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Abstract—Topology control problems are concerned with the
assignment of power levels to the nodes of anad-hoc networkso
as to maintain a specified network topology while minimizingthe
energy consumption of the network nodes. Atwo-tierednetwork
model has been proposed recently for prolonging the lifetime
and improving the scalability in ad-hoc sensor networks. Such
networks however may suffer from the failure of relay nodes
causing the network to lose functionality. While considerable
attention has been given to the issue of fault-tolerance in
such networks, all of the prior work has been concerned with
maintaining a 2-connected network.

In this paper, we consider an alternative approach, namely
optimal relay node fault recovery, in which the network topology
is required to be just 1-connectedand when a relay node fails,
we replace that node with a new relay node that is placed in a
position such that the power level assigned to the new node is
optimal. In general this will not be the original node position or
power assignment.

We study three versions of optimal relay node fault recovery
that vary in the degree to which the original network nodes can be
reconfigured (i.e. have adjustments made to their power levels)
when adding the new relay node into the network. For each
version, we provide a polynomial time algorithm that provides
an optimal placement and power assignment for the new relay
node.

I. I NTRODUCTION

An ad-hoc networkis a collection of wireless nodes that
can dynamically form a network without necessarily using any
pre-existing infrastructure. Given the potential for deployment
in a wide range of environments, many practical applications
have been conceived for ad-hoc networks. In designing ad-
hoc networks many interesting and difficult problems arise
due to the shared nature of the wireless medium, the limited
transmission range of wireless devices, node mobility, energy
efficiency, and fault-tolerance.

With current technologies in ad-hoc networks, one-hop
transmissions over a long distance are very costly or impos-
sible since energy consumption for transmitting over distance
d is proportional todα, whereα is a constant in the range
of 2 to 4 depending on the media [2]. One approach used in
sensor networksis to use atwo-tiered model [5], [6] where
the sensor nodes are grouped into clusters and each cluster is
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covered by one or morerelay nodes. Relay nodes are typically
more powerful than sensor nodes in terms of energy, storage,
computing and communication capability. Further, relay nodes
can aggregate useful information and remove data redundancy
from the sensor nodes in its cluster. This allows the relay nodes
to generate outgoing packets with much smaller total size and
send them to a base station [7] along a path with zero or more
intermediate relay nodes. The power at which each relay node
transmits is determined bytopology control[12]. In topology
control, each relay node is assigned a transmission power soas
to achieve a desired network topology. The simplest topology
is that the relays form aconnectednetwork. Other example
topologies arek-connectedanddiameter d.

A difficulty in maintaining a two-tiered sensor network is
that relay nodes may fail at unpredictable times due to energy
depletion, harsh environmental factors, or malicious attack
from enemies. When this happens, the network may lose func-
tionality. In order to support the survivability for the network,
the traditional topology control approach to producing a fault
tolerant network has been to assign transmission powers to the
relay nodes so that the network is at least2-connected. This
means that the failure of a single relay node will never result
in a partitioned network.

Unfortunately, while assigning nodes transmission powers
so as to achieve 2-connectivity is intuitively appealing, there
is an obvious tradeoff in that the power used by the network
nodes in achieving that level of connectivity may be quite
large, hence limiting the effective network lifetime. Indeed, it
was shown in [14] that a very high price is paid in requiring
2-connectivity instead of 1-connectivity. There it was shown
that theincreasein power needed for a 2-connected network
versus a 1-connected network is in the range of150% and
higher. For instance, the methods ADB [8] and MMST [14],
result in increasesof 177% and 163%, respectively. Here, the
costs of constructing a 2-connected networkare approaching
three timesthose of constructing a 1-connected network.

Given the high costs of requiring a 2-connected topology, it
seems that such a requirement should be enforced only when
there is a compelling reason. In many situations, nodes failat a
low rate and replacement of nodes is relatively easy. This may
be the case for instance for a sensor network used to monitor
environmental factors within a building, where a maintenance
person can easily and routinely place a relay node2. When
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nodes fail at a low rate and replacement is easy, using a costly
2-connected network simply to accommodate an occasional
node failure is not sagacious or worthwhile.

In this paper, we consider an alternative approach in which
the network topology is just 1-connected and when a relay
node fails, we simply replace that node with a new relay
node. Of course, that replacement could be done by placing
the new relay node where the old one was located and having
the new node use the same transmission power as the replaced
node. However, as long as a new relay node is being placed,
it seems that a more proactive placement is possible which
places the node so that the power level assigned to that node
is optimal. This then is theoptimal relay node fault recovery
problem addressed in this paper. We consider three versionsof
the problem which differ in the degree to which the original
network nodes can be reconfigured (i.e. have their power levels
adjusted) when placing a new relay node into the network. For
each version, we provide a polynomial time algorithm that
provides an optimal placement of the new relay node.

This paper is organized as follows. In Section II, some back-
ground on topology control and our network model is given,
and a formal problem definition is presented. In the subsequent
three sections we provide polynomial time algorithms for each
of the three problem versions. Some concluding remarks are
given in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the network model used in this
paper, provide a little background on work in topology control
and provide formal definitions of the Relay Node Replacement
(RNR) problems that we study.

A. Model and Objectives

Our network model is based on theundirected graph model
proposed in [9]. In this model, for each ordered pair(u, v) of
transceivers, there is atransmission power threshold, denoted
by p(u, v), where a signal transmitted by the transceiveru can
be received byv only when the transmission power ofu is
at leastp(u, v) [12]. In this paper we utilize thegeometric
model in which the threshold is determined by the Euclidean
distance betweenu andv [11]. Since in the geometric model
the threshold values aresymmetric, that is,p(u, v) = p(v, u),
in the remainder of this paper, we letp(u, v) denote both itself
andp(v, u).

Given the transmission powers and the positions of the
nodes, an ad hoc networkinducesan undirected graphG over
the nodes of the network. An edge(u, v) is present inG if and
only if the transmission powers of bothu and v are at least
the transmission power thresholdp(u, v) [13]. In this case,u
andv are said toconnect.

Under this network model the goal oftopology controlis
to assign transmission powers to nodes such that the resulting
undirected graph achieves a specified property and so that the
transmission powers are optimal.

B. Background on Topology Control

Considerable work has been done on a variety of topology
control problems [1]–[4], [9]–[14]. Recall that in the standard
topology control problem we are given a set of nodes in the
plane and asked to assign power levels to the nodes so that
the resulting network achieves a prespecified graph property.
Most commonly the property is that the graph be connected.
The goal of the power assignment is to optimize some function
of the assigned powers. The two most common optimization
objectives areMinMax andMinTotal, which respectively min-
imize the maximum assigned power and total (equivalently,
average) assigned power. In MinMax, it is typical to have the
same power assigned to all network nodes [12].

For MinMax, [12] presented anO(n2 log n) algorithm to
solve the topology control problem for maintaining a con-
nected network. In that algorithm, they first collect all of
the candidate power thresholds and then locate the MinMax
power by using binary search over the set of candidate
power thresholds. In section V of this paper we will use that
algorithm as a subroutine.

For MinTotal, topology control problems are typically
proven to be NP-hard and approximation algorithms are pro-
vided [1], [3].

Other topology control topics that have been studied in-
clude: lifetime maximization [4], minimizing the number of
max power users [10], and topology control when nodes are
mobile [13].

C. Relay Node Replacement Problems

The main problems studied in this paper are defined in this
section.

Consider a networkN0 consisting of a setV of relay nodes
(henceforth just called nodes), where the nodes are locatedin
the Euclidean plane, where nodevi transmits at power level
pi, and where the induced graph based on those transmission
power levels is connected. Note that we make no assumptions
about the power specification inN0, hence power levels can
be distinct (or not) and the specification may or may not be
optimal.

Suppose then that inN0 some nodeY fails, so that the
resulting networkN is not connected. This means that at
the existing power levels the remaining network nodes are
partitioned into severalconnected components. An example
network with one failed node is shown in Figure 1.

Since the goal is to have a connected network, we want
to place one new nodeX with power level pX such that
the resulting networkN ′ is connected. As noted in the prior
section, we could placeX at the same location asY , with
pX = pY . But, perhaps by puttingX at a different location
we can achieve a network that is also connected and where
the power level assigned toX is less thanpY . The problem
and the solution vary depending on on how much change is
allowed in the network. We formally define the problem as
follows:

Definition 2.1 (Relay Node Replacement):Consider a net-
work N0, a failed nodeY , the resulting unconnected network



Fig. 1. An example network before and after one node failed

N , and a setC = {c1, c2, ..., cn} consisting of the connected
components ofN . RELAY NODE REPLACEMENT for N ,
denoted by RNR, seeks a power assignmentpX and a location
for a new relay nodeX such thatN ′ is connected, whereN ′

is N along withX , and where the power level assigned toX
is minimized. There are three versions of the problem:

• POINT OPTIMAL RNR (PO-RNR)
It is assumed that only the power used by the new relay
node can be set and that the power levels of all original
nodes are unchanged. Thegoal is to place the relay node
X such that the powerpX required forX to connect
with at least one node in each connected component is
minimized.

• LOCALLY OPTIMAL RNR (LO-RNR)
It is assumed that only the power used by the new relay
node and its intended 1-hop neighbors can be reset. The
goal is to place the relay nodeX such that the power
pX required forX to connect with at least one node in
each connected component is minimized when the power
levels of the neighbors ofX are reset (to the minimum

Fig. 2. An example solution for PO-RNR

power required to connect with bothX and their original
neighbors inN ).

• GLOBALLY OPTIMAL RNR (GO-RNR)
It is assumed that the power used by any network node
can be reset. Thegoal is to place the relay nodeX
such that the powerpX uniformly assigned to all network
nodes is minimum. Note that this is the standardMinMax
objective for topology control except that the standard
problem assumes that all nodes are in fixed positions.

Throughout this paper for all three versions of the problem,
we refer to the position that minimizes the power assigned to
X as theoptimal position, to the relay nodeX in that optimal
position as an OPTIMAL RELAY NODE (ORN), and to the
power assigned toX in that optimal position aspm

X .

III. SOLVING POINT OPTIMAL RNR

In this section we present a polynomial time algorithm for
solving PO-RNR. Recall that in PO-RNR the power levels of
all original nodes inN remain unchanged. In that context, the
goal in PO-RNR is to find an optimal position for the ORN
such that the powerpX required forX to connect with at least
one node in each connected component is minimized. Figure 2
shows a PO-RNR solution for the network from Figure 1.

Our approach to solving PO-RNR consists of two stages.
In the first stage we collect a set ofcandidate positionssuch
that the location for an ORN for PO-RNR is guaranteed to be
in this set. In the second stage we determine for each element
of the set, the minimum power assignment, if any, for which
a node placed at that position will be able to connect with
at least one node from each connected component inN , and
then select for the ORN the position with the overall minimum
power value.

Key to the algorithm that we provide is determining a
sufficient set of candidate positions that is bounded in size,
since potentially any point in the plane is a possible position
for an ORN. To determine that set of candidate points, recall
that the power levels of the original nodes cannot be changed.



It follows that any ORN must lie in an area of the plane that
can be ”reached” by all of the connected components ofN
with the nodes using their original power. To make this notion
precise we have:

Definition 3.1 (Reachable Circle and Area):The REACH-
ABLE CIRCLE of a nodex is defined as a circle centered
at x with radius equal to the communication ranger of x.
Any point within that circle isreachableby x. Note that two
nodesconnectif each is in the reachable circle of the other. A
point at distancer from x is on theboundaryof the Reachable
Circle. The REACHABLE AREA of a connected componentci

is theunion of the reachable circles of the nodes inci.
Definition 3.2 (Common Reachable Area):For a setC of

connected components, the COMMON REACHABLE AREA of
N , denoted as CRA, consists of all pointsz in the plane such
that z is in the Reachable Area of each connected component
of N .

It follows from this definition that an ORN must lie in
the CRA of the networkN , hence potentially every point in
the CRA is a candidate position. Fortunately, we will be able
to limit the number of points in the CRA that we consider.
Toward that end we have the following definitions relative to
the networkN :

Definition 3.3 (Midpoint Set):The MIDPOINT SET of N
consists of the midpoint of each edgexy, wherex andy are
distinct nodes inN .

Definition 3.4 (Circumcenter Set):The CIRCUMCENTER

SET of N consists of the circumcenter point ofx, y, z, where
x, y, z are distinct nodes inN .

Definition 3.5 (Intersection Set):The INTERSECTION SET

of N is a particular set of points that intersect with the
boundaries of reachable circles. These points are of three
varieties and all of them are in the Intersection Set. Specifically
(Figure 3):

• An Edge-Intersectionis a point of intersection between
an edgexy and the boundary of the reachable circle of
x or y, wherex, y are distinct nodes inN .

• A Bisector-Intersectionis a point of intersection between
the perpendicular bisector of the line segment between
nodesx andy, and the boundary of the reachable circle
of z, wherex, y andz are distinct nodes inN .

• A Circle-Intersectionis a point that lies on the boundary
of the reachable circle of bothx or y, wherex, y are
distinct nodes inN .

In the algorithm that we give for solving PO-RNR, the
first stage will collect all of the points in the Midpoint
Set, Circumcenter Set and Intersection Set as the candidate
positions (we will show later that collecting just these positions
is sufficient). This stage will also determine for each such point
x a power assignmentpx. In the second stage, the candidate
values are processed one at a time by checking each candidate
valuex in two ways. First, we check thatx lies in the CRA
of N . Second, for each connected component ofN we check
that there is at least one nodez of that component wherex is
reachable fromz, and wherez is within the communication
range ofx (using powerpx). The algorithm then returns the

Fig. 3. Examples for Intersection Set

point with minimum power among all candidate points that
pass both of these tests. The complete algorithm is given as
Algorithm 1.

The correctness of Algorithm 1 is easy to see other than the
issue of whether (or not) the candidate positions collectedin
Step 2 form a sufficient set. Thus, to establish that Algorithm 1
is correct we need only show:

Lemma 3.1:Every ORN for PO-RNR must be in the union
of the midpoint set, the circumcenter set, and the intersection
set.

Proof: Note that it is possible for a point to be in more
than one of the aforementioned sets. That is fine. All that we
claim is that the ORN must be in at least one of them.

We prove the lemma by contradiction. Thus, suppose there
exists an ORNZ which is not in the setI which is the
union of the midpoint, circumcenter, and intersection sets.
Let pm

z be the power assigned toZ. By definition of ORN,
under that power,Z is connected with at least one node in
each connected component (with those nodes transmitting at
their original power levels). Further, since the powerpm

z is
minimum, there must exist at least one edge that requires
exactly the transmission range associated withpm

z . Clearly
that is a longest edge incident onZ in N ′. Let ZA be such
an edge, whereA is a neighbor ofZ. Clearly,pA ≥ pm

z . There
are two cases.

1) ZA is the unique longest edge incident toZ.
Consider movingZ towardsA a distanceǫ > 0, such
that ǫ is small enough thatZA continues to be the
longest edge incident onZ. One possibility for this
movement is thatZ is moved towardsA along the line
ZA. This movement alongZA can occur unlessZ lies
on the boundary of a reachable circle of some other node
B in N . Note that there can be only one suchB since if
Z lies on the boundaries of two or more reachable circles
then Z is a circle-intersection, hence inI. Thus, if Z
lies on the boundary of the reachable circle ofB, then
Z can move along that boundary to a nearer position to
A. The only way such a movement is not possible is if
Z is located at the nearest location toA on the boundary
of B’s reachable circle. But in that caseZ is located at
an edge-intersection, hence is inI.
It follows that Z can be moved closer toA by some
ǫ either by movingZ along the lineZA or movingZ
along the boundary ofB. In either case,Z would be



Input: A networkN consisting of a setV of relay nodes in
the plane, where nodevi is assigned transmission powerpi,
and the set of connected componentsC = {c1, c2, ..., cn} of
N .

Output: A position for a new relay nodeX and a powerpm
X

assigned toX such thatX is an optimal relay node (ORN)
for N .

Steps:
1) Collect a list CL of candidate positions:

a) For every two nodesu, v ∈ V , find themidpointx
of the line segment betweenu andv, assignpx =
length(uv)/2, and addx to the list CL;

b) For every two nodesu, v ∈ V , find each
edge-intersectionx of u and v, assign px =
maxlength(ux, vx), and addx to the list CL;

c) For every two nodesu, v ∈ V , find each
circle-intersectionx of u and v, assign px =
max(pu, pv), and addx to the list CL;

d) For every two nodesu, v ∈ V , find eachbisector-
intersectionx of the perpendicular bisector ofu
and v, assignpx = length(ux), andx to the list
CL;

e) For every three nodesu, v, w ∈ V , Find the
circumcenter x of u, v and w, assign px =
length(ux), and addx to the list CL;

2) For each pointx in CL do,

a) If CheckPoint(x) is false, then deletex from CL;
/* In CheckPoint, first determine ifx is reachable
by at least one node in each connected component
ci ∈ C under the original power levels; if so, then
return true if for eachci there is a nodez ∈ ci

such thatx is reachable fromz and such thatz is
within the communication range ofx when using
powerpx. */

3) Return pm
X , the smallest of thepx’s in CL, and the

corresponding positionX ;

Fig. 4. Algorithm 1 – Algorithm for PO-RNR

located at a position where with a power smaller than
pm

z , the node can communicate (in both directions) with
at least one node in each connected component. This is
a contradiction.

2) ZA is not the unique longest edge incident toZ.
In this case, sinceZ is not in I, it cannot be in the
circumcenter set. It follows that there is exactly one
other edge, sayZB, with edge length equal to that
of ZA. Similarly to case 1, consider movingZ along
the perpendicular bisector ofAB towards the midpoint
of AB by a small distanceǫ > 0, such thatǫ is
small enough thatAZ and BZ continue to be the
longest edges incident toZ. The only way that such

Fig. 5. An example solution for LO-RNR

a movement is not possible is ifZ lies on the boundary
of a reachable circle of some other node inN . But in
that caseZ is located at a bisector-intersection, hence is
in I. Analogous to Case 1, a contradiction follows.

From the two cases, we have that every ORN lies in the union
of the midpoint, circumcenter, and intersection sets.

From the lemma the correctness of the algorithm follows
immediately:

Theorem 3.1:The position and value returned by Algo-
rithm 1 is an ORN for the given instance of PO-RNR.

Next we consider the running time of the algorithm.
Theorem 3.2:Algorithm 1 for solving PO-RNR runs in

worst case timeO(n4).
Proof: In Algorithm 1, step 1 uses timeO(n3) to build

the list CL of candidate positions, since there areO(n2)
midpoints, O(n2) edge-intersection points,O(n2) circle-
intersection points,O(n3) circumcenter points, andO(n3)
bisector-intersection points. Step 2 iterates through theO(n3)
positions in CL. For each point considered there, timeO(n)
is needed to determine if the point lies in the CRA and an
additionalO(n) to check the connectivity of the point. Hence,
step 2 runs in timeO(n4). The final step takes the minimum
over the remaining candidate positions and takes timeO(n3).
The algorithm running time ofO(n4) follows.

IV. SOLVING LOCALLY OPTIMAL RNR

In this section, we present two polynomial time algorithms
for solving LO-RNR. Recall that the goal in LO-RNR is to
find an optimal position for the ORN such that the power
pX required forX to connect with at least one node in each
connected component is minimized when the power levels of
the neighbors ofX are reset (to the minimum power required
to connect with bothX and their original neighbors inN ).
Figure 5 shows a LO-RNR solution for the network from
Figure 1.



A. A Basic Algorithm for LO-RNR

Recall that our approach to solve PO-RNR was to first
construct a sufficient set of candidate positions, then weedout
those that were not in the CRA or not able to connect to every
connected component with the assigned power, and eventually
select the ORN from the remaining set of candidate positions.
We will use a similar approach for solving LO-RNR. The key
difference in LO-RNR as compared with PO-RNR is that all
of the power levels of neighbor nodes of the ORN can be
changed in LO-RNR. As a result, it turns out that there is
no need to consider issues related to the CRA. On the other
hand, the algorithm needs to adjust the power levels for all
neighbors of the ORN.

Given the networkN , our algorithm for LO-RNR again
works in two stages. In the first, it collects all midpoints and
circumcenter points as a sufficient set of candidate positions
(we will show later that this is so). The algorithm then checks
the connectivity for each point in the set, deletes from the
set those can not reach all of the connected components in
N using the assigned power, and selects from the remaining
set the one with minimum assigned power as the ORN.
In addition, the algorithm adjusts the power used by the
ORN’s neighbors to the minimum power so that they can
communicate with the ORN and with their neighbors inN .
The complete algorithm is given as Algorithm 2.

To establish the correctness of Algorithm 2, we begin with
the following lemma.

Lemma 4.1:Every ORN for LO-RNR must lie on a per-
pendicular bisector.

Proof: By way of contradiction, suppose there exists a
Z which lies in an optimal position but does not lie on a
perpendicular bisector. SupposeZA is a longest edge over all
edges incident onZ, whereA is a neighbor ofZ.

SinceZ does not lie on a perpendicular bisector,ZA must
be the unique longest edge. ThusZA is longer than any other
edge incident onZ. Consider movingZ towardA by a small
distanceǫ > 0, such thatǫ is small enough to keepZA as
the longest among all edges toZ. Since no connectivities
are broken by this movement, note thatZ is relocated to a
position with smaller longest edge (hence smaller assigned
power) and still connects with at least one node in every
connected component. This is a contradiction and the lemma
follows.

Using Lemma 4.1, we have the following:
Lemma 4.2:Every ORN is in either the midpoint set or the

circumcenter set.
Proof: We have proved that the optimal placement point

of X must lie on a perpendicular bisector. Now we only need
to show that if it is not a midpoint of an edge, it must be a
circumcenter point of some three (or more) nodes, i.e. there
must be, at least, three vertices reachable byX with the same
power level.

By way of contradiction, suppose there exists aZ which
is neither a midpoint nor a circumcenter point, i.e. there are
only two nodes, sayA, B, which are reachable byZ with the
same powerpz andZ is not the midpoint ofAB. Thus all of

Input: A networkN consisting of a setV of relay nodes in
the plane, where nodevi is assigned transmission powerpi,
and the set of connected componentsC = {c1, c2, ..., cn} of
N .

Output: A position for a new relay nodeX and a powerpm
X

assigned toX such thatX is an optimal relay node (ORN)
for N . In addition, for each neighborz of X , a reset power
assignmentpm

z .

Steps:
1) Collect a list CL of candidate positions:

a) For every two nodesu, v ∈ V , find the midpointx
of the line segment betweenu andv, assignpx =
length(uv)/2, and add x to the list CL;

b) For every three nodesu, v, w ∈ V , Find the
circumcenter x of u, v and w, assign px =
length(ux), and addx to the list CL;

2) For each pointx in CL do,

a) If CheckConnect(x) is false, then deletex from
CL;
/* CheckConnectreturns true if for eachci there
is a node z ∈ ci such that z is within the
communication range ofx when using powerpx.
Note that the powers assigned to the nodes other
thanx are irrelevant here.*/

3) Find pm
X , the smallest of thepx’s in CL, and the

corresponding positionX ;
4) For each neighborz of X do,

a) Adjust the power ofz to the minimum value
pm

z such thatz can communicate with all of its
neighbors (includingX) underpm

z

5) Returnpm
X and eachpm

z , along with the position ofX ;

Fig. 6. Algorithm 2 – Basic Algorithm for LO-RNR

the power levels ofZ ’s neighbors are less thanpz. Similarly,
we moveZ along the perpendicular bisector ofAB towards
the midpoint ofAB by a small distanceǫ > 0, such thatǫ is
small enough to keepZA andZB as the longest ones among
all other edges incident onZ. By doing this, we can find a
better position thanZ, which leads to a contradiction. Thus,
the optimal position must be in either the midpoint set or the
circumcenter set.

Using the above lemma it follows easily that:

Theorem 4.1:The position and value returned by Algo-
rithm 2 is an ORN for the given instance of LO-RNR.

Similarly to the analysis of the running time of our algo-
rithm for PO-RNR, we have the following theorem. The proof
is omitted due to space considerations.

Theorem 4.2:Algorithm 2 for solving LO-RNR runs in
worst case timeO(n4).



B. A Faster Algorithm for LO-RNR

In this subsection, we take a closer look at Algorithm 2
in order to achieve an improved running time. We begin
by noting that the key to Algorithm 2 is to collectO(n3)
candidate positions and check the connectivity of each position
using the assigned power. And, the step that dominiates the
running time of Algorithm 2 is independently checking the
connectivity for those candidate positions. Since that checking
requires timeO(n) per position, that checking in total takes
timeO(n4). Note however that all that is really required is that
the ORN be included as one of these positions. This suggests
that we gather acritical set S from the sufficient candidate
set and simply search withinS for the optimal one. From
Lemma 4.1 we know that we need only consider candidate
positions that lie on perpendicular bisectors. Since thereare
O(n2) perpendicular bisectors, and on each bisector there are
O(n) circumcenter points, the basic algorithm for LO-RNR
considersO(n3) points. Below we will show how to reduce
the number of points that need to be considered. Toward that
end we begin with a definition.

Definition 4.1 (Optimal Connectable Point):A midpoint x
of nodesu, v is a CONNECTABLE M IDPOINT if x can connect
with at least one node in each connected component with a
power levelpx = length(ux). We call a circumcenter pointx
of nodesu, v, w a CONNECTABLE CIRCUMCENTER if it can
connect with at least one node in each connected component
with a power levelpx = length(ux). An OPTIMAL CON-
NECTABLE POINT (OCP) of a perpendicular bisector is either
the connectable midpoint or, if there is no such connectable
midpoint on the bisector, the connectable circumcenter nearest
to the midpoint among all circumcenter points on the bisector.

Our algorithm constructs a critical set by selecting an OCP
on each perpendicular bisector. To make that selection, the
algorithm checks whether there exists a connectable midpoint.
If so that is the OCP that we seek; otherwise the algorithm
gathers all circumcenter points that lie on the bisector, sorts
those points according to their assigned power, and then finds
the OCP by using binary search. After building the critical set,
the algorithm selects the OCP with the least assigned power as
the ORN. Finally, as in the basic algorithm for LO-RNR, the
powers used by the ORN’s neighbors are adjusted so that they
can communicate with the ORN and their original neighbors.
The complete algorithm is given as Algorithm 3.

Proofs of the following are omitted due to space constraints:
Theorem 4.3:The position and value returned by Algo-

rithm 3 is an ORN for the given instance of LO-RNR.
Theorem 4.4:Algorithm 3 for solving LO-RNR runs in

worst case timeO(n3 log n).

V. SOLVING GLOBALLY OPTIMAL RNR

In this section, we provide an algorithm for the third
relay node replacement problem, namely Globally Optimal
Relay Node Replacement. Recall that in GO-RNR the power
assignments to all network nodes can be reset and that the goal
is to find an optimal position for the ORNX such that the
power uniformly assigned to all network nodes is minimum

Input: An instanceN of sensor network, consisting of a set
V of nodes in the plane, each of which associated with a
transmission powerpi, and a set of connected components
C = {c1, c2, ..., cn} of N .

Output: A position for a new relay nodeX and a powerpm
X

assigned toX such thatX is an optimal relay node (ORN)
for N . In addition, for each neighborz of X , a reset power
assignmentpm

z .

Steps:
1) For each pair of distinct nodesu, v ∈ V do,

Let x be the midpoint of the perpendicular bisector
of u andv;
If x is a connectable midpoint, then assignpx =
length(uv)/2, and addx to the listS;
If x is not a connectable midpoint, then

i) Collect each circumcenter pointy of u, v and
any other node inV , assignpy = length(uy)
as its power level, and place those points in a
list CL;

ii) Sort the nodes inCL according to their as-
signed power;

iii) Using binary search, find an OCP from the
nodes inCL, if one exists and add it to the
list S;

2) Find pm
X , the smallest of thepx’s in S, and the corre-

sponding positionX ;
3) For each neighborz of X do,

a) Adjust the power ofz to the minimum value
pm

z such thatz can communicate with all of its
neighbors (includingX) underpm

z

4) Returnpm
X and eachpm

z along with the position ofX ;

Fig. 7. Algorithm 3 – Faster Algorithm for LO-RNR

so that the resulting networkN ′ is connected. Figure 8 shows
a GO-RNR solution for the network from Figure 1.

Key to GO-RNR is that in contrast to LO-RNR in which
only the new relay node and its neighboring nodes can adjust
power levels, GO-RNR allows all nodes to adjust power levels
when the ORN is added to the network. For this we have:

Lemma 5.1:Every ORN for GO-RNR must be in the union
of the midpoint set and the circumcenter set.
The proof is similar to that used for Lemma 4.2 and is omitted
here due to space considerations.

Based on this lemma, our algorithm for GO-RNR works in
two stages. In the first stage, a list of candidate positions is
constructed based on the above lemma. In the second stage,
for each candidate position in CL, the algorithm of [12] is
run on the resulting network to determine a MinMax solution.
The algorithm selects the position for the ORN as a candidate
position that yields the smallest of these MinMax solutions.
The complete algorithm for GO-RNR is given in Algorithm 4.



Fig. 8. An example solution for GO-RNR

Input: A networkN consisting of a setV of relay nodes in
the plane, where nodevi is assigned transmission powerpi,
and the set of connected componentsC = {c1, c2, ..., cn} of
N .

Output: A position for a new relay nodeX and a powerpm
X

uniformly assigned to all network nodes such thatX is an
optimal relay node (ORN) forN .

Steps:
1) Collect a list CL of candidate positions:

a) For every two nodesu, v ∈ V , find the midpoint
x of the line segment betweenu andv, and addx
to the list CL;

b) For every three nodesu, v, w ∈ V , find the
circumcenterx of u, v and w, and addx to the
list CL;

2) For each pointx in CL do,

a) Letpx = GetMinMax(x), and associatepx with the
correspondingx in the list CL;
/* In GetMinMax, first construct a networkN ′

which isN along withx, and then apply the Min-
Max topology control algorithm of [12] to return
the MinMax power which is uniformly assigned to
any node such thatN ′ is connected. */

3) Return pm
X , the smallest of thepx’s in CL, and the

corresponding positionX ;

Fig. 9. Algorithm 4 – Algorithm for GO-RNR

The correctness of this algorithm follows from Lemma 5.1
and the above discussion. Thus we have:

Theorem 5.1:The position and value returned by Algo-
rithm 4 is an ORN for the given instance of GO-RNR.

Further we have:
Theorem 5.2:Algorithm 4 runs in timeO(n5 log n).

Proof: Constructing the list CL in step 1 takes timeO(n3)
since there areO(n3) circumcenter points andO(n2) mid-
points. Step 2 invokes the algorithm of [12] for each candidate
position. Since that algorithm runs in timeO(n2 log n), the
step in total requires timeO(n5 log n). Finally, determining the
candidate position that produces the smallest MinMax value
is O(n3). The overall running time ofO(n5 log n) follows.

VI. OPEN PROBLEMS

Since these are the first theoretical results for relay node
replacement, there are a variety of future research directions.
Most obvious are to improve the running times of the algo-
rithms for each of the three versions of the problem; extending
the problems and solutions to the replacement of multiple
nodes; expanding the ideas tomobile networks; comparing
the quality of PO-RNR and LO-RNR solutions; and, using
simulations to study the lifetime improvement versus the 2-
connected approach.

Disclaimer: The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S.
Government.
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