
CISC 829 Computational Geometry

HW3 due May 14

WRITTEN EXERCISE:

The following is problem H fron the recently completed finals of the ACM Programming Context.
As it turns out, no team was able to complete this problem. Of course, they have not had the
benefit of this course on computational geometry …

You probably never heard of the artist Peer. He is not well known, much to his regret. Peer was
one of the inventors of monochromy, which means that each of his paintings has a single color,
but in different shades. He also believed in the use of simple geometric forms. During his triangle
period, Peer drew triangles on a rectangular canvas, making sure their borders did not intersect.
He would then choose a color, and fill the regions. Peer would paint the outermost region (the
canvas itself) with the lightest shade of the color chosen. Then step by step, he would fill more
inner regions with a darker shade of the same color.

In a way the process was quite mechanical. The only thing Peer considered difficult was to decide,
after drawing the triangles, how many different shades he would need. You must design an
algorithm to do that calculation for him.

Your algorithm will have a collection of triangles as its input. It should calculate the number of
different shades needed to paint the regions according to the given rule. Your algorithm must also
detect the rare times that Peer makes a mistake and draws triangles that intersect. Two triangles
are considered intersecting if the edges of one triangle have at least one point in common with the
edges of the other. In that case, the collection of triangles is invalid.

Be sure to carefully describe your algorithm and to analyze the running time, which should be as
small as possible …

PROGRAMMING EXERCISES:

The programming exercise this time has these objectives:

1. Familiarize with Delaunay Triangulation
2. Really understand how a heap works by implementing it
3. Get some hand-on experience with Loop subdivision
4. Treat an image as a surface

A. Find a grayscale image of a relatively high resolution (say 512x512). Randomly sample 10%
of the pixels and treat them as points. The height of each point corresponds to its intensity.

B. Use any publicly available libraries or implementations (e.g, OpenCV) to construct the
Delaunay Triangulation of these points.

C. Rasterize all triangles (say using OpenGL, and yes, your graphics group member can help) to
obtain an image with the resolution of the source image and compare its quality with the source
image.

D. Now implement Loop subdivision to generate a finer mesh from the base mesh.

E. Repeat step C and re-compare the image quality.

F. You can view this approach as an image super-resolution algorithm. Experiment your program
on different images and discuss why it works better for certain type of images than the other.

