A Fundamental Restriction on Fully Dynamic
Maintenance of Bin Packing!'

Zoran Ivkovié? Errol L. Lloyd?

Abstract

This paper studies a fundamental restriction on the problem of maintaining an approximate
solution for one—dimensional bin packing when items may arrive and depart dynamically. It
is shown that imposing a fixed constant upper bound on the number of items that can be
moved between bins per Insert/Delete operation forces the competitive ratio to be at least
4/3, regardless of the running time allowed per Insert/Delete. Thus, the ability to move
more than a constant number of items is necessary for accomplishing highly competitive,
time-efficient fully dynamic approximation algorithms for bin packing.

1 Introduction

In the (one—dimensional) bin packing problem, a list L = (a1, as, ..., a,,) of items where each
item a; has size size(a;) € (0,1] is given. The goal is to find the minimum £ such that all
the items can be packed into k unit-size bins. The reader is referred to [4] for background
information and a survey of bin packing, together with a number of applications.

Recently, attention has been devoted to on-line and dynamic versions of bin packing
(3, 4, 7, 10, 12]. These notions were extended to their full generality in [8] by considering
fully dynamic bin packing, where:

e items may arrive and depart from the packing dynamically, and

e items may be moved from bin to bin as the packing is adjusted to accommodate arriving
and departing items.

The algorithms presented in [8] process a sequence of Inserts (arrivals) and Deletes (de-
partures) of items, as well as certain “lookup” queries that can be interspersed in the sequence
of Inserts and Deletes.

Recall that the usual measure of the quality of a solution produced by a bin packing
algorithm A is its (relative) competitive ratio R(A) defined as:

| A(L)
R(A) = lim sup —)
(A) n5% oprit)—n OPT(L)

! Partially supported by the National Science Foundation under Grant CCR-9120731

2Yale School of Management, Yale University, New Haven, CT, 06520-8200, email:
ivkovich@isis.som.yale.edu.

3Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716, email:
elloyd@cis.udel.edu.



where A(L) and OPT(L) denote, respectively, the number of bins used for packing list L by
A and some optimal packing of L. We also say that A is R(A)-competitive.

In this paper, we prove a fundamental property of the fully dynamic bin packing problem.
This property has important implications for the design of fully dynamic approximation
algorithms for bin packing.

2 The Main Result

In this section we prove:

Theorem 1 For any positive integer c, if A is a fully dynamic algorithm for bin packing
that moves no more than c items (worst—case or amortized) per Insert/Delete operation, then
the competitive ratio of A is at least 4/3.

Proof: We establish that there are arbitrarily large lists L and suitably chosen sequences of
Inserts and Deletes of elements of L, for which any A meeting the above conditions produces
packings that utilize at least 4/3 of the optimal number of bins.

We define B-items as items with size greater than 1/2 and B-bins as bins containing a
B-item.

Informally, a list that “defeats” A is constructed as follows:

1. Pick an arbitrary (large) integer M,

2. Take M B-items of size 1/2 + ¢; construct M collections of items, where each collec-
tion contains a huge number (this number is a function of M, €, and of course ¢) of
exceedingly small items of size a, whose cumulative size is precisely 1/2 — e,

3. Let L be a list of the items discussed in step (2); let A pack L in any order,

4. Observe the packing produced by A. If the excess bins amount to 1/3 of the optimal, A
has failed. If not, we can then request deletions of all the B-items (of size 1/2+¢) from
L and, consequently, from the packing. This sequence of deletions is then guaranteed
to force A to utilize at least 4/3 the optimal number of bins for the resulting set of
items.

The construction of L is aimed at defeating any algorithm A on the basis of A’s inability
to move more than c¢ items across bins. Intuitively, A will fail not because it is too slow
but because it is restricted in its movements, e.g., A is not unlike on-line algorithms in that
there is a fixed bound on the number of items that can be moved across bins within each
Insert/Delete operation.

We proceed with a formal proof of the theorem. First, pick an arbitrarily large positive
integer M divisible by 6. Then, pick an arbitrarily small positive number € such that ¢ <
1/M. Finally, pick a (small) positive number a subject to the following three restrictions:

1. 12-¢ is an integer
[




variety 1 variety 2

] < (M)a J>(cM)a

Figure 1: Two varieties of B-bins in the packing of L produced by A.

3

o ¢
2. a< i

€
3.a<m

The following list L defeats any fully dynamic algorithm A for bin packing that moves
no more than c¢ items (worst—case or amortized) per Insert/Delete operation:

L =(1/24¢...,1/24¢€,a,...,a).
- - ARG

M M1/2—5

Clearly, an optimal packing of L requires precisely M bins, where each bin contains a B-item
of size 1/2 + € and 2= items of size a.*

We fix A, let A pack L in any order, and then observe the packing of L produced by A.
In this analysis, we distinguish between two varieties of B-bins in the packing produced by
A: bins that, in addition to a B—item, contain at most cM items of size a — variety 1 B-bins,
and bins that, in addition to a B—item, contain more than c¢M items of size a — variety 2
B-bins (see Figure 1).

The threshold value of cM was chosen so as to guarantee that any sequence of M changes
to the packing via Inserts/Deletes of items would not result in the removal of all of the items
of size a from any of the bins of variety 2, both in the case that the accounting of the number
of items that A moves per operation is uniform and in the amortized case.

Note that the minimum gap size g (i.e., the unused portion of the bin) of a variety 1

B-bin is:

3 ¢ 1-3/M
=1-(1/2 Ma) >1/2 — € —cM2M = ;
g (1/2+ €+ cMa) /2—€e—c i 5

4Since we chose a so that 1/ i_e is an integer, the level of each bin in an optimal packing is precisely 1,

i.e., all of the M bins in an optimal packing are full.




Let the number of variety 1 B-bins in the packing produced by A be denoted by «, the
number of variety 2 B-bins be denoted by f (note that o + 3 = M), and the number of
non-B-bins be denoted by .

3
Case 1: a > 2M. Due to the choice of the value of a (a < 2

M), the cumulative size of all
the gaps in all the variety 1 B-bins is at least:

Thus, even under the assumption that all the variety 2 B-bins in the packing are full, there
are still at least M /3 non—B-bins in the packing, i.e., v > M/3.

Case 2: a < %M. We know that 3 > M/3. Note that the cumulative size of all the
non-B-items packed into a bin of variety 2 is at most 1/2 — e.

To defeat A, we now request a sequence of M Delete operations that will delete all the
B-items from L and the packing. Recall that none of the bins that were variety 2 B-bins
before the deletions can be deleted from the packing, since each such bin contained more
than cM items of size a. In addition, by our choice of a (a < _j7), all these bins must have
a level strictly less than 1/2 at the conclusion of the deletion of all the B-items.

Note that the cumulative size of all the items in the list is now M /2 — Me and the size
of the optimal packing is now precisely M/2 (in order to guarantee the latter, we insisted
that e < 1/M, i.e., eM < 1). Furthermore, the cumulative size of all the items in the § bins
that were variety 2 B-bins (before the deletions) does not exceed (3/2. Thus, A requires a

certain number ¢ of additional bins to pack the entire (current) L:
§>M/2—Me—p3/2>M/2—-1/2-M/3— Me > M/3—1.

A will require at least M bins to pack the (current) list L, since §+ 6 > 2M — 1. Since
an optimal packing of (the current) L requires precisely M/2 bins, A was forced to utilize
at least 4/3 of the number of bins utilized by an optimal packing.

|

3 Discussion

In light of Theorem 1, we address the need to move items between bins in response to Inserts
and Deletes. The difficulties related to this issue are twofold. First, such moves have to be
carried out in a manner that would guarantee small competitive ratios. Second, all the
moves have to be carried out within low running times (i.e., o(n) per Insert or Delete, since
off-line algorithms that achieve any competitive ratio greater than 1 in O(n) running time
are known[6]).

Intuitively, difficulties may arise while handling very small items: the attempt to move
a large number of very small items from a bin, item by item, could result in a prohibitively
large running time.



A natural question is whether there are fully dynamic algorithms for bin packing that
are allowed to move w(1) items® per Insert/Delete operation with a competitive ratio of less
than 4/3, i.e., would removing the restriction on the number of items that may be moved
per operation help? The results obtained in [8] show that the answer to this question is yes.

The main result reported in [8] is a 5/4-competitive fully dynamic algorithm MMP
(Mostly Myopic Packing). MMP processes Inserts and Deletes of items in ©(logn) worst-
case running time. In MMP, the efficient manipulation of very small items is accomplished
via bundling. The purpose of bundles is to allow the efficient manipulation of large numbers
of very small items at one time: rather than moving these very small items from a bin/to a
bin individually, the algorithm moves entire bundles of very small items.® Moving an entire
bundle can be accomplished within the same running time as moving a single larger item.

Thus, allowing/disallowing the moving of w(1) items between bins per Insert/Delete
operation has a crucial impact on the competitive ratio of fully dynamic approximation
algorithms for bin packing.

Finally, there are two major open questions. First, is there an algorithm for a restricted
version of fully dynamic bin packing (where the number of items that can be moved between
bins per Insert/Delete operation is bounded by a constant) with a constant competitive ratio,
and, if so, is that competitive ratio close to 4/3? Second, is there a better lower bound than
4/37 In the case of on-line bin packing, dealing only with Inserts, somewhat stronger lower
bounds are known: Yao proved a 3/2 bound [12], and Brown [2] and Liang [9] improved that
to 1.536. ... Similar results may be possible for the fully dynamic case.

Sw-notation is defined as follows: f(n) € w(g(n)) if and only if g(n) € o(f(n)) [5].
6Note that this idea was used, albeit in different contexts, in [1] and [7].



References

[1]
[2]
[3]

[4]

[6]
[7]

[8]

[9]
[10]

[11]

[12]

R. J. Anderson, E. W. Mayr, and M. K. Warmuth. (1989). Parallel approximation algorithms for bin
packing. Information and Computation 82, 262-277.

D. J. Brown. (1979). A lower bound for on-line one-dimensional bin packing algorithms. Technical
Report R-864, Coordinated Science Laboratory, University of Illinois, Urbana, IL.

E. G. Coffman, M. R. Garey, M. R., and D. S. Johnson. (1983). Dynamic bin packing. SIAM Journal
on Computing 12, 227-258.

E. G. Coffman, M. R. Garey, and D. S. Johnson. (1984). Approximation algorithms for bin packing: an
updated survey. In Algorithm Design for Computer System Design (G. Ausiello, M. Lucertini, and P.
Serafini, Eds.), 49-106. Springer—Verlag, New York.

T. H. Corman, C. E. Leiserson, and R. L. Rivest. (1990). Introduction to Algorithms. The MIT Press,
Cambridge, MA.

W. Fernandez de la Vega and G. S. Lueker. (1981). Bin packing can be solved within 1 + € in linear
time. Combinatorica 1(4), 349-355.

G. Gambosi, A. Postiglione, and M. Talamo M. (1990). New algorithms for on-line bin packing. In
Algorithms and Complezity, Proceedings of the First Italian Conference, (G. Aussiello, D. P. Bovet, and
R. Petreschi, Eds.), 44-59. World Scientific, Singapore.

Z. Ivkovié and E. L. Lloyd. (1993). Fully Dynamic Algorithms for Bin Packing: Being (Mostly) Myopic
Helps. Proceedings of the 1st European Symposium on Algorithms, 224-235. Lecture Notes in Computer
Science No. 726, Springer—Verlag, New York. To appear in the STAM Journal of Computing.

F. M. Liang (1980). A lower bound for on-line bin-packing. Information Processing Letters 10, 76-79.

C. C. Lee and D. T. Lee. (1985). A simple on-line bin—packing algorithm. Journal of the ACM 3,
562-572.

P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. (1989). On-line bin-packing in linear time. Journal
of Algorithms 3, 305-326.

A. C.—C. Yao. (1980). New algorithms for bin packing. Journal of the ACM 27(2), 207-277.



