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Abstract— Controlling the topology of a wire-
less ad hoc network is very important from the
point of view of performance. One known tech-
nique for controlling the topology is through the
assignment of appropriate transmission power
levels to the nodes. Such an assignment aims
to minimize a specified function of the powers
assigned to nodes. While this problem has been
widely studied for the case of stationary wire-
less networks, few reported theoretical results
for mobile wireless networks (MANETs). In this
paper, we consider the topology control problem
for MANETs from a theoretical perspective.

We define a topology control problem under
the Constant Rate Mobile Network model. In
this model, all the n nodes in the network may
move. Associated with each moving node are
its constant moving speed and direction. The
goal is to minimize the maximum power used
by any network node in producing a connected
network. We provide two polynomial algorithms
for solving this problem: one for the decision
version, the other for the optimization version.

I. INTRODUCTION

Two of the most critical issues associated with

wireless ad hoc networks used in military and

search-and-rescue operations are to conserve en-

ergy so as to prolong battery life and to accommo-

date the movement of network nodes. This paper

considers these issues in the context of topology

control.

A wireless ad hoc network consists of a collec-

tion of nodes which self-organize using communi-

cation based on radio propagation, since there is

no pre-existing infrastructure. In communicating

through wireless links each node functions, when

necessary, as a relay so as to allow multihop com-

munications. In ad hoc networks, battery power

is a precious resource.
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In a mobile wireless ad hoc network (MANET),

where nodes move freely, the network topology

is formed based on the transmission ranges and

the routes of the nodes. The objective in topol-

ogy control is to maintain a specified network

topology such as connected or biconnected. The

desired effect of topology control is to reduce

energy consumption, reduce MAC layer interfer-

ence between adjacent nodes, and to increase the

effective network capacity.

A widely studied method of controlling the

topology of a wireless network is by adjusting

the transmission powers of the nodes. The idea

is to choose the transmission powers so that the

graph induced by the power assignment satisfies

the specified properties. Since battery power is

a precious resource, the power assignment aims

to optimize a suitable function of the powers

assigned to nodes. In this paper, we will focus on

minimizing the maximum power utilized by any

node.

Over the last six years, the topology control

problem has been studied by several groups of

researchers [7], [5], [10], [3], [8], [9]. All of this

work has assumed that the nodes are stationary.

In this paper, we consider certain topology control

problem with mobile nodes. We are the first to

develop polynomial time algorithms for this prob-

lem.

II. RELATED WORK

For stationary networks, considerable work has

been reported in the literature on a variety of

topology control problems. For instance, several

groups of researchers have studied connectivity

problems (under the undirected graph model) for

minimizing the total power assigned to nodes

[9], [8]. Likewise, work on the connectivity prob-

lems under the directed graph model may be

found in [4], [7], [5]. In most instances, the prob-

lems are shown to be NP-hard and the focus

is on the development of approximation algo-

rithms having either O(log n) or constant approx-

imation ratios. For instance, [1], [2] show the

NP-hardness of connectivity problems (under the

undirected graph model) for minimizing the total

power, and Calinescu et al. [2] present a 5/3-
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approximation algorithm for that problem. For 2-

node/edge-connectivity problems for minimizing

the total power, two new approximation algo-

rithms with asymptotic approximation ratios of

8 are presented in [9]. Both of the approximation

ratios are improved to 4 in [3].

III. BACKGROUND

A. Problem Specification

In studying topology control for MANETs, we

are given a set of nodes in the plane, each of

which may move as time progresses. At any given

instant, for each ordered pair (u, v) of nodes, there

exists a transmission power threshold, denoted by

π(u, v), with the following significance: A signal

transmitted by node u can be received by node

v if and only if the transmission power of u is at

least π(u, v). In this paper we utilize the geometric

model in which the threshold is determined by

the Euclidean distance d(u, v) between u and v.

Throughout this paper, the threshold π(u, v) is

taken to be d(u, v)α, where α is the attenuation

constant associated with path loss [11]. The value

of α is typically between 2 and 4. Note that in the

geometric model threshold values are symmetric.

That is, π(u, v) = π(v, u). In the remainder of this

paper, we let π(u, v) denote both itself and π(v, u).
At any instant in time, given the transmission

powers and the positions of the nodes, an ad hoc

network can be represented by an undirected

graph over the nodes of the network. An edge

(u, v) is in this induced graph if and only if the

transmission powers of both u and v are at least

the threshold π(u, v).
In the context of MANETs, the main goal of

topology control is to assign transmission pow-

ers to nodes so that the network is movement-

connected. That is, at every instant in time, the

undirected graph induced by the transmission

powers of the nodes is connected. Topology control

aims to achieve this connectivity while minimiz-

ing the maximum power uniformly assigned to

any nodes. In this case we say that network N is

movement-connected under such power.

We slice the lifetime of a mobile network into

unit time intervals during each of which it is

assumed that the movement of each node can be

represented by a line segment. We study topology

control in MANETs for each unit time interval.

In this paper we consider The Constant

Rate Mobile Network (CRMN) Problem for

MANETs in which there are n moving nodes.

Associated with each node are its starting and

ending positions in the unit time interval. It

is assumed that each node moves at its own

constant rate and direction throughout the time

interval. The goal is to minimize the maximum

power uniformly assigned to all nodes such that

the network is movement-connected throughout

the unit time interval. Readers are referred to

[14], [13] for other relevant mobility models.

The main results of this paper provide two poly-

nomial algorithms for solving the CRMN prob-

lem:

• An O(n2(log(n))2) algorithm for the decision

version (i.e. given a power p and an in-

stance N of CRMN, to decide whether N is

movement-connected under p);

• An O(n4(log(n))2) algorithm for the optimiza-

tion version (i.e. given an instance N of

CRMN, to find the minimum power pmin as-

signed to all nodes such that N is movement-

connected under pmin).

B. Some Definitions and Notations

Some definitions and notations used in the

remainder of this paper are defined below:

• We let Gp(N ) denote the undirected graph

induced on a stationary network N , when

transmission power p is uniformly assigned

to each node. That is, in Gp(N ) an edge is

present between nodes u and v if p ≥ π(u, v).
• A threshold graph is a complete undirected

edge-weighted graph where each edge is of

positive weight. The weight of each edge is its

threshold. A threshold graph for a stationary

network N is a threshold graph with the

same node set as N and where the weight

of edge (u, v) is π(u, v).

C. Stationary Networks

The general form of topology control considered

in this paper was first proposed by Ramanathan

and Rosales-Hain [10]. Among the several results

in that paper, they presented an algorithm for

stationary networks that minimizes the maxi-

mum power assigned to any node such that the

resulting network is connected. Subsequently, [9]

provided a general polynomial algorithm for mini-

mizing the maximum power assigned to any node

so as to achieve a range of graph properties.

Additional results for stationary networks are

given in Section II on related work.

In this paper we make extensive use of the al-

gorithm given in [10], [9] for minimizing the max-

imum power p such that network N is connected
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under power p. That algorithm is based on the

insight that p must come from among the thresh-

old values associated with node pairs in N . This

permits the algorithm to do a binary search over

those threshold values searching for the least p
such that N is connected under power p. We refer

to that algorithm as MINMAXGRAPH. The run-

ning time of MINMAXGRAPH is O(n2 log(n)). We

will make use of MINMAXGRAPH as a subroutine

throughout this paper.

IV. CONSTANT RATE MOBILE NETWORKS

In this section we give polynomial time al-

gorithms for topology control in constant rate

mobile networks: i.e. an O(n2(log(n))2) algorithm

for the decision version and an O(n4(log(n))2) al-

gorithm for the optimization version. Throughout

this section for a moving node Vi, we refer to its

starting position as Vi, to its ending position as

V ′

i , and to the vector ~vi =
−−→
ViV

′

i as its moving

route3. Our approach to solving an instance of

CRMN is based on partitioning the unit time

interval into time slots. We refer to this as time

slicing.

A. Distance Functions and Threshold Functions

Since |~vi| is the length of the moving route of

node Vi in a unit time interval, it follows that |~vi|
is also the speed of Vi and at any instant t in [0, 1]
its position is ~vi · t.

To deal with distances and thresholds associ-

ated with multiple moving nodes we introduce

the concepts of distance functions and threshold

functions based on vector calculations. In a stan-

dard coordinate system, point A is denoted as

A = (xA, yA) and point vector ~pA represents a

vector
−→
OA starting at the origin O and ending

at A. Hence, a moving route starting at A and

ending at A′ will be denoted as ~vAA′ = ~pA′ − ~pA.

Using these concepts we define a relative mov-

ing vector ~vA−B to be ~vAA′ − ~vBB′ . Note that in

physical terms ~vA−B represents the movement

of A relative to B (i.e., as if B does not move).

Figure 1 shows an example: ~vAA′ = ~pA′ − ~pA,

~vBB′ = ~pB′ − ~pB, and ~vA−B = ~vAA′ − ~vBB′ .

With these definitions, we define the distance

function between A and B to be dAB(t) = |(~pA −
~pB)+~vA−B ·t|. At any time instant t, this function

is the distance between moving nodes A and B.

3We use ~vi to represent the vector
−−→
ViV

′

i
starting at Vi and

ending at V ′

i
.
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Fig. 1. Vector Notation Example

The threshold function between A and B is

π(A, B)[t] = dα
AB(t), where α is again the at-

tenuation constant associated with path loss. At

any time instant t, this function is the threshold

between moving nodes A and B. The threshold

between A and B in a time slot [tg, th] is denoted

as π(A, B)[tg , th] = MAX(π(A, B)[tg ], π(A, B)[th]).
Finally, a distance function is the square root of

a quadratic function. Since there are at most two

real solutions4 to a quadratic equation, we state

without proof:

Lemma 4.1: Given any two non-identical dis-

tance functions dAB(t) and dCD(t), there are at

most two real solutions for t to the equation

dAB(t) = dCD(t).
Since a threshold function has the form

π(A, B)[t] = dα
AB(t), it follows that:

Corollary 4.2: Given any two non-identical

threshold functions π(A, B)[t] and π(C, D)[t],
there are at most two real solutions for t to the

equation π(A, B)[t] = π(C, D)[t].

B. An Algorithm for the Decision Version of

CRMN

In this subsection, we describe an algorithm to

solve the decision version of CRMN. That is, given

a power p and an instance N of CRMN, to decide

whether N is movement-connected under p.

4Imaginary solutions do not have any physical significance
in this context.
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Our algorithm is based on time slicing. For each

pair of distinct nodes Vi and Vj in N , we calculate

the real solutions to the equation π(Vi, Vj)[t] = p.

The resulting solutions are called slicing points.

We collect all of the O(n2) distinct5 slicing points

into a sorted list. Adjacent points in this sorted

list define a time slot. An important fact is that

connectivity of two nodes changes only when the

edge between them either comes into or goes out

of existence, which can only occur around a slicing

point. It follows that each time slot is a constant-

connectivity time slot. Precisely, a time slot [tx, ty]
is a constant-connectivity time slot if given a

power p and a graph G = (V, E), the following

hold:

• ∀(Vi, Vj) ∈ E, ∀t ∈ (tx, ty) : π(Vi, Vj)[t] < p
• ∀(Vi, Vj) 6∈ E, ∄t′ ∈ (tx, ty) : π(Vi, Vj)[t

′] ≤ p.

Note that the slicing points defining the time slot

are not included in the above calculations. To see

the necessity of excluding these points consider

consecutive time slots [ti−1, ti] and [ti, ti+1], and

assume some edge (Vj , Vk) does not exist at an

interior point of [ti−1, ti], but does exist at an in-

terior point of [ti, ti+1]. Thus, this edge comes into

existence at slicing point ti. Clearly, ti cannot be

included in the constant-connectivity calculation

for [ti−1, ti]. Fortunately, as we will show later

there is no need to explicitly check connectivity

at the slicing points.
Having partitioned the unit time interval into

constant-connectivity time slots, our algorithm

simply checks the connectivity for each time slot.

NetworkN is movement-connected under p if and

only if it is connected in each such time slot. The

details are given in Algorithm 1.
To prove the correctness, we begin with a

lemma stated without proof:
Lemma 4.3: Given a constant-connectivity

time slot [tk, tk+1], any edge present at an instant

t′k ∈ (tk, tk+1) is also present at any instant

t′′k ∈ [tk, tk+1].
Theorem 4.4: Algorithm 1 returns true if and

only if network N is movement-connected under

power p.
Proof: We show that network N is movement-

connected under power p if and only if every

graph Gk (constructed at step 4.b in Algorithm 1)

is connected.
If some Gk is disconnected, then clearly N is

not movement-connected under power p.
Conversely, if network N is not movement-

connected under power p, then at some instant

5Note if there are identical slicing points, they are repre-
sented by a single point in this list.

Input: An instance N of CRMN, and a power p.

Output: If N is movement-connected under

power p, return true; else return false.

Steps:

1) T ← ∅ : a set of slicing points.

2) For each 2 distinct nodes Vi, Vj in N do

a) Compute the real solutions to

π(Vi, Vj)[t] = p, and put them into

T .

3) Let ST be the sorted list of values in T , and

let Tk = [tk, tk+1] be the kth time slot of the

unit time interval as defined by the adjacent

values in ST .

4) For each Tk do

a) t′k ← an interior time instant of Tk.

b) Construct a graph Gk = (V, E), where

V is the set of nodes in N and E =
{(Vi, Vj) : π(Vi, Vj)[t

′

k] ≤ p}.
c) If Gk is disconnected, then return false.

5) Return true.

Fig. 2. Algorithm 1 — SOLUTIONTODECISIONCRMN

t ∈ [0, 1] the induced graph at t under power p
is disconnected. If t is not a slicing point, then

t is in (tk, tk+1). Since (tk, tk+1) is a constant-

connectivity time slot, it follows that Gk is discon-

nected. If t is a slicing point, say tk, then recall

that tk is either the first or last instant at which

some edge is present. In either case, it follows

that the edge set of Gk as constructed at step 4.b
in Algorithm 1 is a subset of the edge set present

at tk. Hence, Gk is disconnected. The theorem

follows.

Theorem 4.5: Algorithm 1 runs in worst case

time O(n2(log(n))2).

Proof: In Algorithm 1, step 2 takes O(n2) time,

since there are O(n2) equations and each can

be solved in time O(1). Obviously, step 3 takes

O(n2 log(n)) time. The primary concern is the

running time of step 4. If step 4 is implemented

directly as described in Algorithm 1 it requires

O(n4) time, since there are O(n2) time slots and

constructing Gk also takes O(n2) time. Fortu-

nately, that running time can be reduced by ob-

serving that Gk and Gk+1 for the consecutive

time slots (tk, tk+1) and (tk+1, tk+2) differ only
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by the insertion or deletion of an edge6. This

allows us to implement step 4 using fully dy-

namic graph algorithms for connectivity [6], [12].

Such algorithms process a sequence of update

and query operations interspersed in any order,

where the update operations include the insertion

and deletion of edges, and the query operation

is a query about the connectivity of the graph.

Using [6], these operations can be implemented

in O((log(n))2) amortized time per update and

O(log(n)/ log(log(n))) per query. Thus, step 4 can

be implemented in O(n2(log(n))2) worst case time

by using O(n2) update and query operations.

Hence, the theorem follows.

Using a result of [12] for fully dynamic graph

connectivity in which connectivity queries require

O(log(n)/ log(log(log(n)))) time while updates re-

quire O(log(n)(log(log(n)))3) expected amortized

time, it follows that:

Corollary 4.6: Algorithm 1 runs in expected

time O(n2 log(n)(log(log(n)))3).

C. An Algorithm for the Optimization Version of

CRMN

In this subsection, we give an algorithm for

solving an instance of CRMN. That is, given an

instance N of CRMN, the goal is to find the

minimum power pmin assigned to all nodes such

that N is movement-connected under pmin. We

begin with two definitions and two lemmas with-

out proof:

Letting G = (V, E) be the threshold graph at an

instant t, then edge em ∈ E is a MinMax edge at

t, if G′ = (V, E′) is connected, where E′ = {ei ∈
E : |ei| ≤ |em|}, and G′′ = (V, E′′) is disconnected,

where E′′ = E \ {ei ∈ E : |ei| ≥ |em|}.
Time slot [tx, ty] is a constant-order time slot

if there exists an ordered list E∗ of the network

edges such that for any instant t ∈ [tx, ty], E∗ is an

ordered list by length of the edges in the threshold

graph constructed from N at t.
Lemma 4.7: Given a constant-order time slot

[tx, ty] and an instant t′ ∈ [tx, ty], if edge em is

a MinMax edge at t′, then em is a MinMax edge

at any instant t′′ ∈ [tx, ty].
Lemma 4.8: Given moving nodes A (moves

from A to A′) and B (moves from B to B′),

MAX(π(A, B), π(A′, B′)) is the minimum power

that can be assigned to both A and B such that

nodes A and B are movement-connected.

6We assume that there is only one slicing point at tk+1.
When there are multiple slicing points at tk+1, the update
operations described in this proof are applied to each of those
slicing points.

Our algorithm for solving an instance of CRMN

works by slicing the unit time interval into

constant-order time slots, which is referred to

as TIMESLICING. The procedure is very similar

to steps 1 - 3 of Algorithm 1 except that us-

ing equation π(Va, Vb)[t] = π(Vc, Vd)[t] to replace

π(Vi, Vj)[t] = p, where π(Va, Vb)[t] and π(Vc, Vd)[t]
are non-identical threshold functions. The result-

ing solutions are called slicing points7, and the

edges (Va, Vb) and (Vc, Vd) are said to define the

slicing points. Note that each equation generates

at most two slicing points. We collect all O(n4)
distinct slicing points into a sorted list. Adjacent

points in this sorted list define a time slot. Here,

given a threshold graph G = (V, E) at an instant

in such a time slot [tx, ty], the ordering of a sorted

edge list for E is invariant throughout [tx, ty]. It

follows that each such time slot is a constant-

order time slot. The following lemma gives the

running time of TIMESLICING. The proof is omit-

ted because of space reasons.

Lemma 4.9: TIMESLICING runs in O(n4 log(n))
time.

With the constant-order time slots in hand, our

algorithm (Algorithm 2) is shown in Figure 3.

Like Algorithm 1, we utilize fully dynamic

graph algorithms instead of the naive method.

The key ideas used to improve the running time

are (1) avoiding an explicit construction of thresh-

old graphs, and (2) computing the MinMax edge

incrementally. To help achieve these two objec-

tives, we incrementally construct the induced

graph Gpmk

k (V ) where pmk is the threshold value

of a MinMax edge for threshold graph Gk.

The implementation is as follows. Assume that

for [tk−1, tk] we have G
pm(k−1)

k−1 (V ) and the MinMax

edge for Gk−1. For [tk, tk+1], we update these two

items. Since every time slot is a constant-order

time slot, G
pm(k−1)

k−1 (V ) for [tk−1, tk] differs from

Gpmk

k (V ) of [tk, tk+1] only in whether or not ex

and ey are present, where ex and ey are the two

adjacent edges (in the sorted edge list) that define

the slicing point at tk. Due to space limitations,

the detailed case analysis is omitted here. The

update operation is assumed to be carried out by a

procedure UPDATE which takes as parameters Tk,

em(k−1) and G
pm(k−1)

k−1 (V ) and which returns emk

and Gpmk

k (V ).

Theorem 4.10: Algorithm 2 runs in worst

case time O(n4(log(n))2) and expected time

O(n4 log(n)(log(log(n)))3).

7Note that these are not the slicing points defined in the
prior subsection.
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Input: An instance N of CRMN.

Output: The minimum power pmin such that N
is movement-connected under pmin.

Steps:

1) {Tk : k ∈ [1, w]} ← TIMESLICING(N ).

2) Let t′1 be an interior time instant in T1 =
[t1, t2], and construct a threshold graph G1 =
(V, E) at t′1.

3) pm1 ← MINMAXGRAPH(G1).

Construct Gpm1

1 (V ), the graph induced from

G1 by pm1. Select from G1 an edge em1 =
(Vm1, Vm′1) such that π(Vm1, Vm′1)[t

′

1] = pm1.

Redefine pm1 ← π(Vm1, Vm′1)[t1, t2].
4) P ← {pm1}.
5) For k from 2 to w do

a) UPDATE(Tk, em(k−1), G
pm(k−1)

k−1 (V )),
which returns emk and Gpmk

k (V ).
b) pmk ← π(Vmk, Vm′k)[tk, tk+1], where

emk = (Vmk, Vm′k).
c) P ← P ∪ {pmk}.

6) pmin ← the largest value in P .

7) Return pmin.

Fig. 3. Algorithm 2 — SOLUTIONTOCRMN

Proof: Step 1 takes time O(n4 log(n)). Step 3 takes

O(n2 log(n)). Step 5 utilizes fully dynamic graph

algorithms for connectivity to construct the in-

duced graphs Gpmk

k (V ) incrementally. Since there

are totally O(n4) constant-order time slots, it

follows that for step 5 the worst case running time

is O(n4(log(n))2), and that the expected running

time is O(n4 log(n)(log(log(n)))3). Step 6 requires

O(n4) time. Thus, the theorem follows.

Since Algorithm 2 finds the MinMax edges for

all constant-order time slots, we have:

Theorem 4.11: The value pmin returned by Al-

gorithm 2 is such that network N is movement-

connected under power pmin, and that pmin is the

minimum such power.

V. CONCLUSIONS

In this paper, we provided two polynomial al-

gorithms for topology control in constant rate

mobile networks. Our algorithms for the de-

cision and optimization versions of the prob-

lem have running times of O(n2(log(n))2) and

O(n4(log(n))2) respectively.

Since these are the first theoretical results for

topology control incorporating mobility, there are

many open problems. In regard to the optimiza-

tion problem handled in this paper, considering

a model similar to CRMN in which the moving

rate is not constant, the topology control problems

specified under that model are open. The problem

of minimizing the total power is also of interest.
Disclaimer: The views and conclusions contained in this

document are those of the authors and should not be inter-

preted as representing the official policies, either expressed

or implied, of the Army Research Laboratory or the U.S.

Government.
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