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Abstract— Topology control is the problem of assign-
ing power levels to the nodes of an ad hoc network
so as to maintain a specified network topology while
minimizing energy consumption (either minimizing
the maximum power used by any node or minimizing
the total (i.e. average) power used by the nodes).
In [18], a hybrid framework for distributed topol-
ogy control based on clustering was proposed. That
framework, called CLTC, specifies algorithms for both
1-connected and 2-connected topologies, and works
with any clustering algorithm. CLTC utilizes central-
ized topology control within each cluster, but is oth-
erwise fully distributed, hence the characterization of
the method as hybrid.

This paper studies the effect of six representative
clustering methods on the quality of the topology
control solutions provided by CLTC. The results es-
tablish that the most important factors in determining
the performance of CLTC are the average cluster size
and the closeness of nodes in clusters. This leads
to a tradeoff between the energy consumption, the
complexity of cluster formation, and the scope to
which the operations of CLTC are fully distributed.
The paper also shows that, in general, there is a
considerable increase in power usage (in the vicinity
of 150%) by requiring a 2-connected network versus a
1-connected network.

Index Terms— Ad Hoc Network, Distributed Cluster-
ing, and Performance Evaluation.

I. INTRODUCTION

In an ad hoc network, where nodes are deployed

without any wired infrastructure and communicate via

multihop wireless links, the network topology is au-

tonomously formed based on the nodes’ locations and

transmission ranges. The nodes communicate through

wireless links, with each node acting as a relay when

necessary to allow multihop communications.

The performance of the network can be impacted in a

major way by the network topology. A dense topology

may induce high interference, which in turn reduces

the effective network capacity due to limited spatial

reuse and may cause unnecessarily high energy con-

sumption. In contrast, a sparse topology is vulnerable

to network partitioning due to node or link failures.
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Topology control for ad hoc networks aims to main-

tain a specified topology, such as requiring that the

network be 1-connected4 or that the network be 2-

connected. The desired effect of topology control is to

reduce energy consumption, reduce MAC layer inter-

ference between adjacent nodes, and to increase the

effective network capacity.

The primary method of accomplishing topology con-

trol is by adjusting the transmission powers of the

network nodes. That is, each node is assigned a trans-

mission power level so that the induced graph of the

network satisfies the specified topology. Further, the

assignment of transmission powers to nodes aims to

optimize some function of those powers.

Over the past several years, the study of topology

control in ad hoc networks has encompassed both theo-

retical and applied issues. Typically, the theoretical pa-

pers have focused on centralized algorithms and prov-

able performance bounds, while the more applied pa-

pers have considered distributed algorithms evaluated

by means of simulations. The work in [18] described

a hybrid topology control framework named Cluster

based Topology Control (CLTC) aimed at taking ad-

vantage of the centralized algorithms in a distributed

setting. The key points of CLTC will be introduced in

subsection II-B. In CLTC, any clustering algorithm can

be utilized in forming the clusters. The quality of the

solution produced by CLTC is directly dependent on

the particular method used for clustering. In this paper

we provide a comparative study of the performance of

the CLTC approach using six clustering methods. The

effect of these clustering methods on the performance

of CLTC is studied for both 1 and 2-connected topolo-

gies.

II. BACKGROUND

A. Model and Objectives

Our ad hoc network model is based on one described

in [17]. In this model, for each ordered pair (u, v) of

transceivers, there is a transmission power threshold,

denoted by p(u, v), where a signal transmitted by the

transceiver u can be received by v only when the trans-

mission power of u is at least p(u, v). The transmission

power threshold for a pair of transceivers depends on

the distance between the transceivers, the direction of

the antenna at the sender, interference, noise, etc. [17].

In this paper we utilize only symmetric thresholds,

where p(v, u) = p(u, v).

4This is commonly referred to simply as connected. In this paper
we use 1-connected to avoid any confusion with 2-connected.



As noted earlier, topology control algorithms achieve

a given topology while optimizing some function of the

transmission powers. The two optimization functions

most commonly utilized are:

• minimize the maximum power used by any net-

work node. We refer to this criterion as MINMAX.

• minimize the total power used by all of the nodes

in the network. This is equivalent to minimizing

the average power used by the nodes. We refer to

this criterion as MINTOTAL.

In regard to the topology of the graph induced

by the power assignments to the network nodes,

the topologies of most interest are those related to

the network connectivity, namely 1-connected and 2-

connected. Here, 1-connected simply means that the

resulting network is connected, while 2-connected

means that the resulting network can be disconnected

only with the removal of at least two nodes.

B. What is CLTC?

In this subsection, we briefly review the CLTC

framework [18]. We begin by noting that CLTC does

not require the global topology to be known by any en-

tity. Rather, the framework relies on clustering where

nodes autonomously form groups (clusters) and select

a clusterhead for each cluster. The framework consists

of three phases. The reader is referred to [18] for a full

description.

• Phase 1 - Form clusters: In the first phase

clusters are formed and clusterheads are selected.

The clusterheads assume the primary responsibil-

ity for the subsequent two phases. Note that the

operations in phases 2 and 3 are independent of

the specific clustering algorithm utilized in this

first phase. The clustering methods studied in this

paper are described in Section III.

• Phase 2 - Intra-cluster Topology Control: In

this phase, each clusterhead obtains the coordi-

nates of each node in its cluster, and then utilizes

an appropriate centralized algorithm to calculate

the power assignments for all members of its

cluster, such that the resulting cluster topology

satisfies the given connectivity constraint (i.e. 1
or 2-connected). Note that some clusters may not

be able to achieve a topology with the specified

connectivity, even if all nodes transmit at full

power. For these weak clusters all nodes are set to

transmit at full power, and it is the responsibility

of Phase 3 to insure that the network as a whole

achieves the specified connectivity. Clusters that

are able to achieve the specified connectivity are

termed strong clusters.

• Phase 3 -Inter-cluster Topology Control: Con-

nectivity between adjacent clusters (and hence

for the network as a whole) is determined here.

Throughout this phase, we refer to k connectivity,

where k is either 1 or 2, depending on the specified

topology. The phase consists of two steps.

1) Connecting adjacent strong clusters: For each

pair of adjacent strong clusters this step en-

sures that there are k disjoint links between

those clusters provided k such links exist. For

a given strong cluster A, this determination

relies on information from each strong cluster

B that contains at least one node adjacent to

a node of A. Using this information, the clus-

terhead for A (likewise, the clusterhead for

B) executes a connectivity specific algorithm

that locates k disjoint links of minimum total

power between A and B. When there don’t

exist k disjoint links between A and B, the

clusterhead for A simply assigns full power

to each of its members who are adjacent to

a node in B, thus preserving all of the links

between clusters A and B. After computing

the links to each adjacent strong cluster, the

clusterhead performs an optimization to re-

move certain redundant links.

2) Handling weak clusters: In this step, each

node x that belongs to a weak cluster will

inform each node y within its transmis-

sion range that y should utilize their max-

imum transmission power in order to pre-

serve x’s original connectivity. It was shown

in [18] that this is sufficient to insure the k-

connectivity of the network as a whole in the

presence of weak clusters.

After Phase 3 is completed, each node is assigned a

transmission power that is the largest of the transmis-

sion powers assigned to the node in Phase 2, Phase 3

step 1, and Phase 3 step 2.

III. CLUSTERING METHODS

Clustering methods typically form clusters either

on the basis of node weights (such as node id, node

degree, and combined weight), or on the basis of a par-

ticular graph property (i.e., clustering by dominating

set, clique, or spanning tree). In addition, clustering

techniques differ in regard to the scope of the local

information that is collected (e.g. 1-hop or 2-hop), and

in how the clusterheads are selected. In this paper,

we utilize methods representative of a cross section

of approaches to clustering. Six disparate clustering

algorithms are studied thus providing a comparison

of the effect of various clustering techniques on the

performance of CLTC.

A. Weight based Clustering

In weight based clustering, every node of the cluster

computes a weight. These weights differ among algo-

rithms and may include one or more of the following:

node id, node degree, node load, link states, node

speed, battery power, etc. In general, the elements that



constitute that weight are selected to meet some prac-

tical requirements while guaranteeing the network is

connected.

Some weight based clustering methods have been

proposed, such as [2], [11]. In this paper, we consider

three representative weight based clustering methods:

• DDCA as described in [14], is a clustering method

based on (α, t) criteria. The (α, t) criteria indicates

that in a cluster the link between the clusterhead

and any of its cluster members must be available

over time period t with a probability α regardless

of the hop distance between them. Details are

found in [14].

• ADB as described in [8] and utilized in [18], is

a general method that uses a complicated notion

of the height of a node to determine the cluster-

heads. However, in the case of stationary nodes,

the use of height is equivalent to clusterheads

being determined as follows: Each node X waits

until all of the nodes of smaller weight in its

2-hop neighborhood have decided if they are a

clusterhead. If there is at least one clusterhead

among those nodes, then node X joins the cluster

of the node of smallest weight. Otherwise, node X

declares itself to be a clusterhead.

• WCA is a clustering method where each node

determines its weight based on four values, only

two of which apply to this study where nodes are

not mobile and each node is assumed to begin

with the same battery power. The first of those

two applicable values is dv, the degree difference,

which is the absolute value of the difference be-

tween the degree of v if it transmits at full power

and a specified threshold value (the value 2 is

recommended in [3]). The second applicable value

is Dv, the sum of the distances between v and its

full power neighbors. These values are combined

to yield a node weight of Wv = w1dv + w2Dv,

where w1 and w2 are weighting factors. In this

study we let w1 and w2 have the values 0.7 and

0.2 respectively, as suggested in [3].

Clusterheads in WCA are self-identified by having

the lowest weight within their one hop neighbor-

hood. Subsequently, nodes join a cluster where the

clusterhead is within one hop and choose between

several such possibilities by selecting the closest

clusterhead in distance.

B. Graph based Clustering

Among graph based clustering methods, the pre-

dominant approach is to utilize dominating sets (such

as [4], [7]). In this paper, we study two graph based

methods.

• MMD is a clustering method, where the cluster-

heads form a d-hop dominating set. In this paper,

the value of d is set to 2. One goal of MMD is

to minimize the number of clusterheads. Another

goal is to evenly distribute the nodes among the

clusterheads. In MMD, each node exchanges the

information of the largest ID in its d-hop neigh-

borhood (called floodmax in [1]), then redo it once

more but for the smallest ID (called floodmin).

Based on the collected information, MMD using

the specified rules in [1] selects the clusterheads.

• Clique clustering is a method where each node of

the cluster can communicate directly with every

other node of the cluster, hence each cluster is a

clique when nodes transmit at maximum power

[10]. This forces the cluster nodes to be in rela-

tively close physical proximity to one another.

Clique clustering has strong theoretical founda-

tions and seems having appealing features in re-

gard to both the intra-cluster and inter-cluster

phases of CLTC.

IV. TESTBED SPECIFICATION

To compare the performance of the selected clus-

tering methods in the CLTC framework, experiments

were conducted by placing a specified number of nodes

in a 4 mile by 4 mile area, using a uniform ran-

dom distribution. Four network sizes were studied: 50

nodes, 100 nodes, 150 nodes and 200 nodes. For each

number of nodes, ten trials were generated and all of

the numbers that we report are averages over those

ten trials.

The testbed was developed directly in C++, so as to

simulate the MAC layer communications. The radio

wave propagation model utilized in the testbed is the

Log-distance Path Loss Model as given in [15]. In

our work all of the model’s parameters are chosen to

emulate a 2.4 GHz wireless radio, and if the distance is

less than a certain threshold, the transmission power

threshold is set to the minimum threshold of 1 dBm.

The maximum transmission power is 29 dBm, which

corresponds to a transmission distance of 1 mile.

V. EXPERIMENTAL STUDY

A. An Analysis of Clustering for 1-connectivity

For 1-connectivity, the centralized algorithm gives

the lower bound of power consumption for both Min-

Max and MinTotal. Note that the centralized algo-

rithm is analogous to treating the entire network as

a single cluster. Table I shows the power increase

percentages for MinMax generated by the five clus-

tering algorithms in conjunction with CLTC over the

centralized algorithm. The power increase percentages

for MinTotal are very similar. Hence, our discussion in

the remainder of this subsection will not distinguish

between MinMax and MinTotal.

Among the five clustering algorithms, the perfor-

mance of ADB is uniformly the best, with MMD finish-

ing second followed by DDCA then WCA. In absolute

terms, these four methods have performance that is

much superior to clique. Note for example that with



TABLE I

POWER INCREASE PERCENTAGE OVER THE CENTRALIZED

ALGORITHM FOR MINMAX, 1-CONNECTIVITY

TABLE II

CLUSTER SIZE

100 nodes, the maximum power assigned by clique is

129% greater than that of the centralized algorithm,

while the other three methods range from 16% to 37%.

To gain insight into the effect of clustering on the

performance of CLTC, average cluster sizes for the five

methods are shown in Table II. Among the clustering

methods, two hop clustering methods (i.e., ADB and

MMD) generate larger clusters than one hop clustering

methods and clique clustering. For example, for 200

node networks, the ADB clusters are 100% larger

than DDCA clusters. Correspondingly, from Table I the

power increase for DDCA over the centralized algo-

rithm is slightly more than double the power increase

for ADB over the centralized algorithm.

The primary conclusion from Tables I and II is that

the cluster size is the predominant factor influencing

the performance. Specifically, the larger the average

cluster, the better the performance of CLTC in con-

junction with that clustering method.

To see why the performance of clique clustering

is poor relative to the other clustering methods, let

us look at Figures 1 and 2. These two figures show

the final network topologies as produced by ADB and

clique clustering for MinTotal 1-connectivity. The av-

erage power of Figure 1 is 10.53, while the average

power in Figure 2 is 21.31. From Table II the average

Fig. 1. The Network Resulting from ADB, MinTotal, 1-connectivity

Fig. 2. The Network Resulting from clique, MinTotal, 1-connectivity

cluster sizes generated by clique clustering are small,

typically around three nodes for a cluster. In contrast,

the average cluster size for the other three methods

was nearly 17. Not surprisingly, the performance of

clique clustering is much weaker than that of the other

clustering methods.

We conclude that the best clustering algorithm for

the CLTC framework must be based on a compromise

between communication costs and cluster sizes. While

larger cluster sizes lead to better performance, larger

cluster sizes also require considerably more local in-

formation that needs to be exchanged and computed.

In this context, it seems that two hop clusters are good

enough, since for example, ADB generates sufficiently

large cluster size that its performance is just slightly

weaker than that of the centralized algorithm.



Fig. 3. MinMax 2-connectivity

B. An Analysis of Clustering for 2-connectivity

This subsection discusses the impact of various clus-

tering methods on the performance of CLTC when the

goal is to produce a 2-connected network. These results

will show that although cluster size continues to be the

major factor in determining the performance, the node

proximity of clusters also plays an important role for

2-connectivity, independent of cluster size.

We begin with Figure 3 which shows for 2-

connectivity, the maximum power levels (MinMax)

generated by the five clustering algorithms in conjunc-

tion with CLTC and the centralized algorithm.

1) An Analysis of MinMax for 2-connectivity: From

Figure 3, for MinMax 2-connectivity, the performance

of ADB is uniformly the best, with DDCA and WCA

finishing second and third though neither is uniformly

better than the other, followed by MMD. As with 1-

connectivity, the performance of clique clustering is

the worst. Note however that the performance gap

between clique clustering and the other three clus-

tering methods for 2-connectivity is not as severe as

for 1-connectivity. Further, in general terms, there is

a relationship between the performance and cluster

size. However, that relationship is weaker than for

1-connectivity. Next, we explore the nature of this

relationship.

We begin by comparing the performance of DDCA

and WCA for MinMax 2-connectivity. Recall that

DDCA generates slightly larger clusters than WCA

(Table II). Hence, in general the performance of DDCA

might be expected to be slightly stronger than that

of WCA. Indeed, this was the case for 1-connectivity.

However, for 2-connectivity there is an additional fac-

tor. Specifically, although DDCA generates larger clus-

ters, hence fewer clusters, than WCA, it does generate

more weak clusters than WCA (shown in Table III).

Weak clusters reflect weak node proximity of clusters.

This is a direct result of WCA generating geographi-

cally tighter clusters than DDCA. Recall that all of the

nodes of a weak cluster, as well as neighboring nodes,

are assigned full power. If the network has many weak

TABLE III

NUMBER OF WEAK CLUSTERS FOR MINMAX, 2-CONNECTIVITY

clusters, then a large number of nodes will be assigned

full power. Note that for 1-connectivity, there are no

weak clusters, since there not being able to achieve

the desired topology would mean that the cluster is

not connected, which is an obvious contradiction to the

very definition of a cluster. For 2-connectivity, both the

cluster size and the node proximity of clusters play a

role. When the network is less dense, DDCA generates

considerably more weak clusters than does WCA (i.e.

nearly twice as many for 50 node networks), and the

performance of DDCA is weaker than that of WCA.

Thus, although cluster size remains the primary factor

determining performance for MinMax 2-connectivity,

the node proximity of clusters also plays an important

role.

2) An Analysis of MinTotal for 2-connectivity: Here,

the experimental results show that no single clustering

algorithm is uniformly the best. Nonetheless, it is

clear that if the clustering can avoid producing weak

clusters (i.e., maintaining strong node proximity), then

it remains the case that the larger the cluster, the

better the performance. Detailed analysis is omitted

due to space constraints.

VI. DESIGN AND ANALYSIS OF MMST

In the prior section, we concluded that large cluster

size and high node proximity of clusters are the most

important determinants for a clustering method to

work well in conjunction with CLTC. In this section,

we introduce a new clustering method based on these

two factors.

To achieve a sufficiently large cluster size while

limiting the number of messages that need to be sent,

we select 2-hop as the scope for collecting information

about nearby nodes.

To achieve node proximity of clusters, we need to de-

termine a way for selecting clusterheads that reflects

this proximity. Recall that weight based clustering

methods seem to provide better node proximity than

do graph based methods (such as clique clustering



TABLE IV

POWER INCREASE PERCENTAGE OVER THE CENTRALIZED

ALGORITHM FOR MINMAX AND MINTOTAL, 2-CONNECTIVITY

and MMD). Nonetheless, node proximity “feels” like

a graph based property. Our approach is to combine

the weight based approach with the graph property

approach in the following way: We let the weight

of a node X be the average edge length in a local

minimum spanning tree of the 2-hop neighborhood of

that node. The intuition is that nodes with smaller

such weights have neighborhoods that exhibit higher

node proximity.

Formally, we define A Multi-hop MST-based Cluster-

ing Algorithm for Ad Hoc Networks (MMST), where

each node performs the following procedure:

1) Collect information on all nodes in its 2 hop

neighborhood.

2) Construct a local minimum spanning tree (MST)

of the 2-hop neighborhood.

3) Compute its node weight as the average edge

length in that local MST.

4) The node waits until all of the nodes of smaller

weight in its 2-hop neighborhood have decided

if they are a clusterhead. If there is at least

one clusterhead among those nodes, then this

node joins the cluster of the node of smallest

weight. Otherwise, this node declares itself to be

a clusterhead.

For 1-connectivity, MinMax and MinTotal, the per-

formance of MMST is virtually identical to that of

ADB. This is not a surprise, since both methods are

based on 2-hop neighborhoods, and for 1-connectivity

the impact of node proximity is relatively minor. For

space reasons, we do not show the table with the data

for 1-connectivity.

For 2-connectivity, the performance of MMST in

relation to the clustering methods described in the

prior sections is shown in Table IV. That table shows

the performance of MMST in comparison with ADB

for MinMax and with WCA for MinTotal. Recall that

ADB is consistently the best of the earlier clustering

methods for MinMax, and that WCA, ADB and DDCA

are interchangeably the strongest for MinTotal. We use

WCA as the representative of these three methods. The

TABLE V

POWER INCREASE PERCENTAGE FOR MINMAX

results in Table IV show that overall for 2-connectivity,

MinMax and MinTotal, MMST is superior to the other

methods in dense networks, though not for sparse net-

works. Note for example that for MinTotal, when the

centralized algorithm does not beat WCA (i.e. negative

percentages in Table IV), the performance of MMST is

weaker than WCA. In contrast, when the centralized

algorithm beats WCA, MMST is uniformly the best

among all studied clustering methods5

VII. ENERGY AND INCREASED CONNECTIVITY

There is an obvious tradeoff between the desire

that the network have the highest possible level of

connectivity and the power used by the network nodes

in achieving that level of connectivity. In this section

we quantify this tradeoff, by examining the increase

in power needed for a 2-connected network versus a

1-connected network.

For the various clustering methods studied in this

paper, Table V shows the power increase percentage

of 2-connectivity over 1-connectivity for MinMax, while

the table for MinTotal is similar, hence omitted here.

From these two tables it is clear that in general, a very

high price is paid in requiring 2-connectivity instead

of 1-connectivity.

For MinMax, the increases for the non-clique meth-

ods6 range from 38-52% for sparse networks and

steadily increase to be 116-177% for dense networks

(200 nodes). It seems that for sparse networks, there

are already a number of large power values even for

1-connectivity, hence there are already “extra” edges

present in the 1-connected network that are there as

an artifact of these large power values. These edges

are useful in providing 2-connectivity, hence reduc-

ing the need for additional edges, hence limiting the

needed increase in power values. By contrast for dense

networks, the power values to achieve 1-connectivity

are small, and there are few “extra” edges, hence

in providing 2-connectivity, most the edges must be

5Note that: WCA gives the best performance for dense networks.
6The only exception to the dramatic increase is for clique cluster-

ing. Recall that clique clustering for 1-connectivity produces many
edges. Subsequently, the number of additional edges needed to
establish 2-connectivity is small, and yet the total number of edges
remains large relative to the other methods.



produced by the increased power values. As a conse-

quence, these power values are proportionally larger.

Indeed for the best methods for MinMax, namely ADB

and MMST, the increases for dense networks are 177%

and 163%, respectively. Obviously, these increases in

power are quite large indicating that requiring a 2-

connected topology should be done only when there is

a compelling reason.
For MinTotal, the story is similar, as the increases

for non-clique methods range from 39-73% for sparse

networks and from 136-253% for dense networks. De-

tails are omitted due to space constraints.

VIII. RELATED WORK

Earlier work on topology control has taken two

contrasting approaches. One group of works has stud-

ied centralized algorithms where a single source has

complete information about the entire network. That

source computes power assignments which are then

transmitted to the other nodes. These works have

typically focused on proving specific bounds about the

goodness of their solutions relative to optimal. The

other approach has been to give fully distributed al-

gorithms where nodes have only local knowledge of

the network. Here some heuristic calculation is used

to determine the power assignment at each node, and

the goodness of the assignment is established using

simulations.

A. Centralized algorithms

In the earliest formal work in this area, Ra-

manathan and Rosales-Hain [17] formulated the topol-

ogy control problem for MinMax 1-connectivity and 2-

connectivity. They developed two optimal centralized

algorithms. In [21], Wieselthier et al. introduced and

evaluated algorithms for broadcast and multicast trees

in wireless networks for MinTotal but no performance

bound was guaranteed. Additional work for centralized

topology control may be found in [13], [6], [5], [9].

B. Fully distributed heuristics

Fully distributed heuristics for topology control

can be divided into two categories: those using only

link costs in their decision making (called cost-based

heuristics) [16], [12], and those using node location in-

formation and properties of two dimensional geometric

graphs (called location-based heuristics) [20], [19]. For

both types of methods, the goal is to allow mobility

or at least dynamic joining and leaving of nodes. It is

usually assumed that the network is always connected

and that each node collects 1-hop information through

periodic, asynchronous “Hello” messages.

Disclaimer: The views and conclusions contained

in this document are those of the authors and should

not be interpreted as representing the official policies,

either expressed or implied, of the Army Research

Laboratory or the U.S. Government.
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