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Abstract

The problem of maintaining an approximate solution for one—-dimensional bin packing when items
may arrive dynamically is studied. In accordance with various work on dynamic algorithms, and in
contrast to prior work on bin packing, it is assumed that the packing may be arbitrarily rearranged
to accommodate arriving items. In this context we show that partially dynamic bin packing (Inserts

only) can be solved within 1 + € in amortized polylogarithmic time.

1 Introduction

Recall that in the (one-dimensional) bin packing problem, a list L = (a1, ag, ..., ay,) of items of size
size(a;) in the interval (0,1] is given. The goal is to find the minimum & such that all of the items a;
can be packed into k unit—size bins. For each bin B;, the sum of the sizes of the items packed into
that bin should not exceed 1. Bin packing is NP-complete [14], and a number of approximation
algorithms for bin packing are known. The reader is referred to [3] for background information and
a survey of bin packing, together with a number of applications.

In this paper, we consider partially dynamic bin packing, where:

e items may arrive into the packing dynamically (Insert), and

e items may be moved from bin to bin as the packing is adjusted to accommodate arriving
items.

We prove that, for any fixed € > 0, there exist approximation algorithms for partially dynamic
bin packing (Inserts only) that run in amortized polylogarithmic time and are, in terms of the
quality of approximation, within the factor of 1 4+ € from an optimal solution.

2 Existing Results

Recall that the usual measure of the quality of a solution produced by a bin packing algorithm A
is its competitive ratio R(A) defined as:

) A(L)
R(A) = lim  su —
(4) n—o0 OPT(B:n OPT(L)

where A(L) and OPT(L) denote, respectively, the number of bins used for packing of the list L by
A and some optimal packing of L. Usually, this property is expressed as:
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(VL)[A(L) < R(A)OPT(L) + KA(L)], K(L) = o(OPT(L)).

With respect to running times, we say that an approximation algorithm B for bin packing has
running time O(f(n)) if the time taken by B to process a change (an Insert or Delete, as applicable)
to an instance of n items is O(f(n)). In order to facilitate further exposition, we introduce the
following terminology. If O(f(n)) is a worst case bound on the running time required by B to
process each change, then B is f(n)-uniform. If O(f(n)) is an amortized bound on the running
time required by B to process each change, while the worst case bound required by B is w(f(n)),*
then B is f(n)-amortized. Throughout this paper, we will abbreviate the above and instead refer
to uniform and amortized algorithms, respectively.

In the domain of off-line algorithms, the value of R has been successively improved [3, 18, 6, 12].
Indeed, it has been shown that for any value of R > 1, there is an O(n logn) time algorithm with that
competitive ratio [13]. Unfortunately, the running times for these algorithms involve exceedingly
large constants (actually, these “constants” depend on how close R is to 1). Among algorithms of
practical importance, the best result is an O(nlogn) algorithm for which R is I [12].

With respect to on—line bin packing, the problem has been defined strictly in terms of arrivals
(Inserts) — items never depart from the packing (i.e., there are no Deletes). Further, on-line
algorithms operate under the restriction that each item must be packed into some bin before the
next item arrives, and it should remain in that bin permanently. In this context, Yao showed that
for every on-line algorithm A, R(A) > 3/2 [18], while Brown and Liang improved that bound to
R(A) > 1.536... [1, 16]. Further, the upper bound has been improved over the years to roughly 1.6
[10, 11, 15, 17].

Another notion is dynamic bin packing of [2], where each item is associated not only with its
size, but also with an arrival time and a departure time (interpreted in the natural way). Here,
again (unlike [7]), items cannot be moved once they are assigned to some bin, unless they depart
from the system permanently (at their departure time). This variant differs from fully dynamic bin
packing in that items are not allowed to be moved once they are assigned to a bin, and through
the availability of departure time information. It was shown in [2] that for any such algorithm A,
R(A) > 2.5, and that for the Dynamic First Fit [2] the competitive ratio lies between 2.770 and
2.898.

The work of [7] focused on a variant of on-line bin packing, again supporting Inserts only, in
which each item may be moved a constant number of times (from one bin to another). They provide
two algorithms: One with a linear running time (linear in n, the number of Inserts, which is also
the number of items) and a competitive ratio of 1.5, and one with an O(nlogn) running time and
a competitive ratio of %.

Fully dynamic bin packing, i.e., the problem of maintaining an approximate solution for bin
packing when items may arrive (Insert) and depart (Delete) dynamically was studied in [9]. In
accordance with various work on fully dynamic algorithms, and in contrast to prior work on bin
packing, it was assumed that the packing may be arbitrarily rearranged to accommodate arriving
and departing items. The main result is an fully dynamic approximation algorithm that is 151*
competitive and requires ©(logn) time per operation (i.e., for an Insert or a Delete of an item),
where n is the number of items in the (current) instance.

4w-notation is defined as follows: f(n) € w(g(n)) if and only if g(n) € o(f(n)) [4].



3 Partially Dynamic Bin Packing

In this section we consider algorithms for partially dynamic bin packing, i.e., algorithms that
handle only Inserts. All of the on-line algorithms, and the algorithms reported in [7, 9] are, of
course, applicable. Both the uniform and the amortized cases are discussed. Of particular interest
is the amortized case, where we show the existence of a polynomial time approximation scheme [8]
for partially dynamic bin packing.

3.1 Uniform Algorithms for Partially Dynamic Bin Packing

We begin by briefly considering uniform algorithms for handling only Inserts. Here, it is easy to
see that every on—line bin packing algorithm is a dynamic algorithm for Inserts only. In that sense,
all of the results on on-line bin packing reviewed in Section 2 carry over directly. Further, with
the exception of one algorithm presented in [7], all of those algorithms are uniform. The best of
those algorithms, for this context, is the algorithm Ay from [7], which runs in time ©(logn) per
operation, and is gfcompetitive. The other algorithm presented in [7], algorithm A;, runs in linear
time, i.e., amortized constant time per operation, and is %—competitive. Note that A; can easily be
made uniform, by using some of the techniques developed for As in the same paper and modifying
the algorithm slightly.

Finally, the best uniform algorithm for insertions is the algorithm MMP from [9]. Recall that it
has a uniform running time of ©(log n) per Insert (as well as Delete) operation, and is gfcompetitive.

3.2 Amortized Algorithms for Partially Dynamic Bin Packing

The algorithm presented here supports the Insert operation and two “lookup” queries of the fol-
lowing form:

e size — in O(1) time returns the number of bins in the current packing;

e packing — returns a description of the packing in the form of a list of pairs (z, Bin(z)), where
Bin(z) denotes the bin into which an item z is packed, in time linear in n, the number of
items in the current instance.

The implementation of these queries in the algorithm presented below is quite elementary, and
will thus be omitted.

We next furnish the main result of this paper. More encompassing than the algorithm itself, the
result establishes the existence of a polynomial time approximation scheme for partially dynamic
bin packing where each Insert is processed in amortized polylogarithmic time. In particular, we
show:

Theorem 1 Let A be an (off-line) Ra—competitive (Ra < 2) algorithm for bin packing. Let T4 (n)
be the running time of A, and let € > 0. Then there exists an algorithm A for partially dynamic
bin packing that is (Ra + €)-competitive, and requires O(TAT(")log n) amortized time per Insert

operation.

Proof: We begin with an informal description of the essential features of A.. A, can be produced
as a combination of A and Next Fit (NF). NF is (somewhat arbitrarily) chosen because of its
simplicity and its linear running time. Informally, NF operates as follows. At the outset, the



packing consists of 0 bins. When NF receives the first item a;, it opens a bin B, and packs a;
into By. NF then packs items as, a3, ... into B; for as long as each item would fit into By. As soon
as the first item a; that does not fit into By appears, B; is “closed down” (i.e., no items will be
inserted into B in the future, regardless of whether or not they could fit), a new bin Bj is opened,
and a; is packed into By. The subsequent items a;y1,a;42,... will be packed into By for as long
as each item would fit, after which By will be “closed down,” a new bin B3 would be opened, and
so on. The performance of NF'is bounded for every list L as follows: NF(L) < 20PT(L), and
R(NF) =2 [3, 10, 11].

Our algorithm A, proceeds in the following manner: NF'is used in almost every Insert operation,
and a certain level of supervision is built into the algorithm, so that when the desired competitive
ratio R(A¢) = R(A) + € is about to be exceeded, A is used to repack the entire instance inserted
so far. Intuitively, this should (temporarily) improve the packing, since R(A) < 2 = R(NF). After
that repacking, NF is run again, until another repacking is required, and so on.

More formally, we begin by considering a sequence of n Inserts. Note that as the Inserts
take place, the size of an optimal packing grows monotonically from 1 to OPT(L), where L =
(@1,a2,...,a,) denotes the list of inserted items. Let a;,,a,,...,a; denote the distinguished items
from L with the following property:

a;; = a1, Vj,2 S] < k,ij = minl : [ZOPT(al,ag, [Ny ¢ 73 ) = OPT(al,aQ, ,al)].

j—1

Simply put, a;,’s are the sequence of least indices such that OPT(a1,as,...,a;;) is twice as
large as OPT(a1, a2, .- ,ai;_,), 2<j <k.

Based on these distinguished items, we define a technical concept of stages thus. The first stage
is trivial; it consists only of the insertion of the first item a;, = a;. Stage j, 1 < j < k, consists
of the sequence of Inserts between a;;_, and a;;, also including a;; itself. Stage k + 1 consists of
the sequence of Inserts between a;,, the last distinguished item, and a,,, the last item inserted so
far. Since the size of an optimal packing cannot double more than [log OPT(L)] times, which is
O(log OPT(L)) = O(logn), the number of stages is bounded by k£ + 1 = O(logn).

To complete the proof it suffices to produce an algorithm A, given an algorithm A with the
following performance:

(VL)[A(L) < R(A)OPT(L) + Ka(L)], Ka(L)=0(OPT(L)),
such that the following three conditions on A, are met:
1. R(A) = R(A) + ¢
2. For every L, A.(L) < R(A)OPT(L) + K 4,(L), K, (L) = o(OPT(L))

3. A¢ requires only a constant number, say C, of repackings via A in each stage.

We now show that the third condition insures that the overall running time of A, on a list of n
items is T4_(n) = Ta(n) logn. First, we note that each item is packed only once via NF' (when the
item is being inserted) and repacked up to C(k +1) = Of(logn) times via A. Since the running
time required to pack each item via NF'is O(1), the total running time spent on packing via NF' is
©O(n). Furthermore, since each repacking requires O(T4(n)) running time and there is a logarithmic
number of repackings, all the repackings require a total of O(T4(n) logn) running time. Finally,



A (x):
L' = append(L, x);
pack z using NF;
if A, (L") > bound then
repack L using A;

A(L)-K (L) |.
o = [ (W-Kam) |,

bound = [(R(A) + €)a| + Ka, (L);
pack z using NF;®

endif;

L =1

“Here only the A(L)-th bin of the packing most recently produced by A on L is con-
sidered to be open, while the other bins are closed for insertions via NF.

Figure 1: Algorithm A..

since T'4(n) = Q(n), the overall time required to pack n items via A, is O(T4(n) logn), which is
O(TAT(") logn) amortized running time per Insert operation.
We next establish a sufficient condition to guarantee that A, requires only a constant number

of repackings via A in each stage.

Lemma 1 Let OPT; be the size of the optimal packing immediately after the i-th repacking (i > 0)
via A. If there exists a constant B > 0 such that, OPT;11 > OPT; + [BOPT;]|, then the number of
repackings via A in every stage is bounded by a constant.

Proof: The number of repackings in the first stage is 1, thus trivially bounded by a constant.

It follows from the hypotheses of the lemma that for every ¢ > 0, OPT;; > OPT;(1+ ). Now
suppose that for some i(-th repacking a stage other than the first stage has just begun. How many
repackings will there be by the end of that stage? Let C denote the number of repackings in that
stage. By the definition of stages and the hypotheses of the lemma,

1
NS A > : ¢ —— = .
20PT;, > OPT;y,c > OPT;(1+B)° = C < s T D) O(1)

O
Algorithm A, is given in Figure 1. The variables L (the list of items) and bound should
be initialized prior to the first execution of A.: L = (), and bound = 2v (the value of v will be
specified later). The description of the algorithm outlines only the essential features; certain details
regarding the maintenance of information necessary for answering the queries are omitted; their
implementation can be easily done within the allowed time bounds.
Note that in A the variable « offers, after each repacking via A, a lower bound on OPT(L).
It is used to provide a conservative estimate of R(A¢)OPT(L) + K 4. (L), the value that should not
be exceeded in order to comply with the competitive ratio of R(A,).
The algorithm is not yet completely specified, since the values of v and K4 (L) are not yet
determined. This will be remedied as the main ideas behind the algorithm A, are explained.



Recall that the goal in the design of A, is not only to achieve the desired competitive ratio,
but also to insure that there are but a constant number of repackings via A at each stage. It is
precisely this requirement that requires a careful selection of v and K 4, (L).

The technique that is quite sufficient to insure the growth of the optimal packing between the
i—th and 7 + 1-st repacking by at least [3OPT;]| (see Lemma 1) is to require NF to pack at least
twice as many bins, i.e., > 2 [BOPT;| bins between the two repackings. Since the competitive ratio
of NF is 2, this will add at least the required number of bins (i.e., [3OPT;] bins) to the optimal
packing. Unfortunately, we are not able to implement this directly in A, since we do not know the
value of OPT;. We do accomplish this by the use of v and K 4_(L) in the following way.

Let the required number of bins packed by NF between two repackings be denoted as A;. We
desire that:

A; > 2[BOPT;] .

We will now refine this condition and demand a stronger inequality. The value of A; will be
underestimated by | R(A¢)a + K4, (L)| —[R(A)a + K4(L)] and the value of OPT; is overestimated
by [R(A)a+ K4(L)], where a denotes the variable from the description of A,. It is then desired
that the following must hold:

|R(Ae)ar+ Ka, (L)] — [R(A)ar + Ka(L)] = 2[B[R(A)a + Ka(L)]] -

Clearly, then A; > 2 [BOPT;] will follow. The above inequality can be satisfied if we insist that:
(R(A) +e)a+ Ka (L) —1— (R(A)a+ Ka(L) +1) > 2(B(R(A)a + Ka(L) + 1)) + 2,
which after some elementary steps yields:
(e —2BR(A))a + (Ka (L) — Ka(L)) — 2> 28Ka(L) + 203 +2.

If the condition K4 (L) > K4(L) is met, then a yet more refined inequality can be written:

(e —28R(A))a > 2(B(Ka(L) + 1) +2).

The above inequality suggests that there is considerable flexibility with respect to the choice of
(. In particular, the value of 8 can be fixed to any value conforming to the inequality € > 28R(A),
ie.:
€

b < 3Rty

Further, the above inequality also suggests that the required growth of the value of the optimal
packing between any two repackings can be certainly achieved if:

NQELUIUESIES)
- e —26R(A) '

This requirement will be met if the initial packing via NF requires at least 27y bins, where v can
be found as follows:

)2 |



This condition is the reflection of the scenario where NF would achieve its worst possible packing
on the initial items, whereas A would produce an optimal packing. Some elementary steps yield
the following bound on the value of integer ~:

v = Ka(L) B(Ka(L)+1) +2)
RA) 2% e—28r(A) 1
Further simplification yields:
K4(L 1 2
+ > 2R(A) (ﬁ( 6“‘_(223;(2; 4 1) + Ka(L).

By the discussion about the worst possible scenario above, it will suffice to set v and K4_(L)
to:

BKa(L)+1) +2
e —26R(A)

= Ka(l) > [23(,4) ( + 1) + KA(L)-‘ .
Note that this condition guarantees K 4_(L) > K4(L), as well as all of the other requirements. This
completes the proof of Theorem 1.

a

Corollary 1 1. For every € > 0 there is a (1 + €)—competitive approzimation scheme A, for
partially dynamic bin packing that requires O(logn) amortized time per Insert operation.

2. For every € > 0 there is a (1 + €)—competitive fully polylogarithmic approzimation scheme A,
for partially dynamic bin packing that requires O(log2 n) amortized time per Insert operation.

Proof:
1. Immediate from Theorem 1 and the results from [5].

2. Immediate from Theorem 1 and the results from [13].

4 Conclusion

The open questions related to this paper concern the competitive ratio achievable with uniform
running time, and the practicality of the algorithms A, in the case of amortized running time.
Recall that in the uniform case the best known competitive ratio for partially dynamic bin packing
is % [9]. However, that algorithm was not designed specifically for partially dynamic packing. It is
possible that the development of partially dynamic algorithms for bin packing could benefit from
the fact that Deletes would not be required. In the case of the amortized running time, we note
that the efficiency of algorithms A, is by and large determined by the efficiency of their respective
“building blocks” A. In particular, if the design goal is to develop a partially dynamic bin packing
algorithm (with a good amortized running time) with a small competitive ratio, developing an
entirely new algorithm which would not rely on very good but very slow building blocks (e.g.,
[5, 13]) might be a preferable approach.
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