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Abstract

A fully distributed protocol for adaptive broadcast scheduling in multi-hop packet radio networks
is presented. This method requires neither a central computing site nor individual stations to main-
tain global information other than that of a global clock. A station determines its actions solely on
information that concerns the transmission status of its one-hop and two-hop neighbors. This fact
allows a fully distributed implementation (the first such for broadcast scheduling), and makes the
method highly adaptive. The protocol that we describe is comprehensive in: having each station de-
termine its own slot(s) in the schedule; allowing multiple stations to simultaneously run the scheduler
portion of the protocol; allowing stations in non local portions of the network to remain operating
even while other stations are joining or leaving the network; allowing stations to utilize otherwise
empty slots; and, from a theoretical viewpoint, having a constant competitive ratio.

1 Introduction

A packet radio network (PRN) is a network of stations (also known as transceivers) that communicate
by sharing a common channel. By way of this common channel, the transmission of a station can be
received by all of the stations within its transmission range.

PRNs provide robust communication, can be rapidly deployed in any type of terrain, and hold great
promise for providing easy to use, mobile military communications services. However, sharing a common
channel poses many technical difficulties in the aspect of channel access control. This paper discusses
those challenges and presents a fully distributed broadcast scheduling method with many distinguishing
qualities.

1.1 Basic broadcast scheduling concepts

In a broadcast packet radio network, it is required that the transmission of a station be received collision
free by all of its one-hop neighbors. To be collision free it is required that no station transmits and
receives simultaneously and that no station receives from more than one station simultaneously. A
collision caused by transmitting and receiving simultaneously is a primary conflict. A collision caused
by receiving from different stations simultaneously is a secondary conflict.
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The task of a broadcast scheduling algorithm is to produce and/or maintain an infinite schedule
of slots! that each station in the PRN is periodically assigned a slot for transmission and so that all
transmissions are received collision free. In this framework, all of the existing broadcast scheduling
algorithms operate by producing a nominal schedule in which each station is assigned exactly one slot
for transmission and then indefinitely replicating that nominal schedule to produce an actual broadcast
schedule.

As is common in prior works, we assume that all of the radio links in a PRN are bi-directional, that
stations utilize a uniform transmission range R, and that the transmission of a station will be received
by all stations within a Euclidean distance R. Thus, the topology of a PRN is naturally modeled by a
unit disk graph[1] G = (V, L, R). In this model, each station in the PRN is denoted by a node in a graph.
Bi-directional radio links in the PRN are denoted by graph edges, with an edge existing between nodes
u and v if and only if the Euclidean distance between stations v and v does not exceed R. Relevant to
broadcast scheduling and such graphs is the problem of distance-2 coloring:

e Given a graph G = (V, L), produce an assignment of colors C : V. — {c1, ¢2, ...} (where ¢, ca, - ..
denote symbolic names for different colors) such that no two nodes are assigned the same color if
the two nodes are distance-2 neighbors (i.e. the distance between the nodes is 1 or 2).

e An optimal solution is a coloring utilizing a minimum number of colors.

Broadcast scheduling is directly abstracted to distance-2 coloring. In this abstraction, slots that
are assigned to stations are translated into colors that are assigned to nodes. It can be seen that a
schedule free of collisions is a schedule in which no two stations are assigned the same slot/color if the
two stations are one-hop or two-hops from each other (one or two away neighbors). In this paper, we
will interchangeably use the terms PRN and graph, station and node, slot and color.

1.2 What is adaptive broadcast scheduling?

Historically, broadcast scheduling algorithms have assumed that the network topology is provided in its
entirety to the scheduling algorithm, and the algorithms have been designed with the goal of producing
a schedule for all stations in the network. The presumption has been that in the event that the network
topology changes, then the algorithm is rerun for the entire network. However, as radio networks are
evolving towards the direction of thousands of stations spread over a very broad geographical area and
operating in an unpredictable dynamic environment, the use of such off-line scheduling algorithms is
not realistic. In practice, it is absolutely unaffordable to halt all communication whenever there is a
change in the network, so as to produce a new schedule from scratch.

In such circumstances, adaptive algorithms are required. That is, given a schedule for a PRN, if
that PRN changes (by the joining or leaving of a station), then the schedule should be appropriately
updated to correspond to the modified PRN. Thus, an adaptive algorithm for broadcast scheduling is one
that, given a PRN, a broadcast schedule for that PRN, and a change in the PRN (i.e. either a station
joining or leaving the network), produces a broadcast schedule for the new PRN. The twin objectives
of adaptive algorithms are much faster execution (than an off-line algorithm that computes a complete
new schedule) and the production of a provably high quality schedule.

'Term slot have different meanings in different contexts. For example, in the context of FDMA, a slot means a band
of frequency in the context of TDMA, a slot means a time slot. In this paper, TDMA is assumed. Although we have this
assumption, the adaptive scheduling method can well be applied to the contexts of FDMA and CDMA



1.3 An overview of earlier results

Fized channel access has been an active research area for a decade as a promising technique for channel
access control in multi-hop packet radio networks. A number of methods have been proposed, all of
which rely on the production of a nominal schedule that is then replicated indefinitely. The natural
goal in these earlier works has been to minimize the length of the nominal schedule.

1.3.1 Competitive ratios in earlier algorithms

Virtually all of the work on broadcast scheduling has dealt with the off-line case [2, 3, 4, 5, 6, 7].
Together these works considered both theoretical and experimental evaluations of schedule quality.

From the theoretical side, all of the existing work is based on the nominal schedule approach men-
tioned above. In that context it is known that for PRNs modeled by arbitrary graphs, finding an
optimal nominal schedule is NP-complete [8, 4, 9]. Thus, the primary focus of earlier work has been
on producing good, though non-optimal schedules. In the context of such approzimation algorithms for
broadcast scheduling, the standard measure of the goodness of the algorithm is it’s competitive ratio.
That is, the length of the nominal schedule produced by the approximation algorithm to the length of an
optimal nominal schedule. The earliest results on competitive ratios for broadcast scheduling appeared
in [4], where a centralized greedy algorithm is presented having a competitive ratio proportional to the
maximum node degree. In [10] it was shown that for arbitrary PRN topologies (i.e. the topology need
not be a unit disk graph) then the competitive ratio of the algorithm in [10] is O(p), where p is the
thickness? of the graph. It follows that the competitive ratio is a constant when the PRN topology is
planar. The first modeling of PRN’s by unit disk graphs appeared in [2]. In later work focusing on
unit disk graphs [7] it was shown that a number of the off-line algorithms have competitive ratios of 13.
The strongest results to date present algorithms with competitive ratios of 7 [7]. Finally, in the only
existing work on adaptive methods, a family of three adaptive algorithms is presented in [11]. Each of
these methods has a competitive ratio of 13.

From the experimental side, there are a number of studies on various broadcast scheduling algorithms
[3, 7, 10, 6]. These studies have shown that the strongest of the existing broadcast scheduling algorithms
in the off-line case for PRNs modeled by unit disk graphs are those of [7] and [3], each of which typically
produces nominal schedules within 12% of the optimal length nominal schedule. Likewise, the strongest
of the adaptive algorithms presented in [11], typically produces nominal schedules within 20% of optimal.

1.3.2 Deficiencies of earlier methods

Although existing research has been successful in elucidating the complexity of broadcast scheduling
based on the production of a nominal schedule, all of the earlier work exhibits major deficiencies of one
sort or another:

o All of the existing algorithms require either that a priori knowledge of the topology of the en-
tire network be maintained at a central computing site [4, 3, 10, 7] or require that some global
information (such as an existing schedule length) be maintained at each station [5, 11]. These
requirements severely restrict the ability to implement the method in a highly distributed fashion.

e All of the existing methods operate under the “one station at a time” principle in computing the
nominal schedule. Most of the methods are centralized, in that the nominal schedule is computed
at a single site and then distributed to the other nodes in the network. When computing the

2The thickness of a graph G is the minimum number of edge-disjoint planar subgraphs into which G can be partitioned



nominal schedule at the central site, the algorithm necessarily operates sequentially in determin-
ing the slot for each node in turn. In practice, these methods are infeasible due to the long delay
times required to distribute the schedule. Existing non centralized methods (such as [5]) allow
computation to occur at each node in the network to compute the slot for that node in the nom-
inal schedule. Unfortunately, these computations are done sequentially, for example the method
presented in [5] requires that a token be passed around the network, with a node computing only
when it holds the token.

With one exception [11], the methods are not adaptive. That is, given a nominal schedule for
a PRN, and given a change in that PRN (for instance, a new station joins the network), earlier
algorithms completely recompute the nominal schedule, rather than trying to adjust the existing
schedule.

The methods make no attempt to utilize unused slots in the broadcast schedule (this will be
discussed further in section 2.4).

The scheduled networks have poor performance in situations where traffic is unbalanced and/or
bursty. In such situations, some of the stations with heavy transmission requirements during a
period may be forced to drop packets for lack of transmission time while other stations may let
their scheduled slots go unused.

As a result of the above, all of the existing broadcast scheduling methods lack scalability and/or
adaptiveness. Thus these methods are impractical for large scale multi-hop packet radio networks where
thousands of stations are spread over a broad area and topologies change constantly and unpredictably.

2 FDAS—A Fully Distributed Method For Adaptive Scheduling

In this section, we present a fully distributed method for broadcast scheduling. We assume only that
stations have the capacity of global slot synchronization.
The protocol that we present is distinguished in the following ways:

No global information is required, either in central or individual sites. Rather, a station schedules
itself after collecting information from it’s one-hop and two-hop neighbors.

The method is fully distributed. Thus, multiple stations can simultaneously run the scheduler
portion of the protocol, and stations in non local portions of the network can transmit normally
even while other stations are joining or leaving the network.

The relative overhead in the network bandwidth is minimal.
The method has a constant competitive ratio (though admittedly large: 26).
Stations have the capacity to utilize otherwise unused slots.

Stations can temporarily adjust the schedule locally to provide good utilization of the network
bandwidth when the traffic is unbalanced and/or bursty.

In summary, the protocol presented in this paper not only can be implemented in a highly distributed
fashion, but also has the flexibility to adjust the schedule in response to traffic changes and various traffic
patterns. We term this protocol Fully Distributed Adaptive Scheduling (FDAS).

There are three aspects to the protocol that we present: the basic scheduling method, the adaptive
aspect and the distributed aspect. In the three sections that follow we address each of these in a
cumulative fashion.



2.1 The basic scheduling method (non-adaptive)

In this section we describe the basic scheduling method. Our description here focuses on the method
itself and not on the distributed implementation aspect, which we will be dealt with in a later subsection.
It 4s the case that the method very much facilitates the distributed implementation, particularly in
comparison with earlier scheduling methods.

Diverging from the “nominal schedule” approach taken by existing algorithms for broadcast schedul-
ing, we consider a scheduling framework that focuses on determining two essential components for each
station: its transmission slot and its transmission cycle. Here, the station transmits for the first time
in its transmission slot, and then every transmission cycle number of slots thereafter. Clearly, the
transmission cycle is a fixed number of slots between two consecutive transmissions.

Note that the schedules produced using the nominal schedule approach can be also be framed in this
context. There, although the term transmission cycle is not explicitly mentioned in any of the existing
protocols for broadcast scheduling, each of these protocols implicitly utilizes the maximum number 3
for indexing the slots in the nominal schedule as the uniform transmission cycle for each station. Hence,
each station needs to know not only which slot it is assigned, but also the maximum indexing number
in the nominal schedule.

The approach we take in this paper is that a priori there is no reason why each station must utilize
the same transmission cycle as every other. All that is required is that transmissions be received
collision free and that each station have a periodic opportunity to transmit. Our algorithm operates
using nonuniform transmission cycles. By so doing we enable each station to produce its transmission
slot and transmission cycle locally, without the need for global information. Obviously these selections
need to be made carefully so that collisions are never present.

Transmission Slot Since the transmission slot specifies the first time that a station transmits, the
assignment of a transmission slot to a station is virtually identical to the problem faced in algorithms
using the nominal schedule approach. Specifically, a transmission slot must be assigned to a station so
as not to conflict with the transmission slots of the station’s one-hop and two-hop neighbors. This is

identical to the problem of distance-2 coloring, and we use the coloring terminology in what follows.
A slot assignment protocol T_-SLOT-ASSIGN is given below.  There, min_conflict_set(A)
constructs the set of nodes that will have to re-

proc T_SLOT_ASSIGN (A) colored as a result of A joining the network. It
begin does this in the following fashion: This “mini-
RECOLOR_LIST + min_conflict_set(A); mum conflicting set” is initially empty. Then,
decolor the nodes in RECOLOR_LIST; for each color (transmission slot) ¢, the proce-

add A to RECOLOR_LIST; dure identifies all of those nodes of color ¢ that

while RECOLOR_LIST # NULL do
v < node in RECOLOR_LIST most
constrained by distance-2 neighbors;

will conflict once A joins the network. These
nodes are the direct neighbors of A that are col-

T_SLOT(v) + least color unused ored c. These nodes are all placed into the min-

by its distance-2 neighbors; imum conflicting set, except for the one that is

delete v from RECOLOR_LIST od most constrained by its distance-2 neighbors

end. (the node not placed into the minimum con-

flicting set is allowed to retain its color of c).

3For clarity, we establish a one-one correspondence between the slots in a schedule with natural numbers. That is, we
index the slots in a schedule with positive numbers 1, 2, 3, ....
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The number in the bracket on the left side of each node indicates the transmission slot of that node.
Nodes ng, ny. na, nz, N4, N5, Ng, Ng, Ng, N1z, N2g,Nos and Nog have transmission cycles of 8, while
all other nodes have transmission cycles of 16. An initial segment of the schedule induced by these
transmission slots and cycles is shown below.

1 2 3 4 b) 6 7 8 9 10 | 11 12 13 14 |15 |16 || 1
ni Ne ng n2 ng No nr Nn21 | N2s n
N4 ns Ni4 | N10 | N13 | Ni6 | N5 Ny
ns Ni7 | N22 | N12 | N2 Nig n1 Neg | Ny N2 n3 No ns
n11 23 | N20 T4 ng | Na24 | N12 | N26 11
n18 124 Ny 720 718

Figure 1: Schedule derived from non-uniform transmission cycles

Transmission Cycle Before describing how each station’s transmission cycle is determined, we re-
quire one piece of terminology: Given a station n, the unit subset controlled by n or the unit subset of
n consists of the station n and all of its one-hop and two-hop neighbors.

Now, suppose that all stations have been assigned transmission slots. Consider a station n, and let
Cr, denote the maximum transmission slot of any station in the unit subset controlled by n. Then, the
transmission cycle for station n is set to the least power of 2 that is greater than or equal to C,,. We
term this method STP — Simple Two’s Power. Figure 12 provides an example of a schedule derived
from transmission slots and cycles.

In utilizing, the transmission slot and cycle approach, the critical element is that there are never
any conflicts in the resulting schedule. The following theorem establishes that this is indeed the case:

Theorem 1 For any two stations A and B that are one-hop or two-hop neighbors, if A and B are
assigned transmission slots and cycles as specified above, then A and B never transmit in the same slot.

[proof] Let station A and station B are two arbitrary stations that are one-hop or two-hop away.
Suppose the slot numbers in a conflict free nominal schedule for A and B are S4 and Sp separately.
Since A and B are within two-hops with each other and S4 and Sp are the slot numbers for A and B
separately in a conflict free nominal schedule, so, we have:

Su # Sp (1)



Suppose the maximum number for indexing the slots for stations in the unit subset controlled by A is
C4 and the maximum number for indexing the slots for stations in the unit subset controlled by B is
Cp. Then, clearly,

1<854<Cy (2)

1< S <Ch (3)

Since we assume A and B are one-hop or two-hop neighbors, clearly station A is in the unit subset
controlled by B and station B is in the unit subset controlled by A. Thus, we have:

1<84<Cp (4)

1<Sp<Cay (5)
By STP, the transmission cycle T4 for station A is set to the number such that:

Ta=2P>Cy (6)

where p is the least positive integer such that 2P > C4. Similarly, the transmission cycle T’g for station
B is set to the number such that:

Tp=21>Cp (7)
where ¢ is the least positive integer such that 2¢ > Cp. Thus, by (2), (5) and (6) we get:
| Sa—Sp|<2P -1 (8)

Since the transmission cycle for station A is T4 and the slot number for A in the nominal schedule
is S4, so station A’s actual transmission schedule is expressed as:

Sa+ 8Ty =84+ 25 s=0,1,2,... 9)
Similarly, station B’s actual transmission schedule is expressed as:
Sp+tTg =S+ 2% t=20,1,2,... (10)

Suppose by way of contradiction that station A and station B might collide by STP, then there must
be a s; € {0,1,2,...} and a t; € {0,1,2,...} such that

Sa+2Ps; =Sp + 29t (11)
Thus, by the equation above, we have:
SA—SBZth1—2p81 (12)

For (12), we have the following two cases:
Case (I):p=gq.
For this case, we have:
Sa—Sp=2P(t1 — s1)

So, if t; = s1, then S4 = Sp which is a contradiction to (1). If ¢; # s1, because t; — s1 is an integer, so
| S4 — Sp |> 2P which is a contradiction to (8). Thus, it is impossible that A and B would transmit at
the same slot if p = g.

Case (II): p # q. Without loss of generality, we assume ¢ > p. That is, ¢ = p + r where r is a
positive integer. Then, we have:

SA - SB = 2p(2rt1 — 81)

So, if 2"t; —s1 = 0, then S4 = Sp which is a contradiction to (1). But if 2"t; — s1 # 0, because 2"t; — s1
is an integer, then | S4 — Sp |> 2P which is a contradiction to (8). Thus, it is also impossible that A
and B would transmit at the same slot if p # g. O



2.2 Making the method adaptive

As noted earlier, it can be expected that in a large scale packet radio network, some of the stations may
expectedly or unexpectedly join or leave the network. In this case, managing the joining and leaving of
stations to ensure smooth operation of the network is among the most important functionalities for a
protocol for scheduling a broadcast radio network. In this section we describe how to extend the basic
scheme outlined above to this situation. As above, we specify the algorithm in a centralized fashion,
leaving the distributed aspects for the following section.

2.2.1 Adaptive method: Joining of Stations

Joining of stations is easy since an existing schedule can be updated to include the joining station simply
by running the procedure T_SLOT_ASSIGN (which may modify the transmission slots for all one-hop
neighbors of the joining station) and then recomputing the transmission cycle for each station in the
unit subsets of any station whose slot was modified. The only additional issue is that some coordination
is required to assure that all stations, old and new, are operating under an identical point of reference
relative to the start of the schedule. The details of this coordination are described in subsection 2.3.1.

2.2.2 Adaptive method: Leaving of Stations

The leaving of a station from the network cannot

proc DELETION(A) introduce conflicts into the schedule. The only
begin scheduling effect produced by the leaving of a sta-
for each one-hop neighbor u of A do tion is that the transmission cycles of some of the
decrease degree of u by 1; stations may now be longer than necessary. Thus,
recompute D (u); when a station leaves the network, some adjust-

7.5 LOT(“_) > D(u) ments of the schedule may be appropriate. These
then greedily recolor u; fi od

for each two.hop neighbor v of A do adjustments concern the t_ransmission slot assign—
T decrease D(v) by 1; - ment of nodes in the unit subset of the station
if T_SLOT (v) > D(v) that has left. The details are provided on the left.

then greedily recolor v; fi od

end. 2.2.3 The competitive ratio

As noted earlier, the competitive ratio of an algo-
rithm is a standard measure of the performance
of an approximation algorithm. In the context of broadcast scheduling based on transmission slots and
cycles, we define the competitive ratio to be the ratio of the maximum transmission cycle produced by
the algorithm to the optimal maximum transmission cycle. In this section we establish a competitive
ratio of 26 for FDAS (we doubt that the bound is tight).
We begin by stating a key lemma. The proof of the lemma is a somewhat involved analysis of the
geometry related to unit disk graphs and is omitted from this extended abstract.

Lemma 1 Letting R be the uniform communication range of the PRN, and letting p be an arbitrary
station, consider a circle of radius 2R centered at p, with two rays emanating from p that intersect the
circle at points by and be. If | bibe |< R, then any two stations within the section pbibe are necessarily
one or two-hop neighbors.

Theorem 2 FDAS has a competitive ratio of 26.



Proof: Given a node v, let SLOT(v) denote its transmission slot and let D(v) denote its num-
ber of distance-2 neighbors. An analysis (omitted here) of the procedures T_SLOT_ASSIGN and
DELETION establishes the invariant that for any node v SLOT (v) < 1+ D(v).

Let C = Max{D(v1),D(vg),...,D(v,)}. It follows that the maximum transmission slot assigned
by FDAS does not exceed C' + 1. By the above lemma it can be concluded that the ratio of the
maximum transmission slot to the optimal maximum transmission cycle is bounded above by 13. Since
the maximum transmission cycle is less than twice the maximum transmission slot, the competitive
ratio of 26 follows. g

2.3 A distributed implementation

The key to producing a distributed implementation of the protocol described above is to note that the
scheduling of a station requires NO global information. Rather, information is required only from one
and two-hop neighbors of the station. In this respect, implementing the algorithm in a distributed
fashion is straight-forward — from the perspective of an individual station, its actions in regard to
scheduling precisely follow the method outlined above. The only complications arise in the communi-
cation aspects, including station registration when joining the network, coordination of geographically
close stations attempting to run the protocol in an overlapping fashion, and coordination of station
actions when a neighboring station leaves the network. Below we discuss these issues in detail.

2.3.1 Distributed method: Joining of Stations

There are two primary issues associated with the joining of a station. First, is the identification of the
station to its one-hop neighbors in the network. This situation becomes complicated if more than one
station appears in the network (almost) simultaneously and are at locations so that the newly appeared
stations will be one-hop or two-hop neighbors. We term this task registration. The second is running
the actual joining protocol, which includes collecting information concerning local configuration and
schedule and handling transmission slot conflicts that arise among existing nodes as a result of the
joining of this station. We term this task resolution. We address each of these in turn.

Registration

To facilitate joining of new stations, we insert a special slot between every k slots. We will refer to
this type of special slot J_slot — Joining slot.

Each J_slot consists of 4 sub-slots which will be referred to as B_subslot, R_subslot, C_subslot and
H_subslot separately and are arranged in that order. In a sub-slot of a J_slot, a mini-packet which is
at most a few bytes long might be transmitted. As with the case for a normal time slot, a sub-slot of
a J.slot has a duration that is just long enough to transmit a mini-packet and for the mini-packet to
reach at the most distant one-hop neighbor of the transmitting station.

The determination of the integer k depends on the particular convergence of factors, including
the frequency of joining of stations in a local area, the ratio of the transmission delay, the maximum
propagation delay of the packets, etc. The goals here are to minimize both the overhead on the network
bandwidth and the time required for a station to join the network. It is clear that the above two goals
conflict with each other. Thus, k is required to be chosen by balancing the trade-offs between overhead
and joining time. Figure 2 presents an example of the arrangement of the time slots in which & is
set at 8. Suppose in this example, a normal/data packet has a length of 1024 bytes, the ratio of the
transmission time of a normal/data packet over the maximum propagation delay is 20 and the mini-
packets that are transmitted in the sub-slots of a J_slot have a length of 4 bytes, then the overhead by
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separately.

Figure 2: Arrangement of Time Slots

Figure 3: procedure for registration

having registration slots is only about 2.5 percent.

The purpose of the registration procedure is to make the joining station known to its one-hop
neighbors. In case more than one stations appear at locations within a range of two-hops, the protocol
forces that only one station will be able to make a successful registration and continue joining process.
The joining station that has been successful in registration is called a head to its one-hop neighbors.
All other joining stations that are within two-hops of a head are necessarily refrain themselves from
joining temporarily until the station that has succeeded in registration finishes its joining process.
The procedure that is implemented by a joining station for registration is outlined in Figure 3. The
procedure that is implemented by an on-line station in a J_slot is outlined in Figure 4.

The first action to take by a station, say station A for joining the network is to synchronize itself
with the global time slot. After that, it makes effort to establish itself as a head.

As is illustrated in Figure 3, when a J slot comes, A listens to the network in the B_subslot. If it
receives something (a Control B or collided Control Bs) in the B_subslot, it means that there is already
a head within two-hops with it. So, in this case, station A will continue to wait until an empty B_subslot
is encountered.

If A has detected an empty B_subslot, it broadcasts a mini-packet (called Control_R) in the following
R _subslot to make a request for registration. If A did not detect a collision when it was broadcasting
its Control_R and it receives nothing in the following C_subslot, then it can determine that there was
no other station within one-hop or two-hop of it that was also making a request for registration at the
same time as it did. Since in this case A was the only one within a range of two-hops around it that
made a request for registration, it will establish itself as a head by broadcasting a mini-packet (called
Control_H) in the H_subslot. Since when A broadcasts its Control_H, no other station within two-hop
with it also claims itself as a head and till that time all of A’s one-hop on-line stations have no head, the
Control_H broadcasted by A will be received collision free by all of its one-hop neighbors. For a on-line
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station, say station B, if it currently has no head and receives a Control_H in a H_subslot, it will record
the source of the Control H as its head. After an on-line station has a head, the on-line station will
broadcast a mini-packet (called Control B) in each B_subslot that follows till its head finishes joining
the network.

Suppose station A has claimed itself as a head. By having each of its one-hop neighbors broadcasts
a Control B in the following B_subslots before A finishes its process of coming up on-line, it can be
sure that no other joining station within two-hop of A sends out a request for registration during this
period.

If otherwise after A has encountered an empty B_subslot, when it was transmitting its Control R
in the R _subslot, it detected a collision or after it transmitted its Control R, it received a Control C in
the C_subslot, it can determine that there is other station within two-hop of it that was also trying to
register. In this case, A will continue its effort for registration by contending with those stations. The
contending method might be one such that A transmits its Control_ R in a certain probability in each
of the following R_subslots until it succeeds or some other station(s) within two-hop of it succeed.

Resolution After a station establishes itself as a head, it needs to collect information concerning the
configuration and current schedule of its one-hop and two-hop neighbors. Then, it can run the scheduler
to work out a schedule for itself and modify the schedule for some of its one-hop neighbors when there
is a necessity.

It can be seen in Figure 5 that simultaneous modification of a schedule (by running T_SLOT_ASSING)
by two different stations that are one-hop or two-hop or three-hop or four-hop away may result in con-
flicts in the nominal schedule. It is also clear that the procedure for registration only guarantees that
no two heads are within two hops. So if two heads are three-hop or four-hop away, it is required for the
procedure for resolution to enforce that only one head runs the scheduler at a particular time. This is
done by the coordination of the on-line stations. The procedure is as follows (See Figure 6). Suppose
station A is currently a head of B. Before station B sends out its local information for A to run the
scheduler, it contacts its on-line neighbors to get a sense whether or not it is an appropriate time for
its head to run the scheduler. That is, in the next packet that B sends out in the regular time slot, it
includes in the packet the information on when its head claimed to be a head and the ID (identification)
of its head. For convenience of description, we term such a piece of information HR1(Head Report to
One-hop neighbors) and a HRI that is broadcasted by B is denoted by HR1(B). Upon receiving a HR1
by a on-line station, say F', F' records the information and passes the information to the two-hop neigh-
bor(s) of the source of the HRI in the form of HR2(Head Report to Two-hop neighbors). If it happens
to be the case that before F' sends out the HR2(B), it has a new head that hasn’t been reported, F
includes both the HR2(B) and its HR1 in the next packets it transmits in the regular time slot. Suppose
as is illustrated in Figure 6, there are other stations that are within four hops with A are currently
heads. Suppose the current maximum transmission cycle of the stations in the unit subset controlled by
B is MT_B. Then after a period of 2TM_B, station B, will be able to get the up-to-date information
on the heads that are within three-hops with it. In the example illustrated in Figure 6, B will get (or
already has) the information about heads H and E. After B has collected the up-to-date information
on the heads that are within three-hops with it, it can decide whether or not it can transmit the local
information concerning configuration and schedule of the stations in its unit subset to its head. If in
its head list, there is some other head has a priority higher than its head, it will wait until its own
head become the one of highest priority. The priority of a head in a head list can be determined by
two factors. First, if a head is established earlier than another head, then the head that claimed to be
a head earlier has a higher priority. Second, if two heads claimed to be heads at the same H_subslot,
then the priorities of the two heads can be determined by some other static factor, say the IDs of the
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Station A and B are two joining stations. If A and B runs the scheduler T_SLOT_ASSING simulta-
neously, conflicts might arise as is illustrated in this figure. In this figure, the numbers in brackets
above on-line stations denote the slots assigned before the joining of station A and B; the numbers
in brackets below on-line stations denote the slots assigned after the joining of station A and B.

Figure 5: conflict arise by simultaneous modification of the schedule
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Figure 6: Information Exchange Between On-line Stations
two heads.

For a on-line station B that has its own head A, when its head becomes the one that has the highest
priority, it transmits in the regular time slot the local information necessary for its head to run the
scheduler. We term this information RI. If no other on-line station that is also in A’s communication
range conflicts with B’s transmission schedule or there are some, but none of them transmitted in the
time slot that B transmitted its RI, the packet containing B’s RI will be received collision free by A.
If A receives the RI from B, it will inform B by broadcasting a mini-packet with certain bit on in the
next R_subslot or C_subslot. If B doesn’t receive this confirmation, it can suspect that its broadcast
schedule is conflicting with the schedule of some one-hop neighbor(s) of A. B will retransmit its RI on
a random basis until B gets the confirmation from A. After A has claimed its head status and before
B’s RI has been correctly received by A, B needs to transmits a mini-packet called Control NA in each
of the H_subslot that it encounters. This way, A can know that it has not correctly received the RIs
from all of its one-hop neighbors. Thus, A is prevented from running the scheduler.

When no Control NA is received in a H_subslot, A can be sure that all of the information for running
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the scheduler is available. Then, A runs the T_SLOT_ASSIGN to determine a schedule for itself as well
as to resolve conflicts between its one-hop neighbors if there is any.

After A runs the scheduler, it needs to distribute the new local schedule to stations in its unit subset.
From the procedure T_SLOT_ASSING, it can be seen that A chooses a slot number that is different
from all of the slot numbers that are currently hold by other stations in its unit subset. Thus, the
distribution of the new schedule can be done in A’s own regular transmission slot. Note that, running
a scheduler itself only determines a relative slot number in the nominal schedule. Station A still needs
to figure out when it can transmit for the first time. The first transmission slot in execution schedule
for station A can be determined as follows. Suppose the last RI that was correctly received by A for
running the scheduler was sent by station B and Cp is the slot number for B. Suppose after running
the scheduler, A determines that its slot number is C4 and its transmission cycle is T4. Then, with
the time slot when A received the last RI from B as the starting point, A starts transmission after a
period of T4 + C4 — Cp where r(=0or 1 or 2 ...) is determined in real time situation. First, A can
not start regular time slot transmission until the new local schedule is computed. Second, after the new
schedule is computed, the first transmission time is determined by the three factors: Ca, 7)., and T2,
where T, and T?2 are separately the minimum transmission cycles of its one and two-hop neighbors.
Here we have three case.

e Oy < T,}l and Cy < T%. In this case, A begins distribution of the new schedule immediately in
its regular time slot that is determined by the formula above.

e Cy > T}4anddCy < T2. In this case, A waits till next J_slot and broadcasts its slot index
C4 in the R_subslot to its one-hop neighbors. After receiving the slot index of A, a one-hop
neighbor having a transmission cycle that is smaller than C4 expands its transmission cycle so
A’s transmissions in its regular time slots would not be collided. Then, after A broadcasted its
slot index in a J_slot, A begins distribution of the new schedule in its regular time slot.

e Cy > T2. In this case, A broadcasts its slot index in a J.slot and waits till all of its one-
hop and two-hop neighbors have received its index number and extend their transmission cycles
accordingly. Then A begins distribution of the new schedule in its regular time slot.

After A finishes broadcasting the new schedule and all of its one-hop neighbors that are assigned new
slot numbers have broadcasted their new slot numbers, A becomes a on-line station and can proceed
proper communication.

For a one-hop neighbor B of A, after it receives the new schedule and neighborhood information from
A, it modifies its local information and passes the relevant part of the new schedule and configuration
information to its one-hop neighbors. If B has a new slot number that is greater than the minimum
transmission cycle of its two-hop neighbors, it need to halt transmission until its relevant one-hop
neighbor(s) has/have a chance to broadcast the change to the two-hop neighbor(s) with a transmission
cycle smaller than the new slot number of B. After that, B deletes A from its head list; proceeds
communication by new schedule and stops transmitting Control_B in the subsequent B_subslots before
it has a new head.

For a one-hop or two-hop neighbor G of B, if B is assigned a new slot number that is greater than
the transmission cycle of G, upon receiving Cg, G expands transmission cycle accordingly. Then, G
deletes A in its head list. If at the moment, G itself has a head, it can check whether not or its own
head is the one of highest priority in its head list and act accordingly.

One last important note is that, during the whole process for a station coming up online, none of
the on-line stations needs to stop proper communication even for stations that are one-hop or two-hop
away of the joining station.
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2.3.2 Distributed method: Leaving of Stations

There are two aspects to the leaving of a station. First, is how stations in the unit subset of the leaving
station recognize that leaving. Second, there are the mechanics of adjusting the schedule.

Recognizing that a station is leaving There are two situations for the leaving of a station. One
is that a station leaves the network in an expected fashion, and the other is that a station leaves the
network unexpectedly (e.g. due to a malfunction).

In the former case, the station that is about to leave the network broadcasts a packet indicating
that it is leaving. After receiving such a message, each one-hop neighbor of the leaving station makes
appropriate adjustment in its local information concerning the schedule and the configuration of its one-
hop and two-hop neighbors, and passes the message along to it’s one-hop neighbors (they are two-hop
neighbors of the leaving station). Each two-hop neighbor of the leaving station, simply adjusts its local
information on the schedule and the configuration.

The situation is a more complicated for the latter case. There it may be that a station has nothing
to transmit during a period. So, if a station disappears without acknowledgment, the problem is how
can other stations around it tell whether the station is still on-line (but silent) or has disappeared?
To resolve this situation, we introduce a network parameter a: Maximum Silent Time. A functioning
station with transmission cycle T' must transmit (perhaps only a control packet) within every o7 slots.
If a station does not transmit within o7 slots, then its one-hop neighbors can safely assume that the
station has left the network, and proceed as above.

Adjusting the schedule Finally, we consider how the schedule is adjusted in accordance with the
deletion procedure given in the section on adaptive leaving of stations. Here, coordination is necessary
among the nodes in the unit subset of station A to avoid overlapping recoloring.

Suppose station B was in A’s unit subset. If, after deletion of A, it comes to a situation where B
needs to change its transmission slot, it broadcasts its new slot number for confirmation. If more than
one stations are making a change in their slot indexes and the new indexes of two stations that are
within two-hops are accidently the same, then the one that made the request earlier get the number.
Note that for two stations that are within two-hops with each other, it is certain that they can not
broadcast their request at the same time. Thus, with the request time-stamped, no deadlock can occur.
If a station’s request for changing its index number is denied by at least one of its one-hop neighbors,
it can choose another number and make another request.

2.4 Two extensions

In this section we briefly describe two extensions to the basic protocol outlined above. These extensions
are aimed at improving the practicality of broadcast scheduling and fit smoothly into the distributed
framework that we have described.

The first extension is to utilize the spare slots introduced by having the transmission cycles of some
stations exceed (perhaps by a factor of 2), the maximum index relevant to those stations. For instance,
a station S using transmission slot 3 and with one-hop and two-hop neighbors using slots 2, 4 and 5,
would operate with a transmission cycle of 8. In this circumstance, station S could also transmit in
slots 1,6, 7, and 8 with its transmission cycle of 8 without any collisions (assuming other stations in the
unit subset of S transmit only in their single transmission slot). Thus, the first extension provides the
capability for stations to claim and release spare slots as necessary.

The second extension is aimed at improving the network performance when the traffic is unbalanced
and bursty. Suppose for example, that a station S requires a number of additional slots and at the same
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time, most of other stations in its unit subset barely have anything to transmit. Even after employing
the first extension scheme, it may be the case that S has to drop packets while a number of slots used
by its one-hop and two-hop neighbors go unused. Our second extension provides a mechanism whereby
stations with low utilization of their transmission slot can temporarily allocate that slot to neighbors
having a need for additional slots.

Both of the above extensions can be implemented in the context of our basic scheme and in a fully
distributed fashion. The protocol details are as follows.

2.4.1 Extension_A

First let’s see the example illustrated in Figure 12. Suppose at a moment station n; sees a need of
getting more transmission time, for example the buffer for storing the transmission data has filled up
4/5 and the trend still continues. In the basic scheme, only slots that are numbered 1, 2, 3, 4, 5,6, 7, 9
on a cycle of 16 are occupied by stations in its unit subset. So, station n; can safely broadcast in slots
8, 10, 11, 12, 13, 14, 15, 16 without collision if all other stations stick in their basic schedule. Those
slots that can be taken by a station without causing conflicts in the basic scheme are called EA __slots of
that station.

If a station A in need of an extra slot and there is at least one EA slot available,i.e., has not
occupied by any other station in its unit subset, A can make a request to reserve an available EA _slot.
The EA_slot is time stamped. Thus, if two stations that are two-hop away has requested the same
EA _slot, the one that made the request earlier gets the grant. There is no restriction on the number of
EA slots that a station can reserve. However, a station can only request one EA slot at one time. And,
after it has successfully reserved one, the next request should be made after a period of the maximum
transmission cycle of the stations in its unit subset. Thus, other stations that also in need of extra slot
may get better chance to be granted.

If at a moment there is no need for a station to keep the reserved EA _slot, it can release that slot
by sending out a release so that other stations in its unit subset make appropriate modification in their
local information.

If at a moment a reserved EA _slot by A is assigned to a newly joined station or the EA _slot is
assigned to a one-hop neighbor of a newly joined station to resolve conflicts and the station that takes
the slot in the basic schedule is within two-hops with A, station A is forced to release that KA _slot
at the instant it receives the notification. That is, if a slot is utilized by a station B in the basic
schedule/scheme, the slot can no longer be an EA slot to any station within two-hop with B. In case
it is a forced release, the station that made the reservation still needs to announce the release so that
all of the stations within two-hops of it be informed of the situation.

2.4.2 Extension_B

Suppose during a period, a station has a heavy transmission requirement and no EA slot is available.
If it noticed that most of its one-hop neighbors do not have much useful traffic at the moment, it can
make a request to employ Extension_B.

Suppose station ns in Figure 12 is such a station at the moment. In this example, station ns has
8 as its transmission cycle in the basic schedule. If station ns makes a request to employ Extension B,
it means it tries to reserve every one of its two transmission cycles. That is, station ns will transmit in
slots 1, 9, 10, 11, 12, 13, 14, 15, 16 on a cycle of 16 if the request is granted. Thus, you can imagine
that a bunch of nodes that are colored with numbers 1, 9, 10, 11, 12, 13, 14, 15 and 16 are suddenly
appeared at the location where nj is located. Thus, some of its one-hop and two-hop neighbors might
need to yield half of their transmission time during the period that Extension B is in effective. If at
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least half of the stations in its unit subset give no objection, ns can inform the stations in its unit subset
that Extension_B will be executed. Otherwise, it gives up the attempt.

If the traffic burden is released to a certain degree after a station executes Extension B for a period,
it stops executing Extension_B and informs all other stations in its unit subset to restore back to basic
scheme.

In case Extension_A and Extension_B conflicts on some slots, Extension_A overrides Extension_B.

For a station A, in case a station in its unit subset has a head, A can not make a request to execute
Extension_B. During the time A is executing Extension_B, if a station in its unit subset becomes having
a head or the transmission cycle has changed, A stops executing Extension B instantly and makes a
announcement on its action.

3 Future Work

There remain a number of open problems in conjunction with the work described here. Among these,
the most important is to evaluate the performance of FDAS in practice. For this purpose, we are in
the process of implementing experiments on FDAS using the OPNET simulation tool. Our goal in
designing these simulation experiments is to obtain practical performance results on not only schedule
length, but also on: the average time for a station to come up on-line; the effectiveness of the two
extension schemes; throughput; and, end-to-end delay.
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