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Abstract—Network longevity and connectivity are key design
goals in any wireless sensor network deployment. In this context,
we consider the placement of relay nodes and individual transmis-
sion power assignments. Specifically, given a planar deployment
of sensors and a base station, we seek the placement of a limited
number of relays and optimal sensor power assignments such that
the network is connected. We present a polynomial-time bicriteria
approximation algorithm for this problem. We also provide an
optimal O(n2 logn)-time algorithm for a restricted version where
nodes lie on a simplified urban grid (that we call a comb-grid).
We also study a related variant that assumes fixed transmission
power values, with the goal of minimizing the number of relays.
We provide extensive simulation results for the comb-grid case.

I. INTRODUCTION

Wireless sensor networks (WSNs) comprise small, low-
power devices that collect and communicate environmental
data. Network managers must balance the inherent tension
between network longevity goals and network connectivity
constraints. One approach is to ensure base station connectivity
through transmission power assignments that minimize power
consumption. In many deployments, however, the combination
of low-power radios and large-scale geographic distribution
precludes such solutions. An alternative is to introduce a
second-tier of more powerful observation relay nodes.

In this paper, we assume a two-tier network model in
which sensor nodes communicate only with relays. In this
context, we study the Relay Node Placement (RNP) problem
in combination with topology control. Specifically, given a
static sensor deployment, we seek a placement of relays
and transmission power assignments that ensure connectivity
while minimizing energy consumption. Our focus is moti-
vated by practical deployment considerations: Duty cycle and
bandwidth requirements dictate that relay nodes make use
of more resource-intensive processors and radios, yielding
concomitant increases in size, cost, and, most important, power
consumption. Hence, in this paper, we focus primarily on the
variant of the RNP problem in which the number of relays is
limited to a specified maximum.

Problem Statement. Given a planar deployment of sensors
and a base station, find a placement of at most k relays so that
(i) each sensor is connected to some relay, (ii) the base station
is connected to some relay, (iii) the relay network is connected,
and (iv) the maximum transmission power used by any sensor
is minimized. The problem is denoted as MINMAX-kRNP.
We also consider a restricted version of the problem involving
placement within a simplified urban grid.

The restricted problem is motivated by an ongoing WSN
deployment in Aiken, SC, designed to monitor a stormwater

treatment overhaul [1]. The city streets follow a typical grid
pattern, with “green parkways” between adjacent roads. An
802.15.4 collection network is deployed within a subset of
these parkways, running approximately parallel to the adjacent
roadways. Associated 802.11 relay nodes are installed at
various points between the cells, along a focal track. All
observation data is routed to a single base station that provides
a high-speed link to the Internet. Architecturally, the system
bears similarity to a number of other WSN deployments
(e.g. [2]). Intuitively, these deployments can be modeled as a
comb-grid in which a single horizontal line segment, the comb-
handle, represents the main street, and vertical line segments,
the comb-teeth, represent the side streets. The comb-teeth are
separated by obstructions that make communication possible
only between nodes located on the same street.

Paper Organization and Contributions. Section II surveys
key elements of related work. Section III formally defines
the network models and placement problems. Related RNP
problems and solutions are also considered, including a linear-
time algorithm for minimizing the number of relays on a
comb-grid. Section IV presents an O(n2 log n)-time algorithm
that solves the MINMAX-kRNP problem on a comb-grid.
Section V presents a polynomial-time bicriteria approximation
algorithm for the general version of the MINMAX-kRNP
problem. The algorithm guarantees an approximation ratio
of (1 + ε) for both the number of relays and the power
assignments. Section VI presents an experimental evaluation
of the number of relays on network performance. Section VII
concludes with some directions for future research.

II. RELATED WORK

A number of authors have considered RNP solutions to
improve network lifetime while preserving connectivity [3]–
[5]. Two communication models have been studied in the
realm of RNP and the major difference is whether sensors
are allowed to serve as routers. In the two-tiered model, the
goal is to find the minimum number of relays that cover all
sensors and that form a connected network of pure relays.
This problem is NP-hard and a polynomial time approximation
scheme (PTAS) is presented in [5].

Another approach to prolonging network lifetime is to use
transmission power assignments to achieve a desired topology.
This problem was first formulated in [6]. Since then, intensive
work has been done on topology control in wireless sensor
networks [7].

In this paper, we investigate an optimization problem that
combines relay node placement and topology control. We seek
not only an optimal relay placement, but also a minimized sen-



sor range. This MINMAX-kRNP problem can be formulated
as a two-tiered version of the geometric p-center (i.e., central
clustering) problem [8]. A 2-approximation algorithm with an
O(n log k) running time was provided in [8], and the authors
showed that no approximation algorithm can have an approx-
imation ratio better than 1.822 unless P = NP . Recently, [9]
presented an O(1)-approximation algorithm under a two-tiered
model assuming that R ≥ 2r. In both the traditional version
in [8] and the two-tiered version in [9], relays can only be
placed at certain candidate locations, while in our two-tiered
version there are no restrictions on the possible locations of
the k relays. Furthermore, we use a less restrictive assumption,
namely R ≥ r. To the best of our knowledge, there is no prior
work on a two-tiered version of p-center problems without any
constraints on relay locations.

III. MODEL AND DEFINITIONS

We now formally define the network models and problems
considered in the remainder of the paper.

A. Two-tiered Network Model

We consider relay node placement under a two-tiered model.
There are three types of nodes: sensors, relays, and a base
station. The sensors and the base station are pre-deployed at
specific locations. Data is transmitted from sensors to relays
and then through the relays to the base station. Sensors may
only communicate with relays.

All relays have a uniform transmission range R. Each sensor
has an adjustable transmission range with a uniform upper
bound U ≤ R. Without loss of generality, we neglect the
bound U , taking R as the upper bound. If the minimum
required sensor range for a certain problem instance is r and
r > U , there is no solution to that instance.

Definition 3.1: (COVERED) A sensor is COVERED by a
relay if the relay is within the transmission range of the sensor,
i.e. the distance between them is at most r, where r is the
transmission range of the sensor.

Definition 3.2: (CONNECTED) Two relays are CONNECTED
if each is within the other’s transmission range, i.e. the distance
between them is at most R. The base station is CONNECTED
to some relay if it is within the transmission range of the relay.

Definition 3.3: (RELAY NETWORK) The RELAY NETWORK
is the network consisting of the relay nodes and the base sta-
tion. The relay network is CONNECTED if relays are connected
and the base station is connected to at least one relay.

B. Preliminaries on Comb-Grid

Definition 3.4: (COMB-GRID) A COMB-GRID consists of a
single horizontal line segment, termed the COMB-HANDLE (or
COMB), and a set of m vertical line segments that meet the
comb-handle, each termed a COMB-TOOTH. (An example is
shown in Figure 1.) Note that the comb-handle splits some
vertical segments into two comb-teeth, and that the comb-teeth
need not be equally spaced or equally long. Nodes may only
communicate if they lie on the same line segment.

We now define two types of points that segment the comb
into several cells; these points serve as the cell end-points.

Base Station 
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Closed cells Half-closed cells 

comb-handle 

comb-tooth 
comb-tooth 

comb-tooth 

Fig. 1. Comb-grid with base station on comb-tooth (14 cells, circled)

Definition 3.5: (CELL) A CRITICAL ENDPOINT is either the
base station point or an intersection point between the comb-
handle and a comb-tooth. An END SENSOR is the leftmost
(rightmost) sensor on the comb-handle (or the uppermost (low-
ermost) sensor on a comb-tooth) if there is no critical endpoint
on or to the left (right) of (or above (below)) that sensor. A
CELL is a line segment either between two adjacent critical
endpoints or between a critical endpoint and an adjacent end
sensor. Furthermore, a cell where both endpoints are critical
endpoints is a CLOSED CELL, and a cell where one endpoint
is an end sensor is a HALF-CLOSED CELL (see Figure 1).

The following claim provides upper and lower bounds for
some parameters of a comb-grid.

Claim 3.1: Consider a comb-grid with one base station
point and m distinct intersection points between the comb-
handle and comb-teeth. The following results hold.
(a) Let τ denote the number of teeth. Then, m ≤ τ ≤ 2m.
(b) The number of closed cells is m or m− 1.
(c) Let h denote the number of half-closed cells. Then, m−

1 ≤ h ≤ 2m+ 2.
The reader is referred to [10] for the proof details.

Notice that almost all of the closed cells are located on the
comb-handle. Hence, we introduce the following expository
device: In the case of a closed cell located on a comb-tooth
(when the base station lies on the same tooth), we refer to the
intersection endpoint of the closed cell as the LEFT ENDPOINT
of that cell, and to the other endpoint (where the base station
is located) as the RIGHT ENDPOINT. Similarly, since most of
the half-closed cells are located on comb-teeth, we will refer
to the critical endpoint of a half-closed cell as the BOTTOM
ENDPOINT and to the other endpoint (where the end sensor is
located) as the TOP ENDPOINT.
C. Minimizing the Number of Relays: A Related Problem

In the RNP problems we consider, we are given a limited
number of relays and are asked to place them so as to minimize
the maximum sensor transmission power. A complementary
problem assumes a fixed transmission power and asks us to
place a minimum number of relays so that the relay network
is connected and every sensor is covered by a relay. Formally:

Definition 3.6: (MIN-RNP) Given a set of n pre-deployed
sensors and a base station, a sensor transmission range r, a
relay transmission range R ≥ r, find the minimum set of
h relays that can be placed to satisfy both of the following



conditions: (i) the relay network is connected, and (ii) each
sensor is covered by at least one relay.

We consider two versions of this problem and provide
an efficient algorithm for one version and an approximation
algorithm for the other. These algorithms will be used as sub-
routines in our algorithms for the MINMAX-kRNP problems.

1) Min-RNP Problem on a Comb: In this restricted version,
nodes are located on a comb. This version is solvable in time
O(n+h), assuming that for each cell, the sensors are already
sorted. The detailed algorithm, denoted as OPTIMALMINR, is
omitted here due to space limitations; it can be found in [10].

2) Min-RNP Problem in the Plane: In the general version
of the problem, nodes are located in the Euclidean plane.
Recall that the transmission range r is fixed (and uniform).
Given r, we seek the minimum number of relays so that each
sensor is covered and the relay network is connected.

It follows from previous results that MIN-RNP-2D is NP-
hard. Reference [5] provides a PTAS for this problem without
a base station. Their algorithm can be extended to our MIN-
RNP-2D problem while preserving the approximation ratio:

Theorem 3.1: There exists a PTAS for MIN-RNP-2D.
Proof: (sketch) In [5], Efrat et al. present a structural

lemma showing that an optimal set R∗ of relays can be
replaced by a Steiner tree T of “red” and “blue” edges with
at most (1 + ε)|R∗| relays, and all of the relays in T lie on a
polynomial-size grid G which can be computed in polynomial
time. There, all red edges are of length at most r, joining a
sensor to a relay, and all blue edges are of length at most
R, joining two relays1. We extend their structural lemma by
adding a new type of edge to the tree T : a “purple” edge of
length R, joining a relay to the base station. We then modify
their proof. Specifically, their proof replaces the optimal set
of relays by grid points using a “pin” process. In that process,
they define an “iterated circle arrangement” that iteratively
constructs a series of circles. In the first iteration, besides
the circles from [5], we add circles of radii R, 2R, . . . ,mR
centered at the base station, where m = Θ(1/ε), and then
iteratively construct circles following the rules from [5]. These
additional circles result in adding a constant (function of m)
number of vertices to the arrangement. As in [5], after adding
the new vertices, it is sufficient to perturb all of the relays in
R∗ (including those connected to the base station) onto the
arrangement vertices. With this structural lemma in hand, we
utilize the m-guillotine theorem [11] as in [5] to show that
an optimal tree T ∗ with |R∗| relays can be converted to a
tree Tm which has at most (1+ ε)|R∗| relays, and whose blue
edges are m-guillotine. Finally, we use dynamic programming
to explore the polynomial-size grid G and produce an optimal
m-guillotine spanning tree lying on G.
D. MinMax-kRNP Problem

We now formally define the RNP problem that assumes a
limited number of relays, the focus of the remaining document.

Definition 3.7: (MINMAX-kRNP) Given a set of pre-
deployed n sensors and a base station, and a set of k relays

1In [5], 1 and r are used as the ranges for sensors and relays, respectively.

each with a transmission range of R, place the k relays to
satisfy both of the following conditions: (i) the relay network
is connected, and (ii) the maximum distance (i.e., transmission
range) of any sensor to the nearest relay is minimized.

In the MINMAX-kRNP problems, the goal is to minimize
the maximum transmission power, which is uniformly assigned
to all sensors. As in MIN-RNP, we assume that the maxi-
mum transmission range is no more than R. That minimized
maximum sensor transmission range (denoted as MINMAX
sensor range), is the global minimum rather than a “per node
minimum” [6]. In fact, as is common in topology control
algorithms, our results can be extended to minimize the sensor
transmission range on a per node basis: After calculating the
MinMax sensor range that guarantees connectivity, for each
sensor, decrease its transmission range to the point where any
additional reduction would result in the loss of connectivity.

IV. MINMAX-kRNP ON A COMB

In this section we provide a polynomial time algorithm for
this restricted version where nodes are located on a comb. We
begin with an observation:

Fact 4.1: Since nodes can only communicate with nodes
located on the same line segment, it follows that any solution
must place a relay at each intersection point. Thus, if k < m
(the number of distinct intersection points), no solution exists.
In the remainder of this section, we assume k ≥ m.

Note that even with this assumption, a solution is not
guaranteed to exist, since the sensor transmission range cannot
exceed R. In the algorithm that follows, we first test whether a
solution exists when using R as the sensor transmission range.
If one exists, we then find a solution with a smaller r. Our
approach in that case is the following:
(a) First we determine a sufficient set of candidate values for

r — that is, a finite set S of values such that the optimal
solution will have a value for r ∈ S.

(b) Given S, we sort the values and perform a binary search
over the list. For each potential value of r, we calculate
the minimum number of relays required using algorithm
OPTIMALMINR (Subsection III-C1). We compare the
output of that algorithm to k (the limit on the number of
relays) as part of a binary search on the list of candidate
values for r. The final output will be a placement of k
relays that yields the minimum value for r.

In the remainder of this section we define a sufficient set
of candidate values for r, then provide the full algorithm. We
use the following definition of a generalized mod operation
for non-negative real numbers. Given two real numbers x ≥ 0
and y > 0, we define x mod y as follows:

x mod y = x− y ∗ bx/yc.

We are now ready to define the notion of an EVEN DISTANCE.
Definition 4.1: (EVEN DISTANCE) Let s1, s2, . . . , snl

be
sensors on a cell l, where nl is the number of sensors on that
cell. For half-closed cells, let V0 be the critical endpoint, and
for closed cells, let V0 and V1 be the left and right endpoints,
respectively. Then the EVEN DISTANCES are:



0 (1)
dist(si, sj) mod R

2
, for 1<i<nl, i+ 1<j<nl (2)

dist(si, V0) mod R, for 1<i< nl (3)
dist(si, V1) mod R, for 1<i<nl in a closed cell (4)

R (5)

The key to the correctness of our algorithm is the following:
Theorem 4.1: (Sufficiency) For MINMAX-kRNP-COMB,

the optimal range r is an even distance.
Before proving the above theorem, we remark that the

reasons for the several parts of Definition 4.1 will become clear
as we proceed below. Here we clarify why zero is included as
an even distance, since at first glance that might seem wrong.
The reason is that in certain extreme cases, zero would be the
relevant value for r. For example, consider the situation when
n sensors are evenly distributed along a straight line starting
from the base station and the distance between consecutive
nodes (sensors or the base station) is R. And suppose we
have n relays. Then the optimal solution places the n relays
directly on top of those n sensors. Clearly the relay network
is connected and each sensor is covered using a transmission
range r = 0! With this in hand, we now start to prove
Theorem 4.1.

Proof: We prove the theorem by contradiction. Assume
that for a given problem instance, the optimal r > 0 is not an
even distance. Among all solutions with that r, consider one
having the fewest number of sensors whose shortest distance
to a relay is r. In that solution, consider a sensor s1 whose
shortest distance to a relay is r, and let E1 be the nearest relay
that covers s1, i.e. the distance from s1 to E1 is r. There are
two cases to consider.

Case 1: s1 is in a closed cell.
Without loss of generality, let E1 be to the left of s1. Then,

let E2 be the leftmost relay in a maximal sequence of relays
that begins with E1 and extends to the left such that the
distance between consecutive relays is R. Notice that such
a sequence could consist of only E1, and in that case we let
E2 = E1. Also, E2 cannot be the left endpoint V0 of the cell,
since r = dist(s1, V0) mod R and that is an even distance of
type (3)2. Further, since E2 is not the left endpoint of the cell,
there is either a relay or the base station, say E3, located to
the left of E2 by a distance of less than R.

Now let s2 be the leftmost sensor that is covered by E2. If
s2 is to the right of E2 or on the same point as E2, since E3 is
less than R away from E2, E2 can be shifted by a sufficiently
small ε to its right. If s2 is to the left of E2, since r is not an
even distance (i.e. the distance from E2 to s2 is less then r),
then E2 can be shifted by ε to its right. If there is no sensor
covered by E2, then E2 can also be shifted since the distance
from E2 to E3 is less than R. In each case, we then shift the
entire sequence of relays from E1 to E2, inclusive, by ε to
the right. The only possibility that we could not shift some

2Note that type (4) is analogously required for the situation when E1 is to
the right of s1.

relay in the sequence is if there is a sensor covered by that
relay that is located distance r to the left of that relay. But
then by the specification of even distance type (2) it follows
that r is an even distance. Note that after this shift, the sensors
and relays to the left of a relay in the sequence are ε further
away from that relay, and the ones to the right are closer. But,
with small enough ε, each relay in the sequence still covers
the same set of sensors and connects to the same relay(s) as
it did before the shift. This is a contradiction, since this is
an optimal solution but with one fewer sensor whose shortest
distance to a relay is r.
Case 2: s1 is in a half-closed cell.

We first consider the subcase where E1 lies below s1. Let
E2 be the bottom relay in a maximal sequence of relays that
begins with E1 and extends downwards such that the distance
between consecutive relays is R. As in the prior case, such a
sequence cannot end at the bottom endpoint. And, as in the
prior case, the entire sequence of relays can be shifted by ε
upwards (towards s1) to get a contradiction.

Then, consider the subcase where E1 lies above s1. Let E2

be the top relay in a maximal sequence of relays that begins
with E1 and extends upwards such that the distance between
consecutive relays is R. If there is at least one relay above E2,
then the distance from that relay to E2 is less than R and the
same analysis as used earlier shows that we can shift the entire
sequence by ε downwards (towards s1) to get a contradiction.
On the other hand, if there is no relay beyond E2, let s2 be the
end sensor of that cell and note that it must be covered by E2.
If s2 is below, or coinciding with E2, then the entire sequence
of relays can be shifted downwards by ε. If s2 is above E2,
the distance between s2 and E2 is less than r since r is not an
even distance. Again, similarly to the earlier cases, it follows
that the entire sequence of relays can be shifted downwards by
ε. In either situation, with E1 above s1, we can shift the entire
sequence by ε towards s1. This yields an optimal solution but
with one less sensor whose shortest distance to a relay is r, a
contradiction.

With the notion of even distances in hand, the details of our
algorithm are shown in Algorithm 1. The correctness of the
algorithm follows from Theorem 4.1. As far as running time
is concerned, note that in Algorithm 1, Lines 6–19 take time
at most O(n log n) to sort n sensors, and at most O(n2) to
compute the set of even distances. Thus, in total, Step I takes
time O(n2). After Step I, there are at most O(n2) values in set
S. Line 22 then takes time O(n2 log n) to sort those values.
Line 32 takes time O((n+k) log n) to search over set S since
there are at most O(log n) iterations and each iteration takes
time O(n+ k) to test. Therefore, we have:

Lemma 4.1: (Running time) Algorithm 1 runs in
time O(n2 log n).

V. MINMAX-kRNP IN THE PLANE
In this section, we consider the 2D variant of the problem,

in which nodes are located on a Euclidean plane. We present
an algorithm that is approximate in terms of both r and the
number of relays k used in the solution, which, in the litera-
ture, is referred to as a bicriteria approximation algorithm.



Algorithm 1 – ALGORITHM FOR MINMAX-kRNP-COMB

1: if OPTIMALMINR(R) > k then
2: return that no solution is possible
3: S = {0, R};
4:
5: /* Step I: Compute the set S of even distances. */
6: for cell i do
7: Let si1, si2, . . . , sini be the sensors in cell i, where ni is the

number of sensors in cell i;
8: for k = 1 to ni − 1 do
9: for j = k + 1 to ni do

10: S = S ∪ {(dist(sik, sij) mod R)/2};
11: if cell i is a half-closed cell then
12: Let Vi0 be the critical endpoint;
13: for k = 1 to ni do
14: S = S ∪ {dist(sik, Vi0) mod R};
15: else . cell i is a closed cell
16: Let Vi0 and Vi1 be the critical endpoints;
17: for k = 1 to ni do
18: S = S ∪ {dist(sik, Vi0) mod R};
19: S = S ∪ {dist(sik, Vi1) mod R};
20:
21: /* Step II: Search over set S to find the MinMax r */
22: Sort the values in set S;
23: // Binary search for the least rmin ∈ S such that the returned

cardinality of OPTIMALMINR is ≤ k
24: low = 0;
25: high = ns − 1; . ns is the number of values in S
26: while low < high do
27: mid = b(low + high)/2c;
28: if OPTIMALMINR(rmid) ≤ k then . rmid is the value in S

at position mid
29: high = mid;
30: else
31: low = mid+ 1;
32: rmin = rhigh; . recall that rhigh produces a valid solution

with k relays
33: return rmin and the relay placement produced by

OPTIMALMINR(rmin) ;

Recall that the goal of the MINMAX-kRNP-2D problem
is to place k relays in the plane to satisfy the following
conditions: (i) the relay network is connected, and (ii) each
sensor is covered by at least one relay. We show that one can
derive an approximation algorithm for the MINMAX-kRNP-
2D problem from an appropriate approximation algorithm for
the MIN-RNP-2D problem under the following assumption:

Assumption 5.1: Suppose r∗ denotes the minimum sensor
range for a given instance of the MINMAX-kRNP-2D prob-
lem. There are efficiently computable values rlb and rub such
that 0 < rlb ≤ r∗ ≤ rub.

Recall that we use R as the upper bound of the sensor
transmission range. Let’s then consider the lower bound. Note
that in the two-tiered model, sensors may only communicate
with relays. Suppose the number of relays k is less than the
number of sensors n (a reasonable assumption in practice).
It follows that some relay must cover two or more sensors.
Thus, the minimum sensor range must be at least dmin/2,
where dmin is the smallest distance between a pair of sensors.
In other words, a possible value for rlb is dmin/2.

Suppose A is an approximation algorithm with a perfor-
mance ratio guarantee of ρ for MIN-RNP-2D. An approx-
imation algorithm for MINMAX-kRNP-2D that uses A is
shown in Algorithm 2. The following lemma establishes the
performance guarantee provided by Algorithm 2.

Algorithm 2 – APPROX. ALGORITHM FOR MINMAX-kRNP-2D
Input: An instance of the MINMAX-kRNP-2D problem and a fixed

value ε > 0. (It is assumed that an approximation algorithm A(r)
with a performance guarantee of ρ > 1 for the MIN-RNP-2D
problem is available.)

Output: The MinMax sensor range r and a placement of relays.
1: /* Step I */
2: Let t = dlog1+ε (rub/rlb)e;
3:
4: /* Step II: Binary search for the smallest integer i ∈ [0, t] such

that the number of relays returned by A(ri) is ≤ ρk. */
5: low = 0; high = t;
6: while low < high do
7: i = b(low + high)/2c;
8: ri = (1 + ε)i rlb;
9: if Number of relays returned by Algorithm A(ri) ≤ ρk then

10: high = mid;
11: else
12: low = mid+ 1;
13: rmin = rhigh;
14: return rmin and the relay placement produced by A for

r = rmin.

Lemma 5.1: Let ε > 0 be a fixed value. For the given
instance of the MINMAX-kRNP-2D problem, suppose we
have values rlb and rub that satisfy Assumption 5.1. Let the
solution produced by Algorithm 2 use k′ relays and have a
sensor range of r′. Then, the following conditions hold:

(i) r′ ≤ (1 + ε)r∗.
(ii) k′ ≤ ρk, where ρ is the performance guarantee provided

by Algorithm A for the MIN-RNP-2D problem.
Proof: We first argue that Algorithm 2 will always return

a solution. To see this, note that r∗ ≤ rub ≤ (1 + ε)t rlb
by Assumption 5.1 and by the choice of t in the algorithm.
Therefore, when the sensor range is (1 + ε)t rlb, there is a
solution to the MIN-RNP-2D instance with at most k relays;
i.e., there is at least one integer i in the range [0, t] for which
Step II of the algorithm will be successfully completed.

To prove Part (i), notice that the sensor range r′ returned
by Algorithm 2 is given by r′ = (1 + ε)i rlb for some integer
i ≥ 0. If i = 0, then r′ = rlb ≤ r∗, and Part (i) holds. So,
assume that i ≥ 1. We have the following claim:

Claim 5.1: r∗ > (1 + ε)i−1 rlb.
Proof of Claim 5.1: Assume for the sake of contradiction

that r∗ ≤ (1 + ε)i−1 rlb. When Algorithm 2 considered the
sensor range (1 + ε)i−1 rlb, the number ki−1 of relays used in
the solution returned by A must satisfy the condition:

ki−1 > ρk (6)

since i is the smallest integer for which Algorithm 2 was
successful in Step II. However, since r∗ ≤ (1+ε)i−1 rlb, when
the sensor range is (1+ε)i−1 rlb, there is a solution to the MIN-
RNP-2D problem with at most k relays. Since A provides



a performance guarantee of ρ, the number of relays used in
the solution returned by A is at most ρk. This contradicts
Inequality (6) and establishes Claim 5.1.

Continuing the proof for Part (i), we note that r′ = (1 +
ε)i rlb and that r∗ > (1 + ε)i−1 rlb (Claim 5.1). These two
inequalities together imply that r′ < (1 + ε)r∗.

To prove Part (ii), we note that when the algorithm termi-
nates, the number of relays used is at most ρk.

The following theorem is a simple consequence of the above
lemma and Theorem 3.1 in Subsection III-C2:

Theorem 5.1: Let ε > 0 be a fixed value. For any instance
of the MINMAX-kRNP-2D problem that satisfies Assump-
tion 5.1, there is an approximation algorithm that uses at most
(1+ε)k relays and chooses a sensor range of at most (1+ε)r∗,
where r∗ is the minimum sensor range.

Proof: In Subsection III-C2, we showed that for any
fixed ε > 0, there is an approximation algorithm A with a
performance guarantee of 1+ε for the MIN-RNP-2D problem
where sensors have a uniform transmission range r ≤ R.
Suppose this generated approximation algorithm is used in
Algorithm 2. It can be seen from Lemma 5.1 that the resulting
solution satisfies the conditions mentioned in the theorem.

The running time of Algorithm 2 depends on that of
Algorithm A. It is reasonable to assume that the running time
of the former algorithm is dominated by the calls to Algorithm
A. Note that the range [0, t] has t + 1 = O(log (rub/rlb))
integers. We find the smallest integer i in Step II by doing
a binary search over that range. Thus, the number of calls to
Algorithm A is O(log t) = O(log log (rub/rlb)).

VI. SIMULATION RESULTS

We now study the impact of relay capacity in a comb-grid
network via simulation. Recall that the number of relays is
typically limited due to power consumption and budgetary
constraints. This bound affects relay placement, sensor trans-
mission power, and ultimately, network yield. In this regard,
we study the impact of relay capacity on the MinMax sensor
range and total packet reception rate (PRR).

For these studies, we consider a region of size 1000×600 m,
with one “main street” (i.e. the comb-handle), lying horizon-
tally in the middle of the region, and several vertical “side
streets” (i.e. the comb-teeth). To mimic an urban environment,
the intersections between the main street and the side streets
are evenly distributed, which divides the field into 20 blocks
of size 100× 300 m. By comparison, the standard block size
in Manhattan (New York) is approximately 80× 270 m.

We have considered an extensive set of scenarios using
this topology, varying both the number of sensors and the
number of available relays. Due to space constraints, we focus
only on the results for scenarios involving 500 sensors. Given
the relatively large deployment area, this qualifies as a semi-
dense WSN deployment. The results from scenarios with more
sensors exhibit similar trends.
A. Number of relays vs. MinMax sensor range

We first examine the effect of the number of relays on
the MinMax sensor range. Initially, we randomly deploy 500
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Fig. 2. Max. # of relays vs. MinMax sensor range

sensors and one base station on the comb-grid and set the
relay transmission range to 100 meters. For each resulting
deployment, we vary the number of relays, starting with the
smallest number of relays (k) such that Algorithm 1 produces
a solution. Finally, we increase the number of relays until the
computed MinMax sensor range is 0 (i.e., there are sufficient
relays to colocate one with every sensor). All results presented
reflect averages computed over 100 experimental trials.

The results over our trials are summarized in Figure 2. The
number of relays is represented on the horizontal axis, and the
resulting MinMax range (measured in meters) is represented
on the vertical axis. The MinMax sensor range decreases
sharply as relays are added above the minimum required
to establish connectivity — but the returns are diminishing.
For a deployment consisting of 500 nodes, approximately 45
relays are required to connect the entire network. If the total
number of relays is increased to 120, the MinMax sensor range
drops dramatically from 99m to 20m. Beyond 120 relays, the
MinMax sensor range continues to decline, but only gradually.
These results reinforce our expectation that introducing a more
expansive relay network assists in ensuring connectivity and
reducing sensor power consumption. At the same time, the
results serve as a guide for balancing cost (of relays) and
network lifetime (via energy consumption). In this scenario,
approximately 90 ∼ 120 relays appears to be optimal.
B. Number of relays vs. Packet reception rate

To study the impact of relay capacity on overall packet
reception rate (at the base station), we use the popular
QualNet [12] simulation platform. The QualNet simulation
parameters are detailed in Table I.

Recall that sensor nodes may only communicate with relays.
To implement this constraint in QualNet, the sensors in the
bottom tier are configured as reduced-function devices (RFDs),
and the second-tier relays are configured as full-function
devices (FFDs). RFDs can only communicate with FFDs, and
the communication links between FFDs (and the base station)
are configured as WiFi connections.

We utilized the Friis transmission equation to calculate the
transmission distance in free-space as a function of transmis-
sion power at the receiving node [13]:

d =
10(Pt+Gt+Gr−Pr)/20.0

4π
c · f

,

where Pr and Pt are the transmission powers (in dBm) at the
receiver and sender, Gr and Gt are the antenna gains (in dB)



TABLE I
QUALNET CONFIGURATION

General
Application data CBR (constant bit rate)
Topology two-tiered network
Packet size 70 Bytes
Relay transmission range 100m
Routing protocol AODV
Bottom layer
Physical and MAC layer 802.15.4
Device type RFD
Channel frequency 2.4 GHz
Tx power varied
Rx sensitivity -100dBm
Propagation limit -100dBm
Second tier
Physical and MAC layer 802.11a (ad-hoc)
Device type FFD
Channel frequency 24.1 GHz
Tx power 23.39dBm
Rx sensitivity -85 dBm
Propagation limit -100dBm
Max propagation distance 400m
Data rate 6 Mbps
Path-loss model free-space
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of the receiver and the sender, f is the signal frequency, and
c is the speed of light in a vacuum, which is 2.998×108m/s.
Note that Friis’s law only applies to the far field of the antenna
(i.e., when the propagation distance is much larger than the
square of the antenna size divided by the wavelength).

We consider a random deployment of 500 sensors and one
base station on the comb-grid with a relay transmission range
of 100 meters. For each resulting deployment, we again vary
the number of relays within the solution space. Figures 3
and 4 summarize the results of our experimental trials. In both
graphs, the horizontal axis represents the number of relays.
In Figure 3, the vertical axis represents the effective packet
reception rate at the base station. In Figure 4, the vertical axis
represents the average packet delay (in seconds) from point of
observation to delivery at the base station.

The key observation to be gleaned from Figure 3 is that
beyond the minimum number of relays required to achieve
connectivity, the impact on PRR is modest. We speculate that
as we increase the number of relays, we are effectively trading
congestion in the first tier of the network for congestion in
the second tier. The results from Subsection VI-A indicate
that introducing additional relays enables reduced transmission
power in the collection network, with concomitant decreases
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in congestion. At the same time, the introduction of new relays
increases congestion in the relay network. While congestion
reduces exponentially in the collection network, the transmis-
sion power of the relays is significantly higher. We expect the
two competing forces balance one another out.

The results summarized in Figure 4 are somewhat similar.
While introducing additional relays appears to reduce end-to-
end observation delay, the reduction is modest. As the number
of relays is increased from 60 to 115, the average delay falls
by approximately 260 milliseconds.

VII. CONCLUSION
We conclude with two directions for future research. One

is to consider other graph theoretic requirements for the relay
network (e.g. higher connectivity). A second direction is to
identify other practical sensor deployment structures and study
the relay node placement problems for those structures.
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