall,qe 1o any other target node. In this case, all of the edges

after creating a Harary graph or a complete graph with dafgic in Tree(C;) are charged a total of no more th&$23a? +

edges, we replace each edge with two opposite directed ,edg%%z + 3k + 4)|| Ry
and One-way Steinerize all of the directed edges. 2 Summing up all of the relay components, we hévey|| <
Let C! = (V;UR., E!) (1 <i < m) be the graph that results((?)zﬂaz + 1)k2 4 3k 4+ 4)||Ro . -
by performing Transformation Rule 2 on relay componént 2 ¢
and let graphzg = (V' U R, E}) be the graph that results by 5 Step Three
performing Transformation Rule 2 on each relay component#},of of Theorem 3.1By Lemma 3.6 and Lemma 3.12,
G- We have the following lemma. , the number of relay nodes added in Algorithm 1 is at most
Lemma 3.11:The graphGY is a one-way pe}ruak-vertex o ((328a2 + 1)k2 + 3k + 4) times the optimal solution. There-
connected graph fdr’, and each relay node i@/, is on exactly fore, Algoritﬁm 1 is anO(ck?)-approximation algorithm. m
one super path.
Proof: For two target nodes andwv in V, andk — 1 arbitrary IV. TWO-WAY PARTIAL FAULT-TOLERANCE RELAY NODE
nodesA = {ni,ns,..,nk_1} other thanu andv in G?, we PLACEMENT
prove that there is a path i@” \ A from u to v. By Lemma
3.7, there is a one-way patf. (u, ) from u to v in G, \ A.
We partitionPg: (u, v) into multiple sub-paths, where each su

This section provides an approximation algorithm for Two-
pway PFRP, and derives the performance ratio of the algorithm

- : ) — . by following the framework used for analyzing Algorithm
path is a super path. For an arbitrary sub-p&gh (z, ): (1) 1. The complete algorithm is presented in Algorithm 2, and

if Pe (2,y) does not contain any relay nodes, thes (z,7) SO :
exists NG/ \ A; (2) if Pa (7.7) contains some relay nodes'Theorem 4.1 describes its performance ratio.
. +i U
x andy must be |n.thelsame relay cqmponé]f;tm G!, and Algorithm 2 Algorithm for Two-way PERP
hencex andy are in C}. Transformation Rule 2 guarantees— INPUT T = and ; deg
that there is at least one one-way path frorto y in C} \ A4, 1: OUTPL'JT'n,tAeger fanl a sedt of target nodes’.
which can be used to replace the sub-p&h (z,y) in G”. 2: ~ set/(z relay nodes . ]
Since each sub-path dt: () is still valid in G7, there is 3 1 < & W — {uv [u, v (uzv) €V} :
a one-way path from to'v in G \ A, which means?” is 4. Define the weight of each edgev € W according to
a one-way partiak-vertex connected graph fdr. Moreover, Equation 2;
5. C «— (V, W);

each relay node i/ is on exactly one super path. [ ] . .
Finally, we generate the gragh;=(V UR;, Ey) as follows. 6 COMPute an approximate undirected MKCSG of ¢
\ using ac-approximation algorithm;

For two arbitrary target nodesandv in G2/ = (V URY, EY), L Y
if there are multiple super paths fromto v in G, we keep ' Two-way Steinerizeach edgew € M and place the relay
o nodes inR;

one of those super paths and remove the others. By Lemma

3.5, G remains a one-way partid-vertex connected graph 8 OUIPULE;

for V. Furthermore, each relay node @, is on exactly one

super path. Lemma 3.12 presents the result of Step Two. Theorem 4.1:Let V' be a set of target nodes. Algorithm 2 is
Lemma 3.12:|| R¢| < ((32802 + 1)k? + 3k + 4)||R, | . an O(ck?)-approximation algorithm in terms of the number

Proof: For any relay componer®; = (V; U R;, E;) in G, of relay nodes required to form a two-way partiaivertex

by Lemma 3.7, we hav@V;|| < 16a2k||R;||. After applying connected network fov'.

w

@




Note that Algorithm 2 assumes the use of an undirectédgorithm 3 Algorithm for One-way (Two-way) FFRP
graph. We can analogously defitao-way partial k-vertex 1: INPUT: Integer k& and a set of target nodesV’
connected graphand super pathfor undirected graph, and 2: OUTPUT: A set of relay nodes F
Lemma 4.2 follows directly. 3 F — ¢

Lemma 4.2:Let V be a set of target nodes, and 6t= 4. Execute the One-way (Two-way) PFRP algorithm &n
(VUR, E) be atwo-way partiak-vertex connected graph for ~ and obtain a set of relay nodés as well as the resulting
V where each relay node iR is on exactly one super path. networkG = (V U R, E);

Then, the number of relay nodes computed by Algorithm 2 ors: For each super pattP;(u,v) (Pg(w,v) for Two-way
V' is at mosto|| R||. FFRP) inG, at the position of every relay node P& (u; 0)

Further, we modify the transformation rules in previ- (Ps(w,v)), placek—1 additional relay nodes, and add the
ous sections as follows: (1) in Transformation Rule 1, new relay nodes intd;
for each relay node-, we segment its neighborhood with 6: For each target node in V, if u is the starting or the
(T'(relay), T(min)), and letr selectk target neighbors in each ~ ending node of a super path containing relay node§&,in
cell; (2) in Transformation Rule 2, for each relay component then segment’s neighborhood withT(u), T'(relay)), and
C;, after creating a Harary graph or a complete graph with place a cluster ok — 1 relay nodes at the position af,
duplicate edges, we directly two-way Steinerize each edge. and a cluster ok relay nodes at theenter of each cell.
Moreover, when we count the number of relay nodes for Two- Add every cluster of relay nodes into;
way Steinerizing each added edgewith Tree(C;), we charge 7: For each cluster of relay nodes deployed in Step 6

oneon every hop in the path betweenandv in Tree(C;). e Remove all of the relay nodes in the cluster fr@fn
Then, it immediately follows: ¢ If the resulting network is not k-vertex connected, restore
Lemma 4.3:Let V be a set of target nodes, and, = all of the relay nodes in the cluster;

(VUR,, E,) be an optimal two-way partid-vertex connected End For

graph forV/. There exists a two-way partiatvertex connected 8: Output F=F U R;
graphGy = (V URy, Ey) for V where each relay node iRy
is on exactly one super-path, afi@;| < ((87%+ 1)k +2k+

2)[| Roll- Theorem 5.1:Let V be a set of target nodes. Algorithm 3 is

anO(ck3)-approximation algorithm in terms of the number of

relay nodes required to form a one-way filvertex connected
etwork forV.

'Proof: Denote R and F' as the relay nodes sets that result
by respectively running the One-way PFRP algorithm and the

V. ONE-WAY AND TWO-WAY FULL FAULT-TOLERANCE ~ One-way FFRP algorithm oli, and denotér = (VUR, E) as
RELAY NODE PLACEMENT the network that results by deployirdgin V.

In this section, based on the work for One-way PFRP andNOW consm_ier the_ optimal sef, .Of relay nodes for One-
L . ay FFRP. Sincé’, is also a solution to One-way PFRP, we
Two-way PFRP, we propose approximation algorithms for bo

2, 1\1.2 ;
One-way FFRP and Two-way FFRP, and present the analyszlalsve”R|| < o((3280” + 5)k" + 3k + 4)[| Fo||. For an arbitrary

. . . : Super pathPg(u,v) in G, Algorithm 3 adds at most83? +
of their performance ratios. The algorithms are descritved ) s 2
Algorithm 3. 1)/~c + weight(uv)k + (83% + 1)k relay nodes. Therefore, for

: . all of the super paths id7, Algorithm 3 totally adds at most
We first analyze the performance of Algorithm 3 for One-wa 1652 + 2)k| R| + |R||k relay nodes. As a result, we have

FFRP. Algorithm 3 executes the One-way PFRP algorithm 9 9 119

V' and produces a resulting netwatk= (V' UR, E). Then, for %” = Uk(lﬁ.ﬂ +3)((3236_°‘ +5)kf +??k+4)”F‘?H' Therefore,
I . ; Algorithm 3 is anO(ck?)-approximation algorithm. [ ]

each super patif (u, v) in G, Algorithm 3 replicates each The analysis of Algorithm 3 for Two-way FFRP can be

relay node OUPG(U’U) with kf_ 1 additional relay nodes. conducted in a similar manner, and Theorem 5.2 states the
Furthermore, in Step 6, Algorithm 3 connects the relay nodés

on Pg(uw,9) with w and v as well as their in-neighbors andreSUIt'

) A . Theorem 5.2:Let V' be a set of target nodes. Algorithm 3 is
out-neighbors. We term the operation in Steful-connection an O(ck*)-approximation algorithm in terms of the number of
Althoughfull-connectionis costly, it guarantees that there are g PP 9

S aelay nodes required to form a two-way féHvertex connected
vertex-disjoint one-way paths from any node to any Otherenonetwork forV/
in the resulting network. Finally, in Step 7, Algorithm 3 tes ‘

each cluster of relay nodes deployed in Step 6, and remoges th

cluster if the graph of the resulting network remains a deec VI. EXTENSIONS TOHIGHER DIMENSIONS

k-vertex connected graph. Simulation results show that Steprhis section discusses extending the approximation algo-
7 on the average remov&s.6% of the relay nodes deployedrithms presented in previous sections to higher dimensidna

in Step 6. Theorem 5.1 presents the approximation ratio WISNs, and derives the approximation ratio of each of these
Algorithm 3 for One-way FFRP. extended algorithms.

Proof of Theorem 4.1By Lemma 4.2 and Lemma 4.3, the
number of relay nodes added in Algorithm 1 is at mo
o((8v*+ 1)k? + 2k+2) times the optimal solution. Therefore
Algorithm 2 is anO(ck?)-approximation algorithm.



Algorithms Performance Ratio im-dimensional H-WSNs Algorithm 4 Greedy Algorithm for MKCSG

- dp.2
?ﬁsx:;/ EFFRRE 8&3&3%5(1:2; 1: INPUT: Integer k, an undirected (or directed) weighted
One-way FFRP 0 (o (4daB)7k?) complete graph & = (V, E).
Two-way FFRP O(o(4dvyB3)k3) 2: OUTPUT: An undirected (or directed) k-vertex con-
nected spanning graphM of G.
TABLE II %S — ¢
PERFORMANCERATIOS IN HIGHER DIMENSIONS a4 M «— (V, S)’

We first modify the method of segmenting the neighborhood& Pla<_:e all (_)f the edges i with weight zero intoS;
of a nodex with (r1,7r2) in d-dimensional { > 3) metric 6: While M is notk_-vertex (_:onn_ected _
space as follows. We createladimensional sphere centered at  * A(.jd the edge inG\S with h'gh?St contr|but.|on_tcS (It
x with radiusry, along with ad-dimensional cube just large multlple_ edges have the_sam'e highest contribution, add an
enough to encompass this sphere. Then, we evenly segment thi edge W't_h the lowest weight);
d-dimensional cube into smadl-dimensional cubeells where End While . _ . .
the length of the diagonal of eaciell equalsr,. 7: Test each edg@v (or uv) € M in decreasing order of
With this extended segmentation method, we can apply weight, and deleteuf (or uv) from M if M\uv (or ud) is
the algorithms and the corresponding analysis presented in k-vertex connected;
previous sections to tackle the relay node placement in the Output M
situation where heterogeneous target nodes are deployed in
high-dimensional metric space. The performance ratiobesed
algorithms ind-dimensional H-WSNs are listed in Table Il.  use Qualnet 3.8[9] as the simulation platform. In each o§¢he
simulations, we randomly place target nodes ii(0@0m x
VIlI. HEURISTICIMPLEMENTATIONS 1000m 2D terrain. To model a H-WSN, we S@f(mzn) =
200m andT'(max) = 500m, and let every target node use a

All of the approximation algorithms discussed in the pregio random transmission radius betwegtmin) and T'(maz) in

sections are based on an approximation algorithm for ﬁndi%%ch simulation. Each of the results presented in this@ei
a MKCSG. However, most existing approximation algorithm e average of L-">0 NS

for MKCSG problem uses the Frank and Tardos algorithm [1 In the first simulati SE(relay) — 350 d arad

or its variations as the subroutine, and are quite comglitat n the Tirst simuiation, we u (relay) = 2oUm, and gragu-
and difficult to implement in computation- and communicatio ally Increase the number of target nodes in the network from 5
constrained sensor networks [5]. Thus, motivated by theisieu to 50. Figures 4(a) and 4(b) depict the performance of each of

tic algorithms described in [14] and [5], we present a gree(lﬁ_pe dbescrlfeo: algor|ctjhms. we hta\(/jel;‘ollol\llv (;btﬁerv?tlorltshﬂ‘ile) first
heuristic algorithm in this section as a practical altexmator . umber ot relay nodes computed by atl ol the aigorthms 1irs
the MKCSG problem. increases, then decreases when the network size goes beyond

The basic idea of this greedy algorithm is to repeatedly agdthreshold. (2) On the average, the One-way FFRP algorithm

. .requires 5.9 times and 10.2 times more relay nodes than the
the edges that can best help to improve the graph connycuvd')fne_way PFRP algorithm for the caseslof 2 andk — 4,

until the graph becomeks-vertex connected. To quantitatively . 2
measure the improvement of each edge on the graph Conngépectlvely. (3) Likewise, on the average, the Two-way FFR

- ' - ithm requires 4.6 times and 7.7 times more relay nodes
tivity, we define the concept of theontributionof the edges. gori .
Definition 7.1: [Contributior]: In a graph that isot k-vertex than the Two-way PFRP algorithm for the casesiof 2 and

connected, there must exist some node pairs which can l%g 4, respectively. We further continue the first simulation by

partitioned by the removal of fewer thamodes, which means increasing the number of target nodes in the network from 50
the connectivity between such node pairs is lower thakVe to 10.0’ and the number of relay nodes computed by all of the
term these node paitgisaturated node pair€onsequently, the algorithms converg_es to §mal| values fewer_ than 9.
contribution of an edgewd (or wv) is defined as the number !N the second simulation, we gradually incredserclay)

of unsaturated node pairshose connectivity can be improvedT®m T(min) to T(mazx), and evaluate the algorithms for the
by the deployment of edg@’ (or @) in this graph. case ofk = 4 in two networks containing 20 and 60 target

The greedy algorithm is stated in Algorithm 4. One ke{)0des respectively. As depicted in Figures 5(a) and 5ti8), t

step in Algorithm 4 is to the check the connectivity betweeficrease ofl'(relay) can effectively improve the performance
all of the algorithms. Specifically, we have the following

node pairs and the connectivity of the entire graph. This cd

be achieved by using the well-known maximum network flo@pservations: (_1) In a sparse ngtwork with 20 target nodes,
based checking algorithm presented in [10]. when T(relay) increases frofi(min) to T(max), the edge
weight drops steadily, and the number of relay nodes condpute

by the One-way and the Two-way PFRP algorithms difys

and 42%, respectively. (2) In a dense network with 60 target
This section evaluates the performance of our algorithmsdes, most edges selected by the One-way and the Two-way

using heuristic implementations described in Section We PFRP algorithms carry weight 1, as a result, wh&melay)

VIIl. EXPERIMENTAL RESULTS



- One-vay FFRP K = 4 —+Tuo-way FFRP K =4 real applications, we also provide heuristic implemeotagiof
—*—One-way PFRP K = 4 —*—Two-way PFRP K = 4 . . . .
<onewrszpi=2 o Ty -2 these algorithms, and evaluate their performance via simul
o Oneuay PERP K = o Two-say PrRPK = X

tions. The results show that the performance of the proposed
algorithms is much better than the performance ratios ddriv
suggesting that these algorithms work well in real sensor
. networking scenarios. In ongoing work, we are pursuingtégh

R e e s % performance ratios of the approximation algorithms, ad al
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