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Abstract. We consider topology control problems where the goal is to
assign transmission powers to the nodes of an ad hoc network so as to
induce graphs satisfying specific properties. The properties considered
are connectivity, bounded diameter and minimum node degree. The op-
timization objective is to minimize the total power assigned to nodes. As
these problems are NP-hard in general, our focus is on developing approx-
imation algorithms with provable performance guarantees. We present
results under both symmetric and asymmetric power threshold models.

1 Introduction

It is well known that battery power is a precious resource in ad hoc networks.
Therefore, techniques for minimizing the energy consumed in ad hoc networks
have assumed importance. Topology control problems arise in that context. The
goal of such problems is to control the topology of networks through the as-
signment of suitable transmission powers to nodes. Formally, such problems are
specified by requiring the induced network to satisfy some graph theoretic prop-
erties while minimizing some function of the transmission powers assigned to
transceivers (nodes). Previous work in this area has considered properties such
as node and edge connectivity and optimization objectives such as minimizing
maximum power and minimizing total power. A summary of previous results in
this area is presented in Section 3.2.

In this paper, we study topology control problems for three graph properties,
namely connectedness, bounded diameter and minimum node degree (Precise
formulations of these problems are provided in Section 2.1.). Connectedness is
a basic requirement for any network. Ad hoc networks with small diameters are



desirable in practice since the diameter of a network determines the maximum
end-to-end delay for message delivery. Networks in which the degree of each node
is at or above a certain threshold value are useful from a reliability perspective.
In such networks, the failure of a small number of nodes or links is unlikely
to disconnect the network. For all of these properties, the problem of minimiz-
ing the maximum power can be solved efficiently; this follows directly from a
general result presented in [10]. So, we consider topology control problems for
these properties under the objective of minimizing total power. These problems
are NP-complete in general. The focus of this paper is therefore on developing
approximation algorithms with proven performance guarantees.

Previous work on topology control has assumed the symmetric power thresh-
old model. In that model, the minimum transmission power (also called the
power threshold) needed for a node x to reach a node y is assumed to be
equal to the minimum transmission power needed for y to reach x. In practice,
power threshold values for two nodes x and y may be asymmetric because of
two reasons. First, the ambient noise levels of the regions containing the two
nodes may be different. Secondly, one of the nodes may be equipped with a di-
rectional antenna [12] while the other node may have only an omnidirectional
antenna. Motivated by these considerations, we study topology control problems
under the asymmetric power threshold model. Our results show (as one would
expect) that problems do become “harder” under the asymmetric power thresh-
old model. In particular, we show that under the asymmetric power threshold
model, the problem of obtaining a connected graph while minimizing the total
power cannot be approximated to within a factor of Ω(log n), where n is the
number of nodes, unless P = NP. We also present an approximation algorithm
with a performance guarantee of O(log n) for the problem. Under the symmetric
power threshold model, it is known that this problem is NP-hard but can be
approximated to within a constant factor [4, 8].

2 Problems Considered

2.1 Model and Problem Formulation

We are given a set V of transceivers (nodes). For each ordered pair (u, v)
of transceivers, we are given a transmission power threshold, denoted by
p(u, v), with the following significance: A signal transmitted by the transceiver
u can be received by v only when the transmission power of u is at least p(u, v).
It is assumed that p(u, v) > 0 for all nodes u and v.

We study topology control problems under both symmetric and asymmetric
power threshold models. Under the symmetric power threshold model, for each
pair of transceivers u and v, p(u, v) = p(v, u). The asymmetric threshold model
is more general. Under this model, there may be some pairs of transceivers u
and v such that p(u, v) 6= p(v, u).

A power assignment is a function f : V → R
+ that specifies a nonnegative

power value f(v) to each transceiver v ∈ V . Two models for graphs induced



by power assignments have been considered in the literature. In this paper we
utilize the undirected graph model, in which the induced graph Gf (V, Ef ) has
the undirected edge {u, v} if and only if f(u) ≥ p(u, v) and f(v) ≥ p(v, u).
For a power assignment f , the maximum power assigned to any node is given by
max{f(v) : v ∈ V }; the total power assigned to all nodes is given by

∑
v∈V f(v).

Following [10], we denote each topology control problem by a triple of the
form 〈M, P, O〉. In such a specification, M ∈ {Dir, Undir} represents the
graph model, P represents the desired graph property and O represents the min-
imization objective. In general, O ∈ {MaxP, TotalP} (abbreviations of Max
Power and Total Power respectively). However, for all the problems considered
in this paper, O = TotalP.

Using this notation, we now define the main problems studied in this paper.

1. In the 〈Undir, Diameter, TotalP〉 problem, we are given a set V
of transceivers, the power threshold values p(u, v) for each pair (u, v) of
transceivers and a diameter6 bound D. The goal is to compute a power as-
signment f such that the undirected graph Gf induced by f has diameter
at most D, and the total power assigned is a minimum among all power
assignments that induce graphs satisfying the diameter constraint.

2. In the 〈Undir, Deg LB, TotalP〉 problem, we are given a set V of
transceivers, the power threshold values p(u, v) for each pair (u, v) ∈ V and
an integer ∆, where 2 ≤ ∆ ≤ |V | − 1. The goal is to compute a power
assignment f such that the undirected graph Gf induced by f is connected,
the degree of each node in Gf is at least ∆, and the total power assigned
is a minimum among all power assignments that induce connected graphs
satisfying the degree constraint.

3. In the 〈Undir, Connected, TotalP〉 problem, we are given a set V
of transceivers and the power threshold values p(u, v) for each pair (u, v)
of transceivers. The goal is to compute a power assignment f such that the
undirected graph Gf induced by f is connected and the total power assigned
is a minimum among all power assignments that induce connected graphs.

We study the 〈Undir, Diameter, TotalP〉 and 〈Undir, Deg LB, TotalP〉
problems under the symmetric power threshold model. The 〈Undir, Con-

nected, TotalP〉 problem has been studied previously under the symmetric
power threshold model [4, 8]. We study it under the asymmetric threshold model
(Section 5). Due to space limitations, we discuss only the results for 〈Undir, Di-

ameter, TotalP〉 and 〈Undir, Connected, TotalP〉 problems in the
remainder of this paper.

The following graph theoretic definition is used throughout this paper.

Definition 1. Let G(V, E) be an undirected graph. An edge subgraph G′(V, E′)
of G uses the same set V of nodes and a subset E′ of the edge set E.

6 The diameter of G, denoted by Dia(G), is the maximum over the lengths of shortest
paths between all pairs of nodes in G.



2.2 Bicriteria Approximation

Our results for the diameter problem use the bicriteria approximation frame-
work developed in [11] for dealing with computationally intractable optimization
problems involving two objectives. We recall the relevant definitions and nota-
tion.

Definition 2. Suppose a problem Π with two minimization objectives A and B
is posed in the following manner: Given a budget constraint on objective A, find a
solution which minimizes the value of objective B among all solutions satisfying
the budget constraint. An (α, β)-approximation algorithm for problem Π is
a polynomial time algorithm that provides for every instance of Π a solution
satisfying the following two conditions.

1. The solution violates the budget constraint on objective A by a factor of at
most α.

2. The value of objective B in the solution is within a factor of at most β of
the minimum possible value satisfying the budget constraint.

We note that 〈Undir, Diameter, TotalP〉 is an example of an optimization
problem with two objectives. In this problem, diameter of the induced graph
and total power serve as the budgeted objective (with budget D) and the mini-
mization objective respectively. Thus, an (α, β)-approximation algorithm for the
problem provides a solution where the induced graph has diameter at most αD,
and the total power assigned is within a factor β of the minimum total power
needed to induce a graph with diameter at most D.

To obtain bicriteria approximation algorithms for the 〈Undir, Diame-

ter, TotalP〉 problem, we rely on known approximation results for another
problem, called Minimum Cost Tree with a Diameter Constraint (Mctdc),
also involving two minimization objectives. A formal definition of this problem
is as follows.

Minimum Cost Tree with a Diameter Constraint (Mctdc)
Instance: A connected undirected graph G(V, E), a nonnegative weight w(e) for
each edge e ∈ E, an integer δ ≤ n− 1.
Requirement: Find an edge subgraph T (V, ET ) of G such that T (V, ET ) is a tree,
Dia(T ) ≤ δ and the total weight of the edges in ET is the smallest among all
the trees satisfying the diameter constraint.

Mctdc is known to be NP-hard [11]. Bicriteria approximations for this prob-
lem have been presented in [2, 9, 11]. These results are used in Section 4.

3 Summary of Results and Related Work

3.1 Summary of Results

The following are the main results presented in this paper. For all the problems,
n denotes the number of transceivers in the problem instance.



1. We show that if the diameter constraint cannot be violated, the 〈Undir, Di-

ameter, TotalP〉 problem cannot be approximated to within an Ω(log n)
factor unless P = NP. This result holds even when the diameter bound
D = 2. (Note that the problem is trivial when D = 1.)

2. We show that using any (α, β)-approximation algorithm for the Mctdc

problem, one can devise a (2α, 2 (1− 1/n)β)-approximation algorithm for
〈Undir, Diameter, TotalP〉 problem. This result is based on a general
framework presented in [10] for approximating the total power objective.
Utilizing this general framework and known bicriteria approximations for
the Mctdc problem, we obtain several bicriteria approximation algorithms
for the 〈Undir, Diameter, TotalP〉 problem. (See Section 4.2.)

3. For every fixed integer ∆ ≥ 2, we show that the 〈Undir, Deg LB, TotalP〉
problem is NP-complete. Also, we present an approximation algorithm with
a performance guarantee of 2(∆+1)(1−1/n) for the problem. This algorithm
produces a power assignment that induces a connected graph in which each
node has degree at least ∆. The performance guarantee is with respect to the
optimal total power value. (Details regarding these results will be included
in a complete version of this paper.)

4. While the above results are under the symmetric power threshold model, we
consider the 〈Undir, Connected, TotalP〉 problem under the asym-
metric power threshold model. We show that the problem cannot be ap-
proximated to within an Ω(log n) factor unless P = NP. We also present
an O(log n) approximation algorithm for the problem.

3.2 Related Work

Reference [10] provides a general approach that leads to an approximation frame-
work for minimizing total power. Using that framework, two new approximation
algorithms for 〈Undir, 2-Node Connected, TotalP〉 and 〈Undir, 2-

Edge Connected, TotalP〉 with an asymptotic approximation ratio of 8 are
presented in [10]. Both of the approximation ratios are improved to 4 in [6]. Ref-
erence [3] shows that the 〈Dir, Strongly Connected, TotalP〉 problem is
NP-complete and presents a 2-approximation algorithm for the problem. Cali-
nescu et al. [4] improve the approximation ratio to (1+ln 2). The approximation
ratio is further improved to 5/3 in a journal submission based on [4].

4 Results for Diameter Problems

4.1 Lower Bound on Approximation

The following theorem can be proven using an approximation preserving reduc-
tion from the Minimum Set Cover (Msc) problem. The proof is omitted due
to space constraint.



1. From the given problem instance, construct the undirected complete edge weighted
graph Gc(V, Ec), where the weight of each edge {u, v} in Ec is equal to the power
threshold value p(u, v).

2. Use any approximation algorithm A for the Mctdc problem on graph Gc(V, Ec)
with diameter bound 2D, and obtain a spanning tree T (V,ET ) of Gc.

3. For each node (transceiver) u, assign a power value f(u) equal to the weight of the
largest edge incident on u in T .

Fig. 1. Outline of Heuristic Gen-Diameter-Total-Power

Theorem 1. Let n denote the number of nodes in an instance of the 〈Undir, Di-

ameter, TotalP〉 problem. There is a constant δ1, 0 < δ1 < 1, such that there
is no δ1 ln n approximation for the problem, unless P = NP. Moreover, this re-
sult holds even for instances in which the diameter bound D = 2. ut

4.2 Bicriteria Approximations for Diameter and Power

Description of the General Algorithm Recall that the specification for the
〈Undir, Diameter, TotalP〉 problem includes a bound D on the diameter
of the induced graph and that the goal is to minimize total power. Let n denote
the total number of transceivers specified in the 〈Undir, Diameter, TotalP〉
problem instance. Our general approximation algorithm for 〈Undir, Diame-

ter, TotalP〉, shown in Figure 1, is derived from the general outline presented
in [10] for developing approximation algorithms under the total power objective.

In Step 2, we may use any approximation algorithm A for the Mctdc prob-
lem. As long as A runs in polynomial time, our heuristic also runs in polynomial
time. The performance guarantee provided by the heuristic is a function of the
performance guarantee provided by Algorithm A.

Performance Guarantee of the General Heuristic The solution produced
by Heuristic Gen-Diameter-Total-Power is approximate in terms of both
diameter and total power. So, we cannot directly apply the bound from [10] on
the performance of the general approach to derive the performance guarantee
provided by the heuristic. Our analysis uses a simple property of spanning trees
generated by breadth-first-search (BFS).

Throughout Section 4.2, we use the following notation. Let I denote the given
instance of the 〈Undir, Diameter, TotalP〉 problem with n transceivers
and diameter bound D ≥ 1. Let f∗ denote an optimal power assignment such
that the graph Gf∗ induced by f∗ has diameter at most D, and let OPT (I)
=

∑
v∈V f∗(v). Let f denote the power assignment produced by the heuristic

and let Gf denote the graph induced by f . Let DTP (I) =
∑

v∈V f(v), the total
power assigned by the heuristic for the instance I. The goal of this subsection is
to prove the following result.



Theorem 2. Suppose Algorithm A used in Step 2 of Heuristic Gen-Diameter-

Total-Power is an (α, β)-approximation algorithm for the Mctdc problem.
For any instance I of the 〈Undir, Diameter, TotalP〉 problem, Heuristic
Gen-Diameter-Total-Power produces a power assignment f satisfying the
following two properties.

1. Dia(Gf ) ≤ 2 αD.
2. DTP (I) ≤ 2 β (1− 1/n)OPT (I).

Our proof of Theorem 2 uses a few lemmas proved below. We begin with a
simple lemma about spanning trees generated by carrying out BFS on a con-
nected graph. The proof of this lemma is omitted.

Lemma 1. Let G be a connected graph with diameter δ. Let T be any spanning
tree for G generated by BFS. Then Dia(T ) ≤ 2 δ. ut

The next lemma indicates why in Step 2 of Heuristic Gen-Diameter-Total-

Power, we use the diameter bound of 2D.

Lemma 2. Consider the complete graph Gc(V, Ec) constructed in Step 1 of
Heuristic Gen-Diameter-Total-Power. There is a spanning tree T1(V, ET1 )
of Gc satisfying the following two properties.

(a) Dia(T1) ≤ 2D.
(b) Let W (ET1 ) =

∑

{x,y}∈ET1

p(x, y) denote the total edge weight of T1. Then,

W (ET1) ≤ (1− 1/n)OPT (I).

Proof:
Part (a): Consider the graph Gf∗ induced by the optimal power assignment
f∗. Note that Dia(Gf∗) ≤ D. Let v be node such that f∗(v) has the largest value
among all the nodes in V . Let T1(V, ET1) be a spanning tree of Gf∗ generated
by carrying out a BFS on Gf∗ with v as the root. Then, from Lemma 1, we have
Dia(T1) ≤ 2D.
Part (b): Consider another assignment w of weights to the edges of T1 as
indicated below. Consider each edge {x, y} in T1, where y is the parent of x. Let
w(x, y) = f∗(x). Thus, the power value assigned by the optimal solution to each
node except the root becomes the weight of exactly one edge of T1. The power
value f∗(v) of the root is not assigned to any edge. Therefore,

∑

{x,y}∈ET1

w(x, y) = OPT (I)− f∗(v).

Since v has the maximum power value under f∗ among all the nodes, we have
f∗(v) ≥ OPT (I)/n. Therefore,

∑

{x,y}∈ET1

w(x, y) ≤ (1− 1/n)OPT (I).

The following claim relates the weight w(x, y) to the power threshold value
p(x, y). We omit the proof of this claim.



Claim. For each edge {x, y} ∈ ET1 , w(x, y) ≥ p(x, y). ut
As a simple consequence of the above claim, we have

W (ET1) ≤
∑

{x,y}∈ET1

w(x, y) ≤ (1 − 1/n)OPT (I),

and this completes the proof of Part (b) of the lemma. ut
The next lemma, which follows from Lemma 2, uses the performance guaran-

tee provided by the approximation algorithm A used in Step 2 of the heuristic.

Lemma 3. Let T (V, ET ) denote the tree produced by A at the end of Step 2
of Heuristic Gen-Diameter-Total-Power. Let W (ET ) =

∑
{x,y}∈ET

p(x, y)
denote the total weight of the edges in T . Let (α, β) denote the performance
guarantee provided by A for the Mctdc problem. Then,

(a) Dia(T ) ≤ 2 α D.
(b) W (ET ) ≤ β (1− 1/n)OPT (I). ut

We are now ready to prove Theorem 2.
Proof of Theorem 2: Consider the spanning tree T (V, ET ) produced in Step 2
of the heuristic. We will first show that every edge {x, y} ∈ ET is also in
Gf (V, Ef ), the graph induced by the power assignment constructed in Step 3
of the heuristic. To see this, notice that f(x) is the largest weight of an edge
incident on x in T . Thus, f(x) ≥ p(x, y). Similarly, f(y) ≥ p(x, y). Thus, every
edge in ET is also in Ef . Since Dia(T ) ≤ 2 α D, and addition of edges cannot
increase the diameter, it follows that Dia(Gf ) ≤ 2 αD.

To bound DTP (I), we note from Lemma 3 that W (ET )≤ β (1−1/n)OPT (I).
In the power assignment constructed in Step 3, the weight of any edge can be
assigned to at most two nodes (namely, the end points of that edge). Thus,
the total power assigned to all the nodes is at most 2 W (ET ). In other words,
DTP (I) ≤ 2 β (1−1/n)OPT (I), and this completes the proof of Theorem 2. ut

Obtaining Approximation Algorithms from Theorem 2 We now briefly
indicate how several bicriteria approximation algorithms for the 〈Undir, Di-

ameter, TotalP〉 problem can be obtained using Gen-Diameter-Total-

Power in conjunction with known bicriteria approximation results for the Mctdc

problem.

1. For any fixed ε > 0, a (2 dlog2 ne, (1+ε) dlog2 ne)-approximation algorithm is
presented in [11] for the Mctdc problem. Using this algorithm and setting
ε < 1/n, we can obtain a (4 dlog2 ne, 2 dlog2 ne)-approximation algorithm for
the 〈Undir, Diameter, TotalP〉 problem.

2. For any fixed D ≥ 1, a (1, O(D log n))-approximation algorithm for the
Mctdc problem is presented in [2]. Thus, for any fixed D ≥ 1, we can
obtain a (2, O(D log n))-approximation algorithm for the 〈Undir, Diame-

ter, TotalP〉 problem.



3. For any D and any fixed ε > 0, a (1, O(nε log n))-approximation algorithm
for the Mctdc problem is presented in [9]. Thus, for this case, we can ob-
tain a (2, O(nε log n))-approximation algorithm for the 〈Undir, Diame-

ter, TotalP〉 problem.

The above results are for inducing a bounded diameter graph over all the nodes.
We can also obtain an approximation algorithm for the Steiner version of the
〈Undir, Diameter, TotalP〉 problem where only a specified subset of the
nodes (called the terminals) need to be connected together into a graph of
bounded diameter. Letting η denote the number of terminals, reference [11]
presents an (O(log η), O(log η))-approximation algorithm for the Steiner version
of the Mctdc problem. Using this approximation algorithm in Step 2 of Figure 1,
we obtain an (O(log η), O(log η))-approximation algorithm for the Steiner version
of the 〈Undir, Diameter, TotalP〉 problem.

5 Asymmetric Power Threshold Model Results

In this section, we consider the 〈Undir, Connected, TotalP〉 problem under
the asymmetric threshold model. We begin with a lower bound on the approx-
imability of the problem. This lower bound result can be proven in a manner
similar to that of Theorem 1.

Theorem 3. Let n denote the number of transceivers in an instance of the
〈Undir, Connected, TotalP〉 problem. There is a constant δ, 0 < δ < 1,
such that there is no δ ln n approximation for the problem, unless P = NP. ut

In the remainder of this section, we show this nonapproximability result is
tight to within a constant factor by presenting an approximation algorithm with
a performance guarantee of O(log n). These results should be contrasted with
the fact that under the symmetric power threshold model, there are constant
factor approximation algorithms for the problem [4, 8].

The main idea behind the approximation algorithm is to reduce the prob-
lem to the computation of a connected dominating set for a graph with node
weights. A simple observation allows us to restrict the class of solutions to
the 〈Undir, Connected, TotalP〉 problem. Consider a node vi and let
γ1

i ≤ γ2
i ≤ . . . ≤ γn

i denote the n power threshold values in nondecreasing order
from vi to the n nodes of the system. We may assume without loss of generality
that in any solution, the power value assigned to vi is one of γ1

i , γ2
i , . . ., γn

i . This
is because of the following:

(a) The power assigned to vi cannot be less than γ1
i , since in such a case, vi

cannot be adjacent to any other node in the induced graph.
(b) A power value which is greater than γj

i but less than γj+1
i for some j can

be replaced by γj
i without deleting any edges in the induced graph.

(c) Similarly, a power value greater than γn
i can be replaced by γn

i .



1. Let α = 6 ln n
∑n

i=1 γn
i .

2. From the given instance of 〈Undir, Connected, TotalP〉, construct a graph
G1(V1, E1) as follows.
(a) For each transceiver vi (1 ≤ i ≤ n) in the problem instance, create a set

gi = {u0
i , u

1
i , . . . , u

n
i } of n+1 nodes. Let the weight w(u0

i ) = α. For 1 ≤ j ≤ n,
let the weight w(uj

i ) = γj
i . The node set V1 is given by g1 ∪ g2 ∪ . . . ∪ gn.

(b) For each i, connect the nodes in gi together as an (n + 1)-clique. (Nodes u0
i ,

1 ≤ i ≤ n, are not involved in any edges other than these clique edges.)
(c) For any pair of nodes uj

i and ul
k, where 1 ≤ j, l ≤ n, if γj

i ≥ p(vi, vk) and
γl

k ≥ p(vk, vi), then add the edge {uj
i , u

l
k} to E1. The edge set E1 consists of

the clique edges added in Step 2(b) and the edges added in Step 2(c).
3. Use the algorithm of [7] using a small value (say, 0.1) for ε to find a connected

dominating set D1 of approximately minimal weight for G1.
4. If for some i, D1 contains both uj

i and uk
i , where j < k, then delete uj

i from D1.
Let D denote the resulting set after all such deletions have been carried out.

5. For each i, 1 ≤ i ≤ n, if D contains uj
i , then assign the power value γj

i to vi.

Fig. 2. Approximation Algorithm for 〈Undir, Connected, TotalP〉

A solution in which for every node vi, the power value assigned is one of γ1
i ,

γ2
i , . . ., γn

i will be referred to as a canonical solution. Thus, we consider only
canonical solutions in the remainder of this section.

Our approximation algorithm for the 〈Undir, Connected, TotalP〉 prob-
lem under the asymmetric threshold model is shown in Figure 2. The algo-
rithm constructs a graph G1(V1, E1) from the given instance of 〈Undir, Con-

nected, TotalP〉 and then invokes a known approximation algorithm for the
minimum weighted connected dominating set problem [7]. We will prove the cor-
rectness and the performance guarantee of the algorithm through a series of
lemmas.

For the remainder of this section, let I denote the given instance of the
〈Undir, Connected, TotalP〉 problem under the asymmetric threshold
model, f∗ denotes an optimal power assignment to the nodes for this instance
and OPT (I) denotes the total power assigned by the chosen optimal solution.
As before, Gf∗ denotes the graph induced by the optimal power assignment f∗.

For each transceiver vi, the maximum power that can be assigned in a canon-
ical solution is γn

i , 1 ≤ i ≤ n. Thus, we have the following observation.

Observation 1 OPT (I) ≤ ∑n
i=1 γn

i . ut
Our next two lemmas relate OPT (I), the weight of an optimal connected

dominating set for G1 and the weight of a connected dominating set produced
by the approximation algorithm. For space reasons, the proofs of the lemmas
are omitted.

Lemma 4. For the graph G1 constructed in Step 2 of the algorithm, the weight
of a minimum connected dominating set is at most OPT (I). ut



Lemma 5. Consider the dominating set D1 found in Step 3 of the algorithm
(Figure 2).

(a) Let W (D1) denote the total weight of the nodes in D1. Then, W (D1) <
6 ln n OPT (I).

(b) D1 does not contain any of the nodes u0
1, u0

2, . . ., u0
n.

(c) For every i, 1 ≤ i ≤ n, D1 contains at least one of the nodes from the set
gi − {u0

i }. ut

Lemma 6. The set of nodes D computed in Step 4 of the algorithm is a con-
nected dominating set of G1. Further, for each i, 1 ≤ i ≤ n, D contains exactly
one vertex from the set gi − {u0

i }.
Proof: From Part (c) of Lemma 5, the dominating set D1 contains at least one
node from each group gi, 1 ≤ i ≤ n. This property also holds for the set D since
Step 5 eliminates a node uj

i only when there is another node uk
i from the same

group gi. In other words, D is also a dominating set for G1.
Note also that for any two nodes uj

i and uk
i from the same group gi, with

j < k, the set of nodes to which uj
i is adjacent is a subset of the corresponding

set for uk
i . Thus, the set of nodes remains a connected dominating set even after

uj
i is deleted. In other words, D is a connected dominating set for G1. ut

It is easy to see that the approximation algorithm of Figure 2 runs in poly-
nomial time. We now establish its correctness and performance guarantee.

Theorem 4. The power assignment produced by the algorithm induces a con-
nected graph. Further, the algorithm provides a performance guarantee of O(log n).

Proof: From Lemma 6, the set D contains exactly one node from gi −{u0
i }, for

each group gi. Therefore, Step 5 of the algorithm assigns a power value to each
transceiver. Since D is a connected dominating set and there is a one-to-one
correspondence between D and the set of transceivers, the graph induced by the
power assignment is also connected.

The total power assigned to all the nodes is equal to W (D), the total weight of
all the nodes in D. By Part (a) of Lemma 5, W (D1) < 6 ln n OPT (I). Since D ⊆
D1 and the node weights are nonnegative, it follows that W (D) < 6 ln n OPT (I).
In other words, the approximation algorithm has a performance guarantee of
O(log n). ut

6 Open Problems

Our work raises several open questions. First, it would be of interest to investi-
gate whether there is a bicriteria approximation algorithm for the 〈Undir, Di-

ameter, TotalP〉 problem with a performance guarantee of (O(1), O(log n))
for any given diameter value. A second problem is to improve the approximation
ratio for the 〈Undir, Deg LB, TotalP〉 problem. Finally, it would also be
of interest to consider other topology control problems under the asymmetric
threshold model.
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