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Abstract. Topology control is the problem of assigning transmission
power values to the nodes of an ad hoc network so that the induced graph
satisfies some specified property. The most fundamental such property
is that the network/graph be connected. For connectivity, prior work
on topology control gave a polynomial time algorithm for minimizing
the maximum power assigned to any node (such that the induced graph
is connected). In this paper we study the problem of minimizing the
number of maximum power nodes. After establishing that this minimiza-
tion problem is NP-Complete, we focus on approximation algorithms for
graphs with symmetric power thresholds. We first show that the problem
is reducible in an approximation preserving manner to the problem of as-
signing power values so that the sum of the powers is minimized. Using
known results for that problem, this provides a family of approxima-
tion algorithms for the problem of minimizing the number of maximum
power nodes with approximation ratios of 5/3 + ε for every ε > 0. Un-
fortunately, these algorithms, based on solving large linear programming
problems are not practical. The main result of this paper is a practical
algorithm having a 5/3 (exactly) approximation ratio. In addition, we
present experimental results on randomly generated networks. Finally,
based on the reduction to minimizing the total power problem, we outline
some additional results for minimizing the number of maximum power
users, both for graph properties other than connectivity and for graphs
with asymmetric power thresholds.

1 Introduction

Considerable attention has been given to problems of topology control in
ad hoc networks. Recall that an ad hoc network consists of a collection of
transceivers for which all communication is based on radio propagation. For
each ordered pair (u, v) of transceivers, there is a transmission power thresh-
old, denoted by p(u, v), where a signal transmitted by the transceiver u can be
received by v only when the transmission power of u is at least p(u, v). The
transmission power threshold for a pair of transceivers depends on a number of
factors including the distance between the transceivers, the direction of the an-
tenna at the sender, interference, noise, etc. [RR00]. Further, due to those same



factors, p(u, v) and p(v, u) need not be identical. When p(u, v) and p(v, u) are
equal for all u and v, the power thresholds are symmetric. If they are unequal
for some u and v, then the power thresholds are asymmetric. In this paper, un-
less otherwise specified, all of the problems considered utilize symmetric power
thresholds.

Given the transmission powers of the transceivers, an ad hoc network can
be represented by an undirected graph [KK+97]. In this graph, the nodes are
in a one-to-one correspondence with the transceivers. There is an edge (u, v)
if and only if the transmission powers of both u and v are at least the trans-
mission power threshold p(u, v). Note that every edge in the undirected graph
corresponds to a two-way communication.

The main goal of topology control is to assign transmission powers to
transceivers so that the resulting undirected graph satisfies a specified prop-
erty, while minimizing some function of the transmission powers assigned to the
transceivers. Limiting the maximum power used at any node, and using a mini-
mum amount of power at each node to achieve a given task is likely to decrease
the MAC layer interference between adjacent radios. The reader is referred to
[LHB+01,RMM01,WL+01,RR00,RM99] for a thorough discussion of power con-
trol issues in ad hoc networks.

The most fundamental topology control problem [RR00] is to minimize the
maximum power utilized by any node such that the resulting graph is connected.
For this problem polynomial time algorithms are known [RR00,LLM02]. These
algorithms are based on using binary search over all of the relevant power values
(i.e. those power values corresponding to the transmission power thresholds).
Since the goal is to minimize the maximum power assigned to any node, these
algorithms may assign the computed minimum maximum power to every node
of the network3. In practice however it is desirable not only to minimize the
maximum power, but also to limit the number of nodes utilizing that maximum
power.

In this paper we study the problem of assigning powers to nodes such that the
induced graph is connected while minimizing the maximum power used by any
node and minimizing the number of nodes that utilize that maximum power. In
the next section we give formal definitions and some additional background. In
Section 3 we show that the problem is NP-hard, and describe an approximation
preserving reduction to the problem of minimizing the total power assigned to
all of the nodes such that the resulting graph is connected. Using known results
[ACMP04] for that problem, this provides a family of approximation algorithms
for the problem of minimizing the number of maximum power nodes with ap-
proximation ratios of 5/3 + ε for every ε > 0. Unfortunately, these algorithms,
based on solving large linear programming problems are not practical. In Sec-
tion 4 we give our main result, an algorithm with an approximation ratio of 5/3
(exactly). Experimental results are given in Section 5. Finally, some further con-

3 A method to minimalize the power at every node, once the maximum is found is
discussed in [RR00], but was not implemented.



sequences of the reduction to the problem of minimizing the total power, along
with open problems are discussed in Section 6.

2 Problem Formulation and Background

In this section we first give a formal definition of the problem studied in this
paper, along with related terminology. The section also includes a brief review
of some related prior work on topology control.

2.1 The Max-Power Users Problem

A formal statement of the decision version of the problem studied in this paper
is as follows.

Max-power Users
Instance: A positive integer M , a positive number P (maximum allowable power
value), a node set V , and a power threshold value p(u, v) for each pair (u, v) of
transceivers.
Question: Is there a power assignment where the power assigned to each node is
at most P and the number of the nodes that are assigned power P is at most
M , such that the resulting undirected graph G is connected?

Note that the above definition differs slightly from that described in the
introduction, in that the formal statement assumes that the maximum allowable
power value is given as an input. This is a reasonable assumption since for a
given network, the problem of minimizing the maximum power such that the
induced graph is connected can be solved in polynomial time [RR00,LLM02].
The problem considered here takes that maximum power value as an input and
aims to minimize the number of nodes utilizing that power.

2.2 Some Prior Work

A notation was given in [LLM02] whereby a topology control problem is specified
by a triple of the form 〈M, P, O〉. In this notation, M ∈ {Undir, Dir} repre-
sents the graph model, P represents the desired graph property and O represents
the minimization objective.

The form of topology control considered in this paper was proposed by Ra-
manathan and Rosales-Hain [RR00]. They presented efficient algorithms for
two topology control problems, namely 〈Undir, Connected, MaxP〉 and
〈Undir, 2-Node Connected, MaxP〉. In addition, they presented efficient
distributed heuristics for those problems.

Considerable work has been done over the past three years on a variety of
topology control problems. For instance, several groups of researchers have stud-
ied the problems 〈Undir, Connected, TotalP〉, 〈Undir, 2-Node Con-

nected, TotalP〉 and 〈Undir, Diameter K, MaxP〉 (see for example
[LLM02,KL+03]). Likewise, work on 〈Dir, Strongly Connected, TotalP〉



may be found in [CH89,KK+97,CPS99,CPS00]. In most instances, the problems
are shown to be NP-Hard and the focus is on the development of approximation
algorithms having either O(log n) or constant approximation ratios.

The problem of minimizing the number of maximum power users was briefly
addressed in [LLM02] where it was shown that minimizing the number of max-
imum power users is NP-Hard when the goal is to produce a connected graph
with diameter at most 6.

3 Two Complexity Results

In this section we discuss two complexity results for the Max-power Users
problem. The first result shows that the problem is NP-Complete. The sec-
ond result gives an approximation preserving reduction to the 〈Undir, Con-

nected, TotalP〉 problem.

3.1 Minimizing the Number of Max Power Nodes is NP-Complete

As noted above, it was shown in [LLM02] that minimizing the number of maxi-
mum power users is NP-Hard when the goal is produce a connected graph with
diameter at most 6. In this section, we show that the problem is NP-Complete
even when all that is desired is for the graph to be connected. The following re-
sult can be proven by a reduction from the minimum set cover problem [GJ79].
The proof is omitted due to space constraints.

Theorem 1. The problem Max-power Users is NP-Complete. ut

3.2 A Reduction to Minimizing Total Power

In this section we give an approximation preserving reduction from the Max-
power Users problem to 〈Undir, Connected, TotalP〉. Since several ap-
proximation results are known for 〈Undir, Connected, TotalP〉this will
immediately provide identical results for Max-power Users.

Theorem 2. There exists a polynomial-time reduction from Max-power Users
to 〈Undir, Connected, TotalP〉 such that any α-approximation algorithm
for 〈Undir, Connected, TotalP〉 is also an α-approximation algorithm for
Max-power Users.

Proof: Consider an instance I of the Max-power Users problem. Let p(x, y)
denote the (symmetric) power threshold values for any pair of nodes x and y.
Let P denote the smallest maximum power value for I (this can be computed
efficiently using the algorithms of [RR00,LLM02]). Further, with that P , let P0

= max{p(x, y): p(x, y) < P}. Since the goal is to minimize the number of nodes
assigned the power value P , it is sufficient to consider solutions where all other
nodes are assigned the power value P0.

We now construct an instance I ′ of 〈Undir, Connected, TotalP〉 as
follows. For the instance I ′, the power threshold value for each pair of nodes x
and y, denoted by p′(x, y), is chosen as follows:



p′(x, y) = 1 if P0 < p(x, y) ≤ P
= 0 if p(x, y) ≤ P0

= ∞ otherwise

Now, for the instance I ′, the power value to be assigned to each node is either 0 or
1. If the power assigned to node x in I ′ is 1 (0), that corresponds to assigning the
power value P (P0) to the node x in I. Thus, the total assigned power value in I ′

is the number of nodes assigned the maximum power value in I. Further, it is clear
that any α-approximation algorithm for 〈Undir, Connected, TotalP〉is also
an α-approximation algorithm for Max-power Users. ut

Combining the above theorem with the results of [ACMP04], the following
are immediate:

– For any ε > 0, there is a (5/3+ ε)-approximation algorithm for Max-power
Users. Unfortunately, it is noted in [ACMP04] that “this algorithm is im-
practical”, due to its reliance on solving large linear programming instances
and other related issues.

– The minimum spanning tree based algorithm of [RR00] for 〈Undir, Con-

nected, TotalP〉is a 2-approximation algorithm for Max-power Users.
In contrast to the prior observation, the minimum spanning tree based al-
gorithm of [RR00] has often been the method of choice for solving both
〈Undir, Connected, MaxP〉and 〈Undir, Connected, TotalP〉. In
the experimental studies described in this paper we include this algorithm
as a baseline method for solving Max-power Users.

The NP-hardness results presented in this section apply to general instances
of the Max-power Users problem rather than geometric instances (where the
nodes are points in Euclidean space and the power threshold value for each
pair of nodes is a function of the distance between the nodes). However, the
approximation results presented in the subsequent sections of this paper are
applicable to geometric instances as well.

4 A 5/3-approximation Algorithm

In this section we describe a 5/3-approximation algorithm for the Max-power
Users problem, and show that the approximation ratio is tight. We begin by
defining the following concept:

Definition 1. Consider an undirected graph G(V, E) and two subsets E′ and H
of E. For a node u ∈ V , a Maximal Connected Component Tree (MCCT)
with root u for graph G′(V, E′) and edge subset H, is a subset Tu of H such that
all of the following conditions hold:

(a) The restriction of G to Tu is a tree. By abuse of notation, we let Tu denote
that restriction of G.

(b) u is a node in Tu.



(c) Each node in Tu is in a different connected component of G′(V, E′).
(d) Tu is maximal with respect to properties (a) and (c) above (i.e. adding any

edge (x, y) ∈ H to Tu will either destroy property (a) or property (c)).

The number of edges in Tu is called the size of Tu.

Figure 1 illustrates the definition of MCCT.

u

Fig. 1. MCCT of u: The ellipses illustrate the different connected components in G′,
H consists of all of the edges shown (solid and dashed), and Tu, a Maximal Connected
Component Tree (MCCT) with root u for graph G′(V, E′) and edge subset H , is the
set of all solid edges. The size of Tu is 3.

An MCCT based approximation algorithm for Max-power Users is given
in Algorithm 1. For an understanding of the ideas behind this algorithm, we first
consider the following method for finding a solution to Max-power Users: Us-
ing the power threshold graph, assign every node a power level equal to the great-
est adjacent threshold that is less than pmax (the minimum maximum power).
The graph induced by this power assignment will consist of several connected
components. Then, one way to make this graph connected is to add maximum
power edges (i.e. those having a power threshold of pmax) to this graph until the
graph is connected. This is the essential idea underlying the minimum spanning
tree based algorithm of [RR00] that was mentioned in the prior section. Clearly,
in this approach if there are k connected components prior to the addition of any
maximum power edges, then k − 1 maximum power edges must be added. The
key issue is how many distinct nodes are adjacent to these edges. Clearly, k is
a lower bound on that number of nodes. And, in [RR00] the number of distinct
nodes might be as large as 2 · (k − 1), hence the approximation ratio of 2.

How can we improve upon the ratio of 2? One approach would be to select
maximum power edges that share adjacent nodes. Alternatively, we could tighten
the lower bound of k on the number of maximum power nodes. Obviously, one



or both approaches might apply for a particular instance of the Max-power
Users problem. Algorithm 1 attempts to exploit the first approach, by focusing
on MCCTs of particular sizes as it selects maximum power edges that result in a
connected graph. In particular, the algorithm first finds MCCTs of size at least
3, then finds MCCTs of size 2, and finally includes single edges. Further, our
proof on the approximation ratio associated with Algorithm 1 will tighten the
lower bound as well.

Algorithm 1 A 5/3-Approximation Algorithm for Max-power Users
Input: A complete power threshold graph G(V, E) and the minimum maximum power
pmax.
Output: Power assignment A for each node u in V .

1: E′ ← {(u, v) ∈ E| p(u, v) < pmax}
2: H ← {(u, v) ∈ E| p(u, v) = pmax}
3: while ∃u ∈ V , for which a MCCT Tu for G′(V, E′) and H has size greater than 2

do
4: E′ ← E′ ∪ Tu

5: end while
6: while ∃u ∈ V , for which a MCCT Tu for G′(V, E′) and H has size 2 do
7: E′ ← E′ ∪ Tu

8: end while
9: Compute the connected components C1, ..., CL of G′(V, E′).

10: Add L− 1 edges in H to E′ such that G′(V, E′) is connected.
11: for each u in V do
12: A(u)← the weight of the largest edge in E′ that is incident on u.
13: end for
14: Return A

It is easy to see from the algorithm’s specification that it produces a power
assignment for the nodes in V such that the induced graph is connected. In
regard to the quality of that power assignment, we have:

Theorem 3. Algorithm 1 is a 5/3-approximation algorithm.

Proof: Suppose before the execution of the first while loop, that G′(V, E′) has
K connected components. In iteration i of the while loop (lines 3–5), let si be
the size of Tu. Note that si ≥ 3, and that by adding Tu to E′ the number of
connected components in G′(V, E′) is reduced by si because Tu connects si + 1
different connected components.

We claim that Tu is node disjoint from any edges in H that were added to
E′ in the previous iterations. The reason is as follows. Suppose there exist edges
(t, v) in Tu and (v′, t) in T ′, a MCCT chosen in some previous iteration (i.e.
these two edges have node t in common). Since (t, v) is in Tu, it follows that in
iteration i, nodes t and v must be in different connected components of G′(V, E′).
Also in iteration i all nodes in T ′ are in the same connected component. This
component then includes node t, but not node v. But this means that in the



prior iteration, T ′ ∪ (t, v) is a larger MCCT than T ′. This contradicts T ′ being
a MCCT (it was not maximal). Thus, the claim is proved.

As a result of the above, in both while loops, adding Tu to E′ causes s + 1
additional nodes to be assigned power pmax in A, where s is the size of Tu.

Now, suppose before the execution of the first while loop, that G′(V, E′) has
K connected components, that before the execution of the second while loop,
G′(V, E′) has M connected components, and that after the execution of the
second while loop, G′(V, E′) has P connected components. Let si be the size of
Tu in iteration i of the first while loop and let mi be the size of Tu in iteration
i of the second while loop. Let N(A) be the number of nodes that are assigned
power pmax in A. Then, since each si ≥ 3 and each mi = 2, we have:

N(A) =
∑

i

(si + 1) +
∑

i

(mi + 1) + 2(P − 1)

=
∑

i

(
si + 1

si
· si) +

∑
i

(
mi + 1

mi
·mi) + 2(P − 1)

≤ 4
3

∑
i

si +
3
2

∑
i

mi + 2(P − 1)

=
4(K −M)

3
+

3(M − P )
2

+ 2(P − 1)

Consider an optimum solution for Max-power Users. It is obvious that:

Claim. 1 In any optimum solution, at least K nodes are assigned power pmax.

Let Gopt(V, Eopt) be the graph induced by an optimum solution. Consider
the graph G′(V, E′) after the first while loop of Algorithm 1. Recalling that there
are M connected components in G′, we have:

Claim. 2 There exist node disjoint MCCTs for graph G′(V, E′) and edge set
Eopt such that:

– Each MCCT4 is of size 1 or 2.
– The sum of the sizes of these MCCTs is at least M − 1.

Proof of Claim 2: Let D0 be the nodes in some connected component of
G′(V, E′). Since Gopt(V, Eopt) is connected, for each cut of Gopt(V, Eopt) there
must exist an edge in Eopt that crosses the cut. Let e1 be an edge in Eopt that
crosses the cut (D0, V − D0). Note that e1 must be a maximum power edge.
Further, there must be a MCCT T1 for G′(V, E′) and edge set Eopt that includes
e1. The size of that MCCT may be either 1 or 2 (it cannot be larger, since then
it would have been discovered in the first while loop of Algorithm 1). Consider
G1(V, E1) where E1 = E′ ∪ T1. Now, let D1 be the nodes in some connected

4 Trivially, an MCCT of size 1 is a singleton edge. In the remainder of this section
we will sometimes find it convenient to refer to edges that are not part of a larger
MCCT in this fashion (i.e. as MCCTs of size 1).



component of G1. As above, let e2 be an edge (necessarily of maximum power)
that crosses the cut (D1, V −D1), and let T2 be a MCCT for G1 and edge set Eopt

that includes e2. Again, the size of that MCCT must be 1 or 2. Continuing in
this fashion, we enumerate MCCTs T1, T2, ..., Tg, ending when the corresponding
graph Gg is connected. Note that each of these MCCTs is of size 1 or 2, and that
it follows from the definition of a MCCT that these MCCTs are node disjoint. It
also follows that each of these MCCTs is present in graph G′. Finally, since G′

had M connected components, the sum of the sizes of these MCCTs is M−1. ut
It follows from the claim that if L of the MCCTs referenced there are of size

1, then there are at least 3/2(M −L− 1)+ 2L = 3M/2 + L/2− 3/2 nodes using
power pmax in an optimum solution.

To complete the proof we need to relate the number of MCCTs of size 2
selected in Algorithm 1 to the values L and M . Specifically we have:

Claim. 3 In the second while loop of Algorithm 1 (lines 6–8), at least (M −L)/4
MCCTs are selected. Note that those MCCTs are all of size 2.

The proof of Claim 3is omitted.
Let N(OPT ) be the number of nodes that are assigned power pmax in an op-

timum solution. From Claims 1 and 2, we have that N(OPT ) ≥ Max(K, 3M/2+
L/2−3/2). And, using Claim 3, (M−P )/2 ≥ (M−L)/4, hence P ≤ M/2+L/2.
We then have:

N(A)
N(OPT ) ≤ 4/3(K−M)+3/2(M−P )+2(P−1)

Max(K,3M/2+L/2−3/2)
.

Using straightforward algebraic manipulations, it can be shown that the
above ratio is bounded by 5/3. Thus, the approximation ratio of Algorithm
1 is 5/3. ut

Due to space constraints, we state the following corollary without proof.

Corollary 1. The 5/3 approximation ratio of Algorithm 1 is tight.

An interesting question is what happens in Algorithm 1 if we do not give
priority to MCCTs of size 3 or more, but rather consider equally acceptable any
MCCT of size 2 or more. That is, in Algorithm 1, in line 3, replace “H has size
greater than 2” with “H has size greater than 1”, and we omit lines 6 to 8. We
will call this Algorithm 2. Then we have the following corollary:

Corollary 2. Algorithm 2 is a 7/4-approximation algorithm for Max Power
Users, and the bound is tight.

Finally, we state without proof the running times of our algorithms:

Proposition 1. The running times of Algorithms 1 and 2 are O(n3) and O(n2)
respectively.



5 Experimental Results

In this section we consider the experimental performance of Algorithms 1 and 2
along with the algorithm of [RR00].

The experimental environment used here is derived from the one described in
[RR00]. The radio wave propagation model is the Log-distance Path Loss Model:

PL(d) = − 10 log10

[
GtGrλ

2

(4π)2d2
0

]
+ 10η log10

[
d

d0

]

where η is the path loss exponent, d0 is the close-in reference distance, λ is
the radio wavelength, Gt is the transmitter antenna gain, Gr is the receiver
antenna gain, and d is the separation distance between transmitter and receiver
(see [Ra96] for detailed descriptions of these parameters). All of the parameters
are chosen to emulate a 2.4 GHz wireless radio, and if d is less than a certain
threshold, the transmission power threshold is set to the minimum threshold of
1 dBm.

Experiments were conducted on networks with 200 nodes by varying the
geographical distribution of the nodes and the power levels available to the nodes.
Nodes were placed using a uniform random distribution, and with 200 nodes in
each network, the node density was 12.5 nodes/sq mile in a 4 mile by 4 mile
area. Three sets of power levels were used, with a varying ratio between the top
two power levels. Those three sets of power levels were (24, 8, 2, 1), (24, 12, 6, 3)
and (18, 12, 9), corresponding to ratios between the top two power levels of 3, 2
and 1.5. Each data point represents the average taken over 19 trials.

In each experiment, after generating a placement of the nodes, three algo-
rithms were run on the network consisting of those nodes. The three algorithms
were our Algorithms 1 and 2, along with the minimum spanning tree algorithm
from [RR00] that was briefly discussed in Section 3 (for brevity, we will refer
to this as MST [RR00]). Each algorithm assigns powers to nodes such that
the resulting network is connected. For each algorithm we measure the number
of nodes that are assigned maximum power. In addition, we record the aver-
age power assigned, and the maximum and average degrees of the nodes in the
resulting network.

The experimental results on nodes of maximum power are shown in Figure
2. There, in addition to the number of maximum power nodes produced by each
algorithm, we provide a lower bound on the optimal number of maximum power
nodes. This lower bound is calculated as in the proofs of the performance bounds
in the prior section, and is based on the number of connected components, and
the numbers of MCCTs of size 2 and size 3. Relative to the results in Figure 2
we make the following observations:

– The two MCCT based algorithms (Algorithms 1 and 2) outperform the MST
based algorithm (MST [RR00]) in regard to the number of maximum power
nodes. The reductions obtained by using the MCCT based algorithms range
from 7% to 23%, with larger reductions occurring when there is a larger
spread in the top two power levels.
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Fig. 2. Max Power Nodes

– There is virtually no difference in the performance of Algorithm 1 (the 5/3
approximation ratio) as compared with the performance of Algorithm 2 (the
7/4 approximation ratio). While they often obtain their MCCTs in different
orders (in particular, the MCCTs of size 2 come last in Algorithm 1), it
seems to be rare for the selection of one MCCT to eliminate another MCCT.
Further, in most cases, the number of MCCTs found by either algorithm is
fairly small. Usually there were fewer than 5 MCCTs, and in a surprisingly
large number of cases there was only one, very large, MCCT. That single
MCCT involved a node from the majority of the connected components that
existed prior to MCCT selection in the while loops of Algorithms 1 and 2.

– On the average, Algorithms 1 and 2 use about 22% more maximum power
nodes than the lower bound.

The results on average power are omitted due to space considerations, how-
ever we note that the improvements in average power due to Algorithms 1 and
2 are modest, ranging from under 1% to just over 10%.

Figure 3 shows the results on average degree. Here, some reductions in average
degree occur when using the MCCT based algorithms. The results are most
significant when the ratio between the top two power levels is high. Specifically,
when the power levels are (24, 8, 2, 1), the MCCT based algorithms reduce the
average node degree by 17%.

6 Additional Observations and Future Research

Theorem 2 showed that the Max-power Users problem can be reduced in an
approximation preserving manner to to 〈Undir, Connected, TotalP〉. Ac-
tually, that result is not restricted to power assignments producing connected
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graphs, but can be generalized to apply for any monotone graph property as
well as for asymmetric power thresholds. As a consequence, approximation algo-
rithms for several (generalized) Max-power Users problems can be obtained.
These include: for symmetric power thresholds, constant factor approximations
for the properties 2-connected and 2-edge-connected, as well as an O(log n) ap-
proximation for connectivity with asymmetric power thresholds. In addition, we
can show using a reduction from minimum set cover that there is a matching
Ω(log n) lower bound for the connectivity problem under asymmetric thresholds.

The primary open question is whether there are algorithms with approxima-
tion ratios lower than 5/3 for the Max-power Users problem for connectivity.
We conjecture that such algorithms exist. Specifically, if Algorithm 1 is extended
in the obvious way by finding larger MCCTs before smaller ones (i.e. much as
Algorithm 1 is an extension of Algorithm 2), it is likely that a smaller approx-
imation ratio can be found. The difficulties in making this extension are: 1)
Determining the relationship between the MCCTs of a given size found by the
algorithm and the existence of MCCTs in optimal solutions; 2) Evaluating the
resulting equations; and 3) The running time would seem to be dependent on the
size of the MCCTs that are sought, hence it is likely that some kind of approx-
imation scheme would result (though we suspect that even so, the achievable
bound will not fall below 1.5).
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