 Performance Analysis of Cost Optimization Algorithms

In Multimedia Gateway Call Routing
Qiwei Huang

UTStarcom Inc.

33 Wood Ave. South, Iselin, NJ 08830,U.S.A.

qhuang@utstar.com
Errol Lloyd

Dept. of Computer and Information Sciences

University of Delaware, Newark, DE 19716,U.S.A.

elloyd@cis.udel.edu
Abstract: Multimedia gateways are a recently emerged next generation telecommunication product that provides real-time, multi-way communications among different media networks, such as Public Switched Telephone Networks (PSTN), IP networks and wireless networks. When a call arrives at a multimedia gateway from a local media network, that gateway must route the call to one of the non-local media networks to reach the destination. In addition to call delay, which is measured by delay cost, calls routed to different media incur varying media costs. This paper investigates algorithms on multimedia gateways in regard to call routing aimed at minimizing the expected routing cost, which is the media cost plus the delay cost. We assume that calls have a Poisson arrival rate and exponentially distributed length. Both centralized and distributed queuing models are considered, and performance measures are derived.

Keywords: Multimedia gateway, Call routing, Cost optimization.
1. INTRODUCTION

Multimedia gateways interconnect different media networks (e.g. IP, PSTN, wireless, etc) and provide real-time, multi-way communications among them. The functionalities of multimedia gateways include call routing, call signaling conversions and media conversions. In regard to call routing, this paper studies algorithms to minimize the expected routing cost, which is the media cost plus the delay cost. In the remainder of this section, we briefly review multimedia gateway architectures and functionalities. In section 2, we describe the problem in detail. In section 3, we present our algorithms and analysis. Finally in section 4, we give our conclusions.

1.1 General Background Review

A typical multimedia gateway interconnection [1] is shown in Figure 1-1. There, two multimedia gateways, NYC and LA, are interconnected by three media networks: IP, PSTN and wireless. Each user is connected to a single local network. Each local network is connected to a single gateway. Figure 1-2 illustrates the internal architecture of a multimedia gateway [1]. A central controller is connected to each media controller through a control bus. Each media controller has its physical media interface connected to the media network, and it is responsible for the media access control.

Multimedia gateways perform three high-level functionalities [1]: call signaling conversions, media conversions and call routing. Since call signaling conversions and media conversions are not relevant to this paper, interested readers can refer to [1,2] for additional details.

[image: image1.png]Local IP

Local PSTN

Local

Wireless

NYC

GW

IP Network

PSTN Network

Wireless
Network

LA

GW

Local IP

Local PSTN

Local
Wireless

Figure 1 Multimedia Gateway Interconnection.

[image: image2.png]Central Controller

I

Control bus
Circuit media Packet media Wireless media
(PSTN) controller () controller controller

£ ETS Ex

Figure 2 Multimedia Gateway Internal Architecture.

1.2 Call Routing Review

When a call arrives at a multimedia gateway from a local media network, that gateway must allocate that call to one of the non-local media networks associated with the gateway. This is the functionality of call routing [1]. A channel is a physical resource that transmits and receives voice/data information. Each call is processed by one and only one channel, and cannot be pre-empted. Each media’s bandwidth is the number of channels available on that media. We assume that the bandwidth for routing calls to the non-local media networks is fixed. In centralized queuing, the queuing of the calls is completely handled at the central controller. The central controller decides when to route the calls depending on real time information about channel utilization as provided by each media controller. In distributed queuing, the queuing of the calls is distributed into each media controller. Each media controller decides when to process the calls routed by the central controller based on its channel utilization. Relevant to call routing, there are three costs. Media cost: Calls routed to different non-local media networks incur different media costs. Delay cost: When a call can’t be routed to a non-local media network upon its arrival due to the bandwidth limitation, a delay cost is incurred. Routing Cost: The routing cost is the media cost plus the delay cost. Note that the expected routing cost of a multimedia gateway is independent of the expected routing cost of the other gateways. Thus, throughout this paper, our focus is on a single multimedia gateway’s call routing in its non-local media networks.

Note that we can reasonably assume that the number of calls arrived/completed in one time interval is independent of the number of calls arrived/completed in another time interval. We can further assume that the call arrival and departure rates are constant over a period of time. Thus we use a Poisson process to model call arrival and departure.

2. PROBLEM DESCRIPTIONS

Considering a single multimedia gateway, the call arrival rate is a Poisson process with parameter
[image: image3.wmf]l

 and each call has an exponential call length with parameter
[image: image4.wmf]m

. The unit time delay cost is
[image: image5.wmf]d

C

 for each call. We assume that the size of the queue (for calls that cannot be processed immediately) is infinite. There are K non-local media networks connected to the multimedia gateway. Each media, denoted by
[image: image6.wmf](1,2,...)

i

MiK

=

, has unit time media cost
[image: image7.wmf]i

C

 for each call processed on this media. Without loss of generality, we assume that
[image: image8.wmf]12

...

K

CCC

<<<

. The bandwidth of
[image: image9.wmf]i

M

 is
[image: image10.wmf]i

m

, which is the maximum number of calls that can be processed simultaneously. Let
[image: image11.wmf]1

K

i

i

mm

=

=

å

 be the total bandwidth of all media. The goal of routing is to minimize the expected routing cost of calls.

[image: image12.png]Queuc in the central controller

=TI

Figure 3 Centralized Queuing Model

A centralized queuing gateway has one central queue in the central controller (Figure 3) [1]. The central controller routes a call immediately if there is an idle channel on any of its media. Otherwise, it places the call into the central queue and routes it later on a first come first served basis as soon as a channel becomes available on any of its media.

A distributed queuing gateway has one queue in each of its media controllers (Figure 4) [1]. After the central controller routes a call to one of the media controllers, the media controller processes the call immediately if there is an idle channel on that media; otherwise it places the call into its queue and processes it later on a first come first served basis as soon as a channel on that media becomes available.

[image: image13.png]Queue 1 in M, media controller

A4

—

()

Queue 2 i

media controller

Central controller

®

Queue Kin M, media controller

A

N~

Figure 4 Distributed Queuing Model

3. ROUTING PERFORMANCE ANALYSIS

In this section, we present our main results. In sections 3.1 and 3.2, we describe two routing algorithms: a greedy algorithm and a traffic splitting algorithm. These two algorithms are designed respectively for the centralized queuing model and the distributed queuing model. Sections 3.1 and 3.2 also contain the analysis of the algorithm performance, and for traffic splitting, a determination of optimal parameters for use in that algorithm. In section 3.3, we compare the performance of the two algorithms.

3.1 The Greedy Algorithm

A natural approach with centralized queuing is to utilize a traditional greedy algorithm: Upon the arrival of a call, if there is an idle channel on some media, the algorithm routes the call to the cheapest media where the call can be processed immediately; otherwise, the call is placed into the central queue and is routed later on a first come first served basis when a channel on any media becomes idle.

 The performance of the greedy algorithm in terms of the expected routing cost consists of the expected delay cost and the expected media cost. Recall that
[image: image14.wmf]1

K

i

i

mm

=

=

å

 is the total bandwidth of all media. If we let
[image: image15.wmf]G

W

 be the expected queuing time of a call, then from [1] and [4],
[image: image16.wmf]G

W

 is the expected queuing time of an M/M/m queue [3]:

[image: image17.wmf]1

1

1

00

2

0

()

, /1,

!(1)

!(1)!

mmn

m

mm

G

n

W

mm

m

qmq

m

mn

rr

r

rlm

mr

r

-

-

-

=

æö

ç÷

èø

==<=+

-

-

å

 (3.1)

The expected delay cost
[image: image18.wmf]GdG

DCW

=

 (3.2)

To derive the expected media cost, let
[image: image19.wmf]12

(,,...,,)

K

sssq

 be the state where there are
[image: image20.wmf]i

s

calls being processed by media
[image: image21.wmf](1,2,...)

i

MiK

=

 and q calls are in the queue. Let
[image: image22.wmf]12

,,...,,

K

sssq

p

 be the probability that the system is in state
[image: image23.wmf]12

(,,...,,)

K

sssq

. Let
[image: image24.wmf],

ji

P

 be the probability that there are i calls being processed by
[image: image25.wmf](1,2,...)

j

MjK

=

 and the total number of calls in the system is no more than m. Let
[image: image26.wmf]i

N

 be the expected number of calls being processed by media
[image: image27.wmf]i

M

 and let N be the total expected number of calls being processed by all media at an arbitrary time instant in the steady state. Then, from [3], we have:

[image: image28.wmf]1

/

K

i

i

NN

lm

=

==

å

 (3.3)

The expected media cost of a call is:

[image: image29.wmf]11

11

K

G

K

iiii

ii

MNCNC

N

ml

==

==

åå

(3.4)

where
[image: image30.wmf]12

01

,,,...,

K

ki

i

m

iikimmm

i

NkPmp

==

¥

=+

åå

(3.5)

Letting
[image: image31.wmf]i

q

 be the probability that there are totally i calls in the system, we have:
[image: image32.wmf]12

,,...,

 (0)

K

mkmmmk

qpk

+

=³

 (3.6)

From [3],
[image: image33.wmf]0

0

(), ()

!!

miii

ii

mm

qqimqqim

mi

rr

=>=£

 (3.7)

Thus
[image: image34.wmf]12

,,...,

K

mmmk

p

 can be determined by (3.6) and (3.7). To solve
[image: image35.wmf]i

N

 in (3.5), we need to solve
[image: image36.wmf]0

,

k

i

m

ik

kP

=

å

. Let
[image: image37.wmf](,,)

ii

uvq

 be the state that there are
[image: image38.wmf]i

u

 calls being processed by the first i media, there are
[image: image39.wmf]i

v

 calls being processed by the rest of the media and there are q calls in the queue. Let
[image: image40.wmf]()

,,

ii

i

uvq

R

 be the probability that the system is in state
[image: image41.wmf](,,)

ii

uvq

. Thus, from the greedy algorithm, when
[image: image42.wmf]ii

uvm

+<

, q is always 0. Let

[image: image43.wmf]11

, , (1,2,...,)

iK

ijijii

jji

UmVmUVmiK

==+

==+==

åå

 (3.8)

The state transitions are as follows:

1. When a call arrives with rate
[image: image44.wmf]l

, the state will change to
[image: image45.wmf](1,,)

ii

uvq

+

 if
[image: image46.wmf],0

ii

q

uU

=

<

.

2. When a call arrives with rate
[image: image47.wmf]l

, the state will change to
[image: image48.wmf](,1,)

ii

uvq

+

 if
[image: image49.wmf],0

,,

iiii

q

uUvV

=

=<

.

3. When a call arrives with rate
[image: image50.wmf]l

, the state will change to
[image: image51.wmf](,,1)

ii

uvq

+

 if
[image: image52.wmf],,0

iiii

uUvVq

==³

.

4. When a call in first i media finishes with rate
[image: image53.wmf]i

u

m

, the state will change to
[image: image54.wmf](1,,)

ii

uvq

-

 if
[image: image55.wmf]0

q

=

.

5. When a call in non first i media finishes with rate
[image: image56.wmf]i

v

m

, the state will change to
[image: image57.wmf](,1,)

ii

uvq

-

 if
[image: image58.wmf]0

q

=

.

6. When a call finishes with rate
[image: image59.wmf]m

m

, the state will change to
[image: image60.wmf](,,1)

ii

uvq

-

 if
[image: image61.wmf],,0

iiii

uUvVq

==>

.

The state transition diagram is shown in figure 5. Note that we simplify all of the states in the dotted line from
[image: image62.wmf](,,)

ii

uvq

to
[image: image63.wmf](,)

ii

uv

 since q is always 0. Let
[image: image64.wmf],

ij

Q

 be the probability that there are j calls being processed by the first i media and the total number of calls being processed is no more than m, thus:

[image: image65.wmf]()

,,,0

0

(1,2,...,, 0,1,...,)

V

i

ijjk

k

i

i

QRiKjU

=

===

å

 (3.9)

From (3.9) and the greedy algorithm, we have:

[image: image66.wmf],,1

(1) (1,2,...,, 0,1,...,1)

ijij

i

QjQiKjU

lm

+

=+==-

(3.10)

[image: image67.png]t@-vou to-vu

2
0.%-1 L1 e
24

a

Vi Vi
2
H 24

Figure 5 The State transition diagram

From (3.10), we have:

[image: image68.wmf],,0

1

 (1,2,...,, 0,1,...,)

!

j

ijii

QQiKjU

j

l

m

===

æö

ç÷

èø

(3.11)

Note that

[image: image69.wmf]()

,,,

00

, (0,1,...,)

U

m

i

kikUVjmj

kk

i

ii

qQRqjiK

+

==

==>=

åå

 (3.12)

When the total number of calls being processed is no more than m, the expected number of calls being processed by
[image: image70.wmf]i

M

 is equal to the expected number of calls being processed by the first i media minus the expected number of calls being processed by the first i-1 media. Thus,

[image: image71.wmf],,1,0,

000

1

(0)

i

U

m

ijijijj

jjj

i

UmU

ii

i

jPjQjQQ

-

===

-=

-

=-=

ååå

 (3.13)

From (3.6) to (3.12),

[image: image72.wmf]0

0

,

0

1

!

(1,2,...,, 0,1,..,)

()

!

!

kk

m

j

k

ij

U

k

k

i

i

m

q

k

QiKjU

m

j

k

r

l

r

m

=

=

===

æö

ç÷

èø

å

å

 (3.14)

Thus
[image: image73.wmf],

ij

jP

 can be calculated. From (3.5),
[image: image74.wmf]i

N

 can be calculated. From (3.4),
[image: image75.wmf]G

M

 can be calculated. It can be verified that (3.5) satisfies (3.3). The expected routing cost is:
[image: image76.wmf]GdGG

CCWM

=+

 (3.15)

Although the greedy algorithm seems apparent, it is in fact optimal as the next result shows:

Theorem (3.16) Among all algorithms for the centralized queuing model, the greedy algorithm minimizes the expected routing cost.

Proof: Recall that for the centralized queuing model, the gateway routes and processes a call immediately if there is an idle channel on any of its media. Suppose there exists an algorithm A that minimizes the expected media cost in the centralized queuing model. Without loss of generality, suppose there are two media
[image: image77.wmf]1

M

 and
[image: image78.wmf]212

 ()

MCC

<

, and each media has one channel. Further suppose that the algorithm A consecutively routes and processes any two calls
[image: image79.wmf] and

ij

cc

 at the time
[image: image80.wmf]i

t

 and
[image: image81.wmf]j

t

 (
[image: image82.wmf]ij

tt

£

), and two channels on the two media are idle at the time
[image: image83.wmf]i

t

. It is trivial that when
[image: image84.wmf]ij

tt

=

, two calls are routed to the two media for processing. Note that it is “greedy” routing. When
[image: image85.wmf]ij

tt

<

, if the algorithm A routes call
[image: image86.wmf]1

 to

i

cM

, it is “greedy” routing; if the algorithm A routes call
[image: image87.wmf]2

 to

i

cM

, let
[image: image88.wmf]i

tt

+D

 be the time that both two channels on the two media become idle again (i.e. during the time
[image: image89.wmf][,]

ii

ttt

+D

, at least one channel is busy). Obviously,
[image: image90.wmf]ij

ttt

+D>

; otherwise, call
[image: image91.wmf]i

c

 could be routed to
[image: image92.wmf]1

M

 without affecting other calls’ routing to yield less expected media cost, and it contradicts the assumption that the algorithm A minimizes the expected media cost. Since each call length is exponentially distributed with the same parameter
[image: image93.wmf]m

, it can be easily seen that during the time
[image: image94.wmf][,]

ii

ttt

+D

, the expected number of calls processed on media
[image: image95.wmf]2

M

 is not less than the expected number of calls processed on media
[image: image96.wmf]1

M

. Thus during the time
[image: image97.wmf][,]

ii

ttt

+D

, if all the calls routed to
[image: image98.wmf]2

M

 (including call
[image: image99.wmf]i

c

) are routed to
[image: image100.wmf]1

M

, and all the calls routed to
[image: image101.wmf]1

M

 (including call
[image: image102.wmf]j

c

) are routed to
[image: image103.wmf]2

M

, the expected media cost will not increase. This shows that in terms of routing calls
[image: image104.wmf] and

ij

cc

, it is a “greedy” routing. Since calls
[image: image105.wmf] and

ij

cc

 are any two calls, we conclude that the greedy algorithm minimizes the expected media cost. From [1], we know that the greedy algorithm minimizes the expected queuing delay, thus it also minimizes the expected delay cost. We finally conclude that the greedy minimizes the expected routing cost.
Ex. (3.17)
[image: image106.wmf]1122

2,2,1,1,2,2,1

d

KmCmCC

lm

========

By (3.1),
[image: image107.wmf]0

3,1/3,4/11,1/22

G

mqW

r

===

=

,
[image: image108.wmf]0

3

32/33

i

i

q

=

=

å

. By (3.14),
[image: image109.wmf]1,01,11,2

64/165,32/165

QQQ

===

. By (3.13) and (3.5),
[image: image110.wmf]1

23

1

00

1,

46

55

(1)

ii

ii

NiQmq

==

=

=+-

åå

. From (3.3),
[image: image111.wmf]21

9/55

NN

l

m

=-=

. From (3.4), (3.15),
[image: image112.wmf]1.25

G

C

=

.

Ex. (3.18)
[image: image113.wmf]1122

2,2,1,1,5,2,1

d

KmCmCC

lm

========

Similarly,
[image: image114.wmf]0

3,1/3,4/11,1/22

G

mqW

r

===

=

,

[image: image115.wmf]0

3

32/33

i

i

q

=

=

å

,
[image: image116.wmf]1,01,11,2

64/165,32/165

QQQ

===

,
[image: image117.wmf]1

46/55

N

=

,
[image: image118.wmf]2

9/55

N

=

,
[image: image119.wmf]1.75

G

C

=

.

These two examples have the same system parameters except
[image: image120.wmf]2

C

, thus they have the same
[image: image121.wmf]G

W

,
[image: image122.wmf]1

N

 and
[image: image123.wmf]2

N

, since the expected queuing delay and expected number of calls processed by each media is decided only by each media’s bandwidth as well as
[image: image124.wmf]l

 and
[image: image125.wmf]m

, not media cost.
[image: image126.wmf]G

C

 in example (3.18) is larger than
[image: image127.wmf]G

C

 in example (3.17) because example (3.18) has a larger
[image: image128.wmf]2

C

. In both examples, some calls will necessarily be routed to media 2.

3.2 The Traffic Splitting Algorithm

In this section, we introduce a traffic splitting algorithm to route the calls (split the traffic) to each media controller with predetermined probability to achieve the minimum expected routing cost. We analyze the performance of the algorithm by showing how to derive such a predetermined probability and we prove its correctness. Then we present some examples.

 We know that the call arrival rate at a multimedia gateway is a Poisson process with rate
[image: image129.wmf]l

. We split the traffic according to probabilities
[image: image130.wmf](1,2,..)

i

piK

=

 to the media
[image: image131.wmf]i

M

 where
[image: image132.wmf]1

1

K

i

i

p

=

=

å

. According to [3], the call arrival rate at media
[image: image133.wmf]i

M

 is also a Poisson process with rate
[image: image134.wmf]ii

p

ll

=

. Let
[image: image135.wmf]i

W

 be the expected waiting time for a call routed to the media
[image: image136.wmf]i

M

, and let
[image: image137.wmf]S

W

 be the expected waiting time of a call. Then utilizing the determination of queuing delay from [1],
[image: image138.wmf]S

W

is given by:

[image: image139.wmf]11

1

S

KK

iiii

ii

WpWW

l

l

==

==

åå

 (3.19)

[image: image140.wmf]i

W

 can be determined using (3.1) with m replaced by
[image: image141.wmf]i

m

,
[image: image142.wmf]l

 replaced by
[image: image143.wmf]i

l

 and
[image: image144.wmf]G

W

 replaced by
[image: image145.wmf]i

W

:

[image: image146.wmf]2

1

1

0

1

()

!(1)

!(1)!

i

ii

mm

ii

i

mm

n

m

iiii

ii

n

ii

ii

m

W

mm

m

mn

r

rr

mr

r

-

-

=

=

-

+

-

å

 (3.20)

where
[image: image147.wmf]11

/1,

KK

iiiii

ii

mm

rlmllm

==

=<=<

åå

 (3.21)

Then, the expected media cost of a call:

[image: image148.wmf]11

11

KK

i

Si

ii

ii

MCC

l

l

mllm

==

==

åå

 (3.22)

Finally, the expected routing cost of a call:

[image: image149.wmf]SdSS

CCWM

=+

 (3.23)

If K=1, then
[image: image150.wmf]S

W

,
[image: image151.wmf]S

M

 and
[image: image152.wmf]S

C

are fixed. Thus we assume K>1. Let
[image: image153.wmf](1,2,...)

dii

i

i

CW

fiK

l

ll

¶

==

¶

 (3.24)

From (3.21), we treat
[image: image154.wmf](1,2,...1)

i

iK

l

=-

 as
[image: image155.wmf]1

K

-

independent variables, and
[image: image156.wmf]K

l

 depends on
[image: image157.wmf](1,2,...1)

i

iK

l

=-

. Thus,

[image: image158.wmf]1

1

, 1 ()

K

K

K

i

i

i

iK

l

lll

l

-

=

¶

=-=-<

¶

å

 (3.25)

[image: image159.wmf]11

,1,1

KKKK

KK

iiii

Sd

j

jjj

ijiiji

WWCC

CC

f

llll

llllml

--

¹=¹=

¶+¶¶+¶

¶

=++

¶¶¶

åå

[image: image160.wmf](+) (1,2,...1)

j

K

K

j

j

C

C

C

ffjK

lmlmlm

+=+-=-

 (3.26)

Note that (3.26) is the first partial derivative of the expected routing cost
[image: image161.wmf]S

C

 with respect to
[image: image162.wmf]j

l

, and it is used by the Traffic_Splitting algorithm described below (recall that we assume
[image: image163.wmf]12

...

K

CCC

<<<

).

Algorithm (3.27) Traffic_Splitting()

{

1. For j(1 to K do if
[image: image164.wmf]1

i

j

i

m

lm

=

<

å

, goto step 2;

2. While j<=K

a. if j=1,
[image: image165.wmf]1

ll

¬

b. else

calculate
[image: image166.wmf]12

(,,...,)

j

lll

 that satisfies
[image: image167.wmf]/0 (1,...,1)

S

i

Cij

ddl

==-

 and
[image: image168.wmf]1

j

i

i

ll

=

=

å

 by using Newtons’ method for the non-linear equations described in [4];

 if j=K goto step 3;

c.
[image: image169.wmf]/(1,2,...,)

ii

ffCij

lm

¬+=

 (note that
[image: image170.wmf]12

12

...

j

j

C

CC

fff

lmlmlm

+=+==+

).

d. if
[image: image171.wmf]1

/

j

fC

lm

+

£

, then

for i(j to K do
[image: image172.wmf]0

i

l

¬

; goto step 3;

e. else j(j+1;

3. Route calls to
[image: image173.wmf](1,...,)

i

MiK

=

 with probability
[image: image174.wmf]/

i

ll

;

}

Figure 6 The Traffic Splitting Algorithm

The algorithm works as follows: step 1 finds the first j media that satisfy
[image: image175.wmf]1

i

j

i

m

lm

=

<

å

. Step 2.a and step 2.b find the unique
[image: image176.wmf]12

(,,...,)

j

lll

 that minimizes
[image: image177.wmf]S

C

 for the first j media. Then we have
[image: image178.wmf]11

/.../

jj

fCfCf

lmlm

+==+=

 (we prove it later). If j=K, then
[image: image179.wmf]12

(,,...,)

K

lll

 has been found. Otherwise if
[image: image180.wmf]1

/

j

fC

lm

+

£

, step 2.d set
[image: image181.wmf]0 (1,...,)

i

ijK

l

==+

 and
[image: image182.wmf]12

(,,...,)

K

lll

 has been found. If
[image: image183.wmf]1

/

j

fC

lm

+

>

, step 2.e increases j and continues with step 2. Note that for a given set of system parameters, steps 1 and 2 can be performed off-line. The complexity of the algorithm is determined by the complexity of Newton’s method [4]. Interested readers can refer to [4] for more detail. The following theorem shows the correctness of the Traffic_Splitting algorithm (the proof is in the appendix):

Theorem (3.28): The Traffic_Splitting algorithm correctly finds the unique
[image: image184.wmf]12

(,,...,)

K

lll

 that minimizes
[image: image185.wmf]S

C

.

Ex. (3.29)
[image: image186.wmf]1122

2,2,1,1,5,2,

1

d

KmCmCC

lm

======

==

Step 1:
finds j=1, since
[image: image187.wmf]1

/1/21

m

lm

=<

.

Step 2.a: sets
[image: image188.wmf]1

1

ll

==

.

Step 2.c: from (3.20),
[image: image189.wmf]2

1

1

2

1

4

W

l

l

=

-

, from (3.24),
[image: image190.wmf]2

1

11112

22

1

1

1

8(4)

20

()2,

(4)9

//5,

f

ffCC

l

l

l

l

lmlm

=

+

=-

-

=+=<=

Step 2.d: sets
[image: image191.wmf]2

0

l

=

, increases j to 2. Since j=K, the algorithm terminates with
[image: image192.wmf]12

1,0,5/3

S

C

ll

===

.

This example shows that when one media has a relatively large unit time media cost (
[image: image193.wmf]21

CC

>>

 in this case), the traffic allocated to this media can be zero (
[image: image194.wmf]2

0

l

=

 in this case) in order to minimize the expected routing cost. Suppose in this example, we add more media with
[image: image195.wmf]2

i

CC

>

 (
[image: image196.wmf]2

i

>

), then after step 2.d, step 3 will set
[image: image197.wmf]0

i

l

=

, ending up with the same
[image: image198.wmf]5/3

S

C

=

.

Ex. (3.30)
[image: image199.wmf]1122

2,2,1,1,2,2,

1

d

KmCmCC

lm

======

==

Steps 1-2.a: finds j=1 (
[image: image200.wmf]1

/1/21

m

lm

=<

), sets
[image: image201.wmf]1

1

ll

==

.

Step 2.c: from (3.20),
[image: image202.wmf]2

1

1

2

1

4

W

l

l

=

-

, from (3.24),
[image: image203.wmf]2

1

11112

22

1

1

1

8(4)

20

()2,

(4)9

//2.

f

ffCC

l

l

l

l

lmlm

=

+

=-

-

=+=>=

Step 2.e: increase j to 2 and go back to step 2.b.

Step 2.b: from (3.20),
[image: image204.wmf]2

1

1

2

1

4

W

l

l

=

-

,
[image: image205.wmf]2

2

2

2

1

W

l

l

=

-

. From (3.19), (3.22) and (3.23), we have
[image: image206.wmf]12

1

ll

+=

 and
[image: image207.wmf]32

12

12

22

12

22

2

41

S

C

ll

ll

ll

=+++

--

. Let
[image: image208.wmf]1

/0

S

C

ddl

=

, using Newton’s method,
[image: image209.wmf]12

0.861,0.139

ll

==

. Since j=K, the algorithm terminates with
[image: image210.wmf]1.57

S

C

=

.

Note that the system parameters in this example are the same as in example (3.29) except for a smaller
[image: image211.wmf]2

C

. It shows that when each media has similar unit time media cost, in order to minimize
[image: image212.wmf]S

C

, the traffic
[image: image213.wmf]2

l

 allocated to media
[image: image214.wmf]2

M

 should be greater than zero.

3.3 Performance Comparison

Generally speaking, for the same set of system parameters, if unit time delay cost
[image: image215.wmf]d

C

 takes dominance over each media’s unit time media cost
[image: image216.wmf]i

C

[image: image217.wmf](1,2,...,), .. for each

di

iKieCCi

=>>

,
[image: image218.wmf]G

C

 is usually less than
[image: image219.wmf]S

C

. The reason is that the expected delay for the centralized queuing model is less than the expected delay for the distributed queuing model [1]. On the other hand, if some media has an unusually large unit time media cost, then
[image: image220.wmf]G

C

 may be larger than
[image: image221.wmf]S

C

, since the traffic splitting algorithm takes each media’s unit time media cost into consideration when it “splits” traffic: if some media has a fairly large unit time media cost, the traffic splitting algorithm may not allocate any traffic on that expensive media. But the greedy algorithm still has to route calls to the expensive media if only that expensive media has idle channels. Example (3.29) has the same set of system parameters as in example (3.18). We can see that
[image: image222.wmf]G

C

 in example (3.18) is larger than
[image: image223.wmf]S

C

 in example (3.29). Example (3.30) has the same set of system parameters as in example (3.17). We can see that
[image: image224.wmf]G

C

 in example (3.17) is less than
[image: image225.wmf]S

C

 in example (3.30).

 Thus, given the same set of system parameters, in order to obtain a better minimal expected routing cost, the choice of either the greedy algorithm for the centralized queuing model or the traffic splitting algorithm for the distributed queuing model depends on each specific system parameter. However, the greedy algorithm minimizes the expected routing cost among all algorithms for centralized queuing model, and the traffic splitting algorithm minimizes the expected routing cost among all algorithms for distributed queuing model.

4. CONCLUSIONS

In this paper, we reviewed the multimedia gateway architecture and functionalities as introduced in [1]. We presented two algorithms to minimize the expected routing cost for the centralized queuing model and the distributed queuing model respectively. We analyzed and compared the performance of the two algorithms, and we proved the correctness of the two algorithms.

References

[1] Qiwei Huang & Errol Lloyd, Analysis of Queuing Delay in Multimedia Gateway Call Routing, p193-198, Proceedings of the International Conference on Internet Computing (IC2002).

[2] ITU-T H.323 Packet-Based Multimedia Communications Systems. Series H: A.M.S, 11/2000.

[3] ITU-T H.225.0 Call Signaling Protocols and Media Stream Packetization for Packet-based Multimedia Communication Systems. Series H: A.M.S., 11/2000.

[4] R. Nelson, Probability, Stochastic Procedures, and Queuing Theory. Springer-Verlag, 2000.

[5] L. V.Fausett, Applied Numerical Analysis Using MetLab. Prentice Hall, 1999.

Appendix

Proof of theorem (3.28): Recall again that we assume
[image: image226.wmf]12

...

K

CCC

<<<

. Let
[image: image227.wmf]12

(,,...)

K

lll

 be the call distribution vector that minimizes
[image: image228.wmf]S

C

. If in the first j media (j<K)
[image: image229.wmf]11

jj

ii

ii

m

llm

==

=³

åå

, which implies
[image: image230.wmf]1

...0

jK

ll

+

===

, then there is at least one media
[image: image231.wmf] ()

l

Mlj

£

 in the first j media that satisfies
[image: image232.wmf], .. 1

llll

mie

lmr

³³

. From (3.20),
[image: image233.wmf]l

W

=¥

, thus
[image: image234.wmf]S

C

=¥

. But from the assumption (3.21), it is always possible to find a call distribution vector
[image: image235.wmf]''

'

12

(,,...)

K

lll

, such that
[image: image236.wmf]'

 (1,...,)

ii

iK

m

m

l

=

<

, i.e.
[image: image237.wmf]'

1

i

r

<

, thus
[image: image238.wmf]'

i

W

<¥

, thus
[image: image239.wmf]'

S

C

<¥

. This contradicts the fact that
[image: image240.wmf]12

(,,...)

K

lll

 minimizes
[image: image241.wmf]S

C

. Thus step 1 of the algorithm is correct.

Let
[image: image242.wmf]i

S

C

 be the expected routing cost of the first i media (
[image: image243.wmf]K

SS

CC

=

). Suppose in the first j media (
[image: image244.wmf]1

jK

£<

),
[image: image245.wmf]11

jj

ii

ii

m

llm

==

=<

åå

 and
[image: image246.wmf]11

11

jj

ii

ii

m

lm

--

==

³

åå

, which implies
[image: image247.wmf]1

...0

jK

ll

+

===

. It is trivial that when j=1,
[image: image248.wmf]1

ll

=

 minimizes
[image: image249.wmf]1

S

C

. When j>1, we first prove that
[image: image250.wmf]/0 (1,2,...,1)

j

Si

Cij

ddl

==-

 exists. From (3.26),

[image: image251.wmf] (1,2,...1)

j

j

S

j

i

i

i

C

C

C

ffij

d

dllmlm

=+-+=-

æö

ç÷

èø

 (3.31)

From [1] and (3.24),
[image: image252.wmf]0,/0

ii

i

ff

ddl

>>

 (3.32)

From (3.25),
[image: image253.wmf]1

1

, 1 ()

j

j

ji

i

i

ij

l

lll

l

-

=

¶

=-=-<

¶

å

 (3.33)

From (3.31), (3.32) and (3.33), we take second derivative of
[image: image254.wmf]j

S

C

 in term of
[image: image255.wmf]i

l

:

[image: image256.wmf]2

2

(+)

j

j

j

S

i

i

ii

C

C

ff

C

d

d

lmlm

dldl

+-

=

éù

êú

ëû

 EMBED Equation.DSMT4 [image: image257.wmf]// >0 (1,2,...,1)

jj

ii

ffij

ddlddl

=+=-

 (3.34)

Thus (3.31) is a monotonous increasing function in term of
[image: image258.wmf]i

l

. When
[image: image259.wmf]0, 0

ii

f

l

==

. Since
[image: image260.wmf]ij

CC

<

, thus

[image: image261.wmf]0 (1,2,...1)

j

S

j

ij

i

CC

C

fij

d

dllm

-

=-<=-

. When
[image: image262.wmf]0

j

l

=

,
[image: image263.wmf]0

j

f

=

. Since
[image: image264.wmf]11

11

jj

ii

ii

m

lm

--

==

³

åå

, we can always let
[image: image265.wmf]ii

m

lm

³

, then
[image: image266.wmf], >0

j

S

ji

ii

i

CC

C

ff

d

dllm

-

®¥=-

. We conclude that
[image: image267.wmf]/0 (1,2,...,1)

j

Si

Cij

ddl

==-

 exists.

We then prove that the fist execution of step 2.b in the algorithm correctly finds a unique
[image: image268.wmf]12

(,,...)

j

lll

[image: image269.wmf]1

()

j

i

i

ll

=

=

å

 that minimizes
[image: image270.wmf]j

S

C

. We let
[image: image271.wmf]2

,

j

S

mn

mn

C

a

d

dldl

=

[image: image272.wmf],1,2,...,1

()

mnj

=-

 and define the following matrix:

[image: image273.wmf]11121(1)

21222(1)

(1)(1)

(2)1(2)2(1)(1)

j

j

jj

jjjj

aaa

aaa

A

aaa

-

-

-´-

=

æö

ç÷

ç÷

ç÷

ç÷

èø

L

L

MMMM

L

Let
[image: image274.wmf]1,11,2

1

2,12,2

1,121

, det, det

j

aa

aA

aa

-

D=D=D=

æö

ç÷

èø

K

. From advanced calculus,
[image: image275.wmf]12

1

(,,...) ()

j

ji

i

lllll

=

=

å

 minimizes
[image: image276.wmf]j

S

C

 if and only if
[image: image277.wmf]0

i

D>

 for each i=1,…,j-1. Let
[image: image278.wmf]/

i

i

f

s

ddl

=

, from (3.32)
[image: image279.wmf]/0

i

i

f

s

ddl

=>

 (3.35)

From (3.33) and (3.25),

[image: image280.wmf]2

,

(,1,2,...,1)

j

Sm

mnj

mnn

Cf

asmnj

dd

dldldl

==+=-

[image: image281.wmf](, ,1,2,...,1)

(1,2,...,1)

j

mj

smnmnj

ssmnj

¹=-

=

+==-

ì

í

î

 (3.36)

From derivative property,
[image: image282.wmf],,

mnnm

aa

=

. From (3.35) and (3.36), it is easy to verify that
[image: image283.wmf]12

0, 0

D>D>

. Now suppose
[image: image284.wmf]1

0

i

-

D>

, we prove that
[image: image285.wmf]0

i

D>

.

[image: image286.wmf]1

2

 (1)

(1)

1

det

jjjj

jjjj

rowi

rowi

jjijj

jjjij

i

sssss

sssss

sssss

sssss

-

*-+

-

+

+

D=

+

+

æö

ç÷

ç÷

ç÷

¾¾¾¾®

ç÷

ç÷

ç÷

èø

L

L

MMMMM

L

L

[image: image287.wmf]1

2

1

1

det

 0 0

jjjj

jjjj

jjijj

i

i

sssss

sssss

sssss

ss

-

-

+

+

=

+

-

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

L

L

MMMMM

L

L

[image: image288.wmf]1

2

11

2

det

jjjj

jjj

jii

jjijj

jjjij

sssss

sssss

sssss

sssss

ss

>

--

-

+

+

+

+

=D+

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

L

L

MMMMM

L

L

[image: image289.wmf] (2)

(1)(1)

rowi

rowi

-

*-+-

¾¾¾¾¾¾®

[image: image290.wmf]1

2

112

3

det

jjjj

jjj

jiii

jjijj

jjjij

sssss

sssss

sssss

sssss

sss

>

-

+

+

+

+

=D+

æö

ç÷

ç÷

ç÷

ç÷

ç÷

ç÷

èø

L

L

MMMMM

L

L

= …
[image: image291.wmf]1

1

1

0

i

jik

k

ss

-

-

=

=D+>

Õ

Obviously, if j=K,
[image: image292.wmf]12

1

(,,...) ()

j

ji

i

lllll

=

=

å

 minimizes
[image: image293.wmf]S

C

. The uniqueness of
[image: image294.wmf]12

1

(,,...) ()

j

ji

i

lllll

=

=

å

 can be easily proved by using induction on j and the property (3.32). Thus we have proved that the fist execution of step 2.b in the algorithm correctly finds a unique
[image: image295.wmf]12

1

(,,...) ()

j

ji

i

lllll

=

=

å

 that minimizes
[image: image296.wmf]j

S

C

.

Recall that j represents the first j media that satisfy
[image: image297.wmf]11

0

jj

ii

ii

m

llm

==

<=<

åå

 and
[image: image298.wmf]11

11

jj

ii

ii

m

lm

--

==

³

åå

. Since
[image: image299.wmf]/0 (1,2,...,1)

j

Si

Cij

ddl

==-

 exists, from (3.31),
[image: image300.wmf]12

12

...

j

j

C

CC

fff

lmlmlm

+=+==+

. Thus
[image: image301.wmf]0(1,...,)

i

ij

l

>=

.

We can prove similarly that if
[image: image302.wmf]111

//

j

ffCC

lmlm

+

=+>

, then:
[image: image303.wmf]1'

/0

j

Si

C

ddl

+

=

[image: image304.wmf](1,...,)

ij

=

 exists; there is a unique
[image: image305.wmf]''''

121

(,,...,)

jj

llll

+

 decided by
[image: image306.wmf]1'

/0

j

Si

C

ddl

+

=

 and
[image: image307.wmf]1

'

1

j

i

i

ll

+

=

=

å

 such that
[image: image308.wmf]''''

121

(,,...,)

jj

llll

+

 minimizes
[image: image309.wmf]1

j

S

C

+

;
[image: image310.wmf]'

0(1,...,1)

i

ij

l

>=+

;
[image: image311.wmf]121

1

12

''''

...

jj

jj

CC

CC

ffff

lmlmlmlm

+

+

+=+==+=+

. Obviously, if j+1=K,
[image: image312.wmf]''''

121

(,,...,)

jj

llll

+

(
[image: image313.wmf]1

'

1

j

i

i

ll

+

=

=

å

) minimizes
[image: image314.wmf]S

C

. Thus we have proved that the second execution of step 2.b in the algorithm correctly finds a unique
[image: image315.wmf]''''

121

(,,...,)

jj

llll

+

(
[image: image316.wmf]1

'

1

j

i

i

ll

+

=

=

å

) that minimizes
[image: image317.wmf]1

j

S

C

+

. We can prove similarly that during each loop of step 2, step 2.b in the algorithm is correct.

From the above conclusions, we now suppose in the first
[image: image318.wmf] ()

iij

³

 media, we have found a unique
[image: image319.wmf]12

1

(,,...) ()

i

ik

k

lllll

=

=

å

 that minimizes
[image: image320.wmf]S

i

C

,
[image: image321.wmf]0(1,...,)

k

ki

l

>=

,
[image: image322.wmf]12

12

...

i

i

C

CC

fff

lmlmlm

+=+==+

. If
[image: image323.wmf]111

//

i

ffCC

lmlm

+

=+£

, we first prove that there is a unique a unique
[image: image324.wmf]12

1

1

(,,...,0) ()

i

iik

k

llllll

+

=

==

å

 that minimizes
[image: image325.wmf]1

S

i

C

+

. Let the optimal value of
[image: image326.wmf]S

i

C

 be
[image: image327.wmf]OPT

i

C

 and the optimal value of
[image: image328.wmf]1

S

i

C

+

 be
[image: image329.wmf]1

OPT

i

C

+

. If we change [image: image330.wmf]1

i

C

+

 to
[image: image331.wmf]1

'

i

Cf

lm

+

=

, then let
[image: image332.wmf]'

1

i

S

C

d

+

 be the expected routing cost of the first
[image: image333.wmf]1

i

+

media, let
[image: image334.wmf]'

1

OPT

i

C

+

 be its optimal value. From the assumptions above, we have
[image: image335.wmf]1

1

1

'

...

ii

i

CCCC

+

+

<<<£

, and
[image: image336.wmf]'

11

OPTOPT

OPT

iii

CCC

++

³³

. Note that it can be verified that
[image: image337.wmf]12

1

(,,...,0)

ii

llll

+

=

[image: image338.wmf]1

()

i

k

k

ll

=

=

å

 satisfies
[image: image339.wmf]'

1

/0(1,...,)

i

k

S

Cki

ddl

+

==

, thus
[image: image340.wmf]12

1

(,,...,0)

ii

llll

+

=

[image: image341.wmf]1

()

i

k

k

ll

=

=

å

 minimizes
[image: image342.wmf]'

1

i

S

C

+

. Then
[image: image343.wmf]'

1

OPT

OPT

ii

CC

+

=

 and
[image: image344.wmf]1

OPTOPT

ii

CC

+

=

. It can be easily shown that
[image: image345.wmf]12

1

(,,...,0)

ii

llll

+

=

[image: image346.wmf]1

()

i

k

k

ll

=

=

å

 also minimizes
[image: image347.wmf]1

i

S

C

+

, and such
[image: image348.wmf]12

1

(,,...,0)

ii

llll

+

=

 is unique. It can be further shown easily (we omitted the proof here) that
[image: image349.wmf]12

1

(,,...,...0)

K

ii

lllll

+

===

[image: image350.wmf]1

()

i

k

k

ll

=

=

å

 minimizes
[image: image351.wmf]K

S

C

, i.e.
[image: image352.wmf]S

C

, and such
[image: image353.wmf]12

1

(,,...,...0)

K

ii

lllll

+

===

 is unique. Thus the step 2.d in the algorithm is correct, and the theorem is established.

_1100063717.unknown

_1100090690.unknown

_1100152589.unknown

_1100230058.unknown

_1100233691.unknown

_1100488243.unknown

_1100489460.unknown

_1100570489.unknown

_1101715840.unknown

_1101716633.unknown

_1100570505.unknown

_1100490031.unknown

_1100490389.unknown

_1100490417.unknown

_1100490201.unknown

_1100489636.unknown

_1100488263.unknown

_1100488272.unknown

_1100488256.unknown

_1100336610.unknown

_1100338464.unknown

_1100338729.unknown

_1100339009.unknown

_1100487988.unknown

_1100338781.unknown

_1100338786.unknown

_1100338755.unknown

_1100338523.unknown

_1100338592.unknown

_1100338497.unknown

_1100337062.unknown

_1100338231.unknown

_1100338242.unknown

_1100337739.unknown

_1100337031.unknown

_1100234236.unknown

_1100336547.unknown

_1100336558.unknown

_1100234261.unknown

_1100233933.unknown

_1100233966.unknown

_1100233976.unknown

_1100233942.unknown

_1100233844.unknown

_1100230383.unknown

_1100232595.unknown

_1100233668.unknown

_1100233678.unknown

_1100233627.unknown

_1100230385.unknown

_1100232289.unknown

_1100230384.unknown

_1100230379.unknown

_1100230381.unknown

_1100230382.unknown

_1100230380.unknown

_1100230376.unknown

_1100230377.unknown

_1100230375.unknown

_1100229183.unknown

_1100229660.unknown

_1100229829.unknown

_1100229948.unknown

_1100229758.unknown

_1100229391.unknown

_1100229405.unknown

_1100229321.unknown

_1100227902.unknown

_1100228347.unknown

_1100228917.unknown

_1100228087.unknown

_1100228295.unknown

_1100153567.unknown

_1100153596.unknown

_1100153176.unknown

_1100153551.unknown

_1100152842.unknown

_1100149275.unknown

_1100149459.unknown

_1100149557.unknown

_1100151725.unknown

_1100152003.unknown

_1100151994.unknown

_1100150430.unknown

_1100150440.unknown

_1100149613.unknown

_1100149505.unknown

_1100149532.unknown

_1100149357.unknown

_1100149416.unknown

_1100149375.unknown

_1100149392.unknown

_1100149307.unknown

_1100149318.unknown

_1100149289.unknown

_1100149135.unknown

_1100149197.unknown

_1100149227.unknown

_1100149250.unknown

_1100149173.unknown

_1100146755.unknown

_1100147604.unknown

_1100148726.unknown

_1100149107.unknown

_1100148216.unknown

_1100148289.unknown

_1100148432.unknown

_1100147851.unknown

_1100148174.unknown

_1100147097.unknown

_1100146800.unknown

_1100146098.unknown

_1100146232.unknown

_1100146302.unknown

_1100146722.unknown

_1100146191.unknown

_1100090984.unknown

_1100091778.unknown

_1100090974.unknown

_1100089373.unknown

_1100090255.unknown

_1100090484.unknown

_1100090520.unknown

_1100090547.unknown

_1100090502.unknown

_1100090371.unknown

_1100090372.unknown

_1100090370.unknown

_1100089700.unknown

_1100089943.unknown

_1100090192.unknown

_1100089886.unknown

_1100089424.unknown

_1100089614.unknown

_1100089391.unknown

_1100089286.unknown

_1100089317.unknown

_1100063789.unknown

_1100089190.unknown

_1100089218.unknown

_1100063806.unknown

_1100063752.unknown

_1100063765.unknown

_1100063729.unknown

_1100055875.unknown

_1100058628.unknown

_1100061777.unknown

_1100063565.unknown

_1100063701.unknown

_1100063596.unknown

_1100063686.unknown

_1100063149.unknown

_1100063253.unknown

_1100062914.unknown

_1100062942.unknown

_1100062966.unknown

_1100062682.unknown

_1100059031.unknown

_1100061228.unknown

_1100061597.unknown

_1100061732.unknown

_1100061466.unknown

_1100060971.unknown

_1100058726.unknown

_1100058931.unknown

_1100058670.unknown

_1100056732.unknown

_1100056914.unknown

_1100057005.unknown

_1100057042.unknown

_1100058358

_1100056977.unknown

_1100056860.unknown

_1100056895.unknown

_1100056810.unknown

_1100056831.unknown

_1100056422.unknown

_1100056685.unknown

_1100056722.unknown

_1100056468.unknown

_1100056589.unknown

_1100055919.unknown

_1100056400.unknown

_1100055890.unknown

_1099976878

_1100006189.unknown

_1100054633.unknown

_1100055809.unknown

_1100055840.unknown

_1100054774.unknown

_1100055715.unknown

_1100054644.unknown

_1100006421.unknown

_1100006490.unknown

_1100022749.unknown

_1100022794.unknown

_1100007055.unknown

_1100006471.unknown

_1100006312.unknown

_1100006363.unknown

_1100006272.unknown

_1099977681.unknown

_1099982978.unknown

_1100006063.unknown

_1100006127.unknown

_1099982993.unknown

_1099979220

_1099982946.unknown

_1099979114

_1099977520.unknown

_1099977628.unknown

_1099977645.unknown

_1099977561.unknown

_1099977500.unknown

_1097656572.unknown

_1097724017.unknown

_1097730869.unknown

_1097732652.unknown

_1097733923.unknown

_1097734383.unknown

_1097735185.unknown

_1099976831

_1097735182.unknown

_1097733931.unknown

_1097733485.unknown

_1097733602.unknown

_1097733724.unknown

_1097733544.unknown

_1097733346.unknown

_1097732340.unknown

_1097732486.unknown

_1097731290.unknown

_1097731064.unknown

_1097731093.unknown

_1097730989.unknown

_1097731026.unknown

_1097725262.unknown

_1097726707.unknown

_1097730766.unknown

_1097725297.unknown

_1097724250.unknown

_1097724344.unknown

_1097725250.unknown

_1097724153.unknown

_1097657499.unknown

_1097658979.unknown

_1097723059.unknown

_1097724001.unknown

_1097658980.unknown

_1097658974.unknown

_1097658976.unknown

_1097658973.unknown

_1097656877.unknown

_1097657166.unknown

_1097657408.unknown

_1097656906.unknown

_1097656814.unknown

_1097656827.unknown

_1097656578.unknown

_1097654219.unknown

_1097655505.unknown

_1097656143.unknown

_1097656283.unknown

_1097656448.unknown

_1097656260.unknown

_1097655968.unknown

_1097655759.unknown

_1097655863.unknown

_1097654935.unknown

_1097655028.unknown

_1097655074.unknown

_1097655090.unknown

_1097654948.unknown

_1097654347.unknown

_1097654669.unknown

_1097654719.unknown

_1097654777.unknown

_1097654701.unknown

_1097654459.unknown

_1097654270.unknown

_1097654060.unknown

_1097654157.unknown

_1097654185.unknown

_1097654074.unknown

_1097653927.unknown

_1097653973.unknown

_1097653855.unknown

