
CISC 829 Computational Geometry 

HW1  due March 20 

 

WRITTEN EXERCISES: 

Problem 1: Textbook, exercise 1.4, p. 15. 

Problem 2: Textbook, exercise 2.11, p. 43 

Problem 3: Simple Polyline Hull Algorithms 

We have seen in class how to compute the convex hull of any 2D point set or polygon with no 
restrictions.  The polygon could have been simple or not, connected or not.  It could even have 
been just a random set of segments or points.  The algorithms given, the "Graham Scan" and the 
"Andrew Chain", computed the hull in O(n log n) time.  In this exercise, you need to develop an 
algorithm that improves this efficiency to O(n) linear time for a connected simple polyline with 
no abnormal self-intersections. 

Why is it possible? 

Why should there be a faster O(n) convex hull algorithms for simple polylines and 
polygons?  To understand this, recall that most convex hull algorithms for point sets take 
O(n log n) time because initially sort the n points.  After that, they generally only require 
O(n) time.  So, one needs to ask why sorting is needed; that is, what does it 
accomplish?  Consider how other algorithms proceed after sorting is done. 

Most 2D convex hull algorithms use a basic incremental strategy.  At the k-th stage, they have 
constructed the hull Hk 1 of the first k points {P0, P1, ..., Pk1}, incrementally add the next point Pk, 
and then compute the next hull Hk.  How does presorting facilitate this process?  The answer is 
that at each stage, one knows that the next point Pk is exterior to the previous hull Hk 1, and thus 
one does not have to test for this.  Otherwise, one would have to test Pk against all k edges of Hk-1, 
resulting in O(n2) such tests totaled over all stages of the algorithm.  Instead, one immediately 
knows that that Pk is outside Hk-1, and can proceed to construct Hk by extending Hk-1.  Thus, if 
presorting in O(n log n) time has been done, no such tests need to be made, and this results in a 
faster algorithm.  

Melkman’s algorithm 

[Melkman, 1987] devised an ingenious method for organizing and implementing the operations to 
compute the hull of a simple polyline.  

The strategy of the Melkman algorithm is straightforward.  It sequentially processes each of the 
polyline vertices in order.  Let the input polyline be given by the ordered vertex set: V = {P0, 



P1, ..., Pn}.  At each stage, the algorithm determines and stores (on a double-ended queue) those 
vertices that form the ordered hull for all polyline vertices considered so far.  Then, the next 
vertex Pk is considered.  It satisfies one of two conditions: either (1) it is inside the currently 
constructed hull, and can be ignored; or (2) it is outside the current hull, and becomes a new hull 
vertex extending the old hull.  

The double-ended queue (called a "deque")  

A deque has both a top and a bottom.  At both ends of the deque, elements can be either 
added or removed.  At the top, we say an element is pushed or popped; while at the 
bottom, we say an element is inserted or deleted.  The deque is given by an ordered list D 
= { dbot, ..., dtop }where bot is the index at the bottom, and top is for the top of D.  The 
elements di are vertices that form a polyline.  When dtop = dbot, then D forms a 
polygon.  In the Melkman hull algorithm, after processing vertex Pk, the deque Dk 
satisfies: 

1. The polygon Dk is the ccw convex hull Hk of the vertices Dk = {P0, ..., Pk} already 
processed.  

2. dtop = dbot is the most recent vertex processed that was added to Dk.  

If Pk is inside Hk−1, then Dk = Dk−1, and there is no associated processing.  In this case, Pk is inside 
the subregion of Hk−1 bounded by the vertices: dbot, dbot+1,..., dtop−1, dtop 

Part 3.1: Prove that if point Pk is inside hull Hk-1 and Pk+1 is on hull Hk if and only if edge Pk Pk+1 
crosses over one of the edge segments dbotdbot+1 or dtop−1dtop.  

Part 3.2: How do you test if Pk crosses the edge segments dbotdbot+1 or dtop−1dtop 

Part 3.3: When Pk is exterior to Hk−1, we must then change Dk−1 to produce a new deque Dk that 
satisfies the above two conditions. How shall we update Dk? 

Part 3.4: Analyze the time complexity of the above algorithm.  

Part 3.5: Melkman’s algorithm is considered to be the best convex hull algorithm for simple 
polygons. What distinguishes it from all the rest is that it is actually an on-line algorithm. Explain 
why this is the case.  

 

 

 

 

 



PROGRAMMING EXERCISES: 

Part 0. Use your favorite Web search to find some computational geometry applets for 
convex hull, triangulation, etc. Note the various methods people use for interactive 
specification of input points and polygons. 
 
Part 1. Adopt an existing Java interface or OpenGL interface to allow addition, deletion, 
and editing (moving) points on the xy plane. Support clearing (starting over with zero 
point). Support a restriction (say when pressing the shift key) of the entered point to a 
purely horizontal displacement, if the true mouse position is inside a 45-degree cone to 
the left or right of the point at which the shift key was pressed, or purely vertical 
displacement, if within the complement of this cone. 
 
Part 2. Add a menu button or a key event to instigate a polygon-creation mode, in which 
points, as they are added, form a linear chain. Add a “close" button or key which creates 
an edge from the last point entered to the first point entered. Design it so that your point-
editing code can be re-used, that is, after the chain is completed you can go back and drag 
its vertices around. 
 
Part 3. Implement Melkman’s algorithm.  
 
Part 4. Create a short web page that briefly describes your solution in plain language, 
links to a running applet that demonstrates your running solution, and gives instructions 
for using the applet. Make sure to tell us about any extra capabilities your solution has. 
The page should also link to your source code. Email the profs a link to the top-level web 
page. 
 


