
Environment Centered Analysis and Design of
Coordination Mechanisms

Keith S. Decker

UMass CMPSCI Technical Report 95-69
May 1995

Department of Computer Science
University of Massachusetts
Amherst MA 01003-4610

EMAIL: decker@cs.umass.edu

This work was supported by DARPA contract N00014-92-J-1698, Office of Naval Research contract N00014-
92-J-1450, and NSF contract CDA 8922572. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be inferred.

ENVIRONMENT CENTERED ANALYSIS AND DESIGN OF COORDINATION MECHANISMS

A Dissertation Presented

by

KEITH S. DECKER

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1995

Department of Computer Science

c Copyright by Keith S. Decker 1995

All Rights Reserved

To my parents, Lafeyette J. and Phyllis J. Decker.

iv

ACKNOWLEDGMENTS

When I left General Electric to return to graduate school for my Ph.D., I applied to only
one place, UMass, to work with one person, Victor Lesser, on Distributed AI. My deepest
thanks to Victor for his guidance, mentoring, and support over the years; Vic pushed me to do
more than I thought I could.

I’d like to thank the other members of my committee as well. Paul Cohen supplied
invaluable guidance on the statistical analyses in this thesis, as well as reminding me when I
failed to remember Tufte’s graphical principles. Most importantly, Paul acted as my second
mentor here at UMass and his interest in methodology for AI was a catalyst that made the
structure of my thesis crystallize for me several years before I completed it. Jack Stankovic was
a tough reader who hounded me into avoiding the jargon of DAI and keeping this work open
to other computer scientists; he reminded me of how my work interacts with that of traditional
distributed computing. Doug Anderton also helped point out my methodological failings and
quite a bit of organizational theory literature; he encouraged me to try to open the thesis to
readers outside of computer science entirely.

The DAI research community is a friendly and helpful one, and I’d like to thank everyone
there for their intellectual stimulus, especially Susan Conrey, Ed Durfee, Eithan Ephrati, Steve
Fickas, Piotr Gmytrasiewicz, Mike Huhns, Frank v. Martial, Jeff Rosenschein, and Katia
Sycara. A very special thanks goes to Les Gasser, who has continuously reminded me of the
social aspects of DAI research and who has always supported that direction in my work.

A very special technical thanks to Alan ‘Bart’ Garvey, who wrote the Design-To-Time local
scheduler (that’s part of his thesis) used in this thesis—the collaboration has been amazingly
fruitful. I’d also like to thank Bart for his gourmet cooking, shipping microbrewery beer and
salmon from Seattle, help in brewing (coffee and beer), and his taste in wine.

Many other people have become my friends here and have offered support and encour-
agement over the years. A special thanks to my extended family, the Westbrooks (David, Teri,
Brian, and Josh), who supplied food, washing machine and dryer, gardening advice & supplies,
sewing machine, indoor and outdoor recreational activities, and parties. Thanks to the other
current and former members of the DIS lab who have been happy to exchange ideas and to put
up with proofreading my research papers: Dave Hildum, Marty Humphrey, Dan Neiman, Bob
Whitehair, Nagi, Quin (the Alpha Man), Dorothy Mammon, and Sue Lander. I should note
that Dave provided the LATEX style files for this thesis, Marty provided the parallel scheduler I
talk about in Chapter 6, and Dann has surely been saddled with reading more of my papers
than anyone.

Starting someplace new is always hard, and I made many friends here my first year that
have remained friends since. Thanks to Claire Cardie, Lauren Halverson, Alan Kaplan, Sue
Mathisen, Doug Niehaus, and Ellen Riloff. Many other friends followed, and I’ve partaken of
their hospitality and/or software experience many times: Scott Anderson, Carla Brodley, Carol
Broverman (thanks for the house), Jody Daniels, Tony Hosking, Alice P. Julier, Ruth Kaplan,
Joe McCarthy (homebrewer), Zack Rubinstein (Emacs hacker), and David Skalak. Thanks to
the Amalgams for giving me something to do over the summers. Thanks to the RCF staff,
especially Steve, Terrie, and Glenn.

v

In a very real way I returned to graduate school to get my Ph.D. due to the support
and encouragement of Piero Bonissone, to whom I remain indebted. Special thanks to Jim
Aragones for dragging me out of Amherst and back to Schenectady for some fun once in a
while.

I should also thank the people at CMU who got me interested in AI, and taught me AI from
a cognitive perspective (from which a social perspective on DAI seems a natural one): Herb
Simon, Jill Larkin, Elaine Kant, and John Anderson. Thanks to Doc Moore for convincing
me to be a math major instead of a physics major. Thanks to Mike and Joan Mintz for also
dragging me out of Amherst once in a while.

Finally, a big thanks to my parents for their financial and emotional support through this
(very) long process!

vi

ABSTRACT

Environment Centered Analysis and Design of Coordination Mechanisms

May 1995

KEITH S. DECKER

B.S., Carnegie Mellon University
M.S., Rensselaer Polytechnic Institute

Ph.D., University of Massachusetts Amherst

Directed by: Professor Victor R. Lesser
Committee: Professor Paul R. Cohen

Professor John A. Stankovic
Professor Douglas L. Anderton

Coordination, as the act of managing interdependencies between activities, is one of the
central research issues in Distributed Artificial Intelligence. Many researchers have shown that
there is no single best organization or coordination mechanism for all environments. Problems
in coordinating the activities of distributed intelligent agents appear in many domains: the
control of distributed sensor networks; multi-agent scheduling of people and/or machines;
distributed diagnosis of errors in local-area or telephone networks; concurrent engineering;
‘software agents’ for information gathering.

The design of coordination mechanisms for groups of computational agents depends in
many ways on the agent’s task environment. Two such dependencies are on the structure
of the tasks and on the uncertainty in the task structures. The task structure includes the
scope of the problems facing the agents, the complexity of the choices facing the agents, and
the the particular kinds and patterns of interrelationships that occur between tasks. A few
examples of environmental uncertainty include uncertainty in the a priori structure of any
particular problem-solving episode, in the actions of other agents, and in the outcomes of an
agent’s own actions. These dependencies hold regardless of whether the system comprises just
people, computational agents, or a mixture of the two. Designing coordination mechanisms
also depends on properties of the agents themselves.

Our thesis is that the design of coordination mechanisms cannot rely on the principled
construction of agents alone, but must also rely on the structure and other characteristics of the
agents’ task environment. For example, the presence of both uncertainty and high variance in
a task structure can lead to better performance in coordination algorithms that adapt to each
problem-solving episode. Furthermore, the structure and characteristics of an environment
can and should be used as the central guide to the design of coordination mechanisms, and
thus must be a part of our eventual goal, a comprehensive theory of coordination, partially
developed here.

vii

Our approach is to first develop a framework, TÆMS, to directly represent the salient
features of a computational task environment. The unique features of TÆMS include that it
quantitatively represents complex task interrelationships, and that it divides a task environment
model into generative, objective, and subjective levels. We then extend a standard methodology
to use the framework and apply it to the first published analysis, explanation, and prediction
of agent performance in a distributed sensor network problem. We predict the effect of adding
more agents, changing the relative cost of communication and computation, and changing how
the agents are organized. Finally, we show how coordination mechanisms can be designed to
respond to particular features of the task environment structure by developing the Generalized
Partial Global Planning (GPGP) family of algorithms. GPGP is a cooperative (team-oriented)
coordination component that is unique because it is built of modular mechanisms that work
in conjunction with, but do not replace, a fully functional agent with a local scheduler. GPGP
differs from other previous approaches in that it is not tied to a single domain, it allows
agent heterogeneity, it exchanges less global information, it communicates at multiple levels
of abstraction, and it allows the use of a separate local scheduling component. We prove
that GPGP can be adapted to different domains, and learn what its performance is through
simulation in conjunction with a heuristic real-time local scheduler and randomly generated
abstract task environments.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS : v

ABSTRACT : vii

LIST OF TABLES : xiv

LIST OF FIGURES : xv

CHAPTERS

1. INTRODUCTION: WHY STUDY COORDINATION? : 1

1.1 Representing Task Environments : 2
1.2 Analyzing a Distributed Sensor Network Environment : : : : : : : : : : : 4
1.3 Designing a Family of Coordination Mechanisms : : : : : : : : : : : : : 5
1.4 Placing This Work in a Context : 7

1.4.1 Scope : 9
1.4.2 Applications : 10

1.5 Chapter Summary : 12

2. RELATED RESEARCH : 13

2.1 Task Environments : 13

2.1.1 Example Task Environments : : : : : : : : : : : : : : : : : : : 15

2.2 What is Coordination Behavior: The Social View : : : : : : : : : : : : : 15

2.2.1 What is Coordination Behavior: Rational Systems : : : : : : : : : 16
2.2.2 What is Coordination Behavior: Natural Systems and Institutions : 17
2.2.3 What is Coordination Behavior: Open Systems : : : : : : : : : : 18
2.2.4 What is Coordination Behavior: Economic Systems : : : : : : : : 19

2.3 How Does the Environment Affect Coordination Behavior: The Social View 20

2.3.1 How Does the Environment Affect Coordination Behavior: Con-
tingency Theory : 22

2.3.1.1 Definitions : 22

2.3.2 How Does the Environment Affect Coordination Behavior: Infor-
mation Processing : 26

2.3.3 How Does the Environment Affect Coordination Behavior: Principal-
Agent Theory and Transaction Costs Economics : : : : : : : : : : 27

2.3.3.1 Principal-agent Theory : : : : : : : : : : : : : : : : : 28

ix

2.3.3.2 Transaction Costs Economics : : : : : : : : : : : : : : 29

2.3.4 How Does the Environment Affect Coordination Behavior: Social
Structural Analysis : 30

2.3.5 Summary: How Does the Environment Affect Coordination Behavior—
The Social View : 30

2.4 What is Coordination Behavior: DAI Perspective : : : : : : : : : : : : : 31

2.4.1 Malone’s Organizational Models : : : : : : : : : : : : : : : : : : 33
2.4.2 Partial Global Planning : 33
2.4.3 Hierarchical Behavior Space : 34
2.4.4 Distributed AI and the Concept of Agency : : : : : : : : : : : : 35
2.4.5 Distributed AI and Distributed Processing : : : : : : : : : : : : : 36

2.4.5.1 Decentralized Control Theory : : : : : : : : : : : : : 36
2.4.5.2 Team Theory : 37
2.4.5.3 Distributed OS Job Scheduling : : : : : : : : : : : : : 38
2.4.5.4 Game Theory : 39

2.5 DAI Modeling : 41
2.6 Summary : 41

3. A FRAMEWORK FOR MODELING TASK ENVIRONMENTS : : : : : : : : : : : : : : : : : : : 43

3.1 General Framework : 44
3.2 TÆMS model summary : 45

3.2.1 Objective task structure summary : : : : : : : : : : : : : : : : : 45
3.2.2 The subjective mapping and agent actions : : : : : : : : : : : : : 46
3.2.3 Coordination Problems : 47

3.3 Distributed Sensor Network Example : : : : : : : : : : : : : : : : : : : 48
3.4 TÆMS Objective Level Models : 50

3.4.1 Local Effects: The Subtask Relationship : : : : : : : : : : : : : : 51
3.4.2 Local Effects: Method Quality : : : : : : : : : : : : : : : : : : 52
3.4.3 Non-local Effects : 53

3.4.3.1 Non-local Effect Examples : : : : : : : : : : : : : : : 54
3.4.3.2 An Example of Facilitates and Shares-results : : : : : : : 58

3.4.4 Expanding the DSN Model : 59
3.4.5 Resources : 62

3.5 TÆMS Subjective Level Models and Agent Actions : : : : : : : : : : : : : 65

3.5.1 The Subjective Mapping : 66
3.5.2 Deciding What to Do Next: Coordination, Scheduling, and Control 66
3.5.3 Computation : 67

3.5.3.1 Method Execution : : : : : : : : : : : : : : : : : : : 68
3.5.3.2 Communication : 68
3.5.3.3 Information Gathering : : : : : : : : : : : : : : : : : 69

x

3.5.4 Subjective Modeling Example : : : : : : : : : : : : : : : : : : : 69
3.5.5 Sugawara’s Network Diagnosis System : : : : : : : : : : : : : : : 70

3.6 TÆMS Generative Level Models and Framework Examples : : : : : : : : : 71

3.6.1 The Generative Level : 71
3.6.2 The TÆMS Simulator Generator : : : : : : : : : : : : : : : : : : 72
3.6.3 Examples : 73

3.6.3.1 Hospital Patient Scheduling : : : : : : : : : : : : : : 74
3.6.3.2 Airport Resource Management : : : : : : : : : : : : : 76
3.6.3.3 Internet Information Gathering : : : : : : : : : : : : : 78
3.6.3.4 Pilot’s Associate : 81

3.7 Summary : 82

4. DESIGN AND ANALYSIS OF COORDINATION ALGORITHMS: A TASK ENVIRONMENT

MODEL FOR A SIMPLE DSN ENVIRONMENT : 85

4.1 Task Environment Simulation : 86
4.2 Expected Number of Sensor Subtasks : : : : : : : : : : : : : : : : : : : 87

4.2.1 Distribution of the Binomial Max Order Statistic : : : : : : : : : 89

4.3 Expected Number of Task Groups : 90
4.4 Expected Number of Agents : 90
4.5 Work Involved in a Task Structure : 91

4.5.1 Execution Model : 92
4.5.2 Simple Objective DSN Model : : : : : : : : : : : : : : : : : : : 92

4.6 Model Summary : 93
4.7 Static vs. Dynamic Organizational Structures: Reorganizing to Balance

System Load : 94

4.7.1 Analyzing Static Organizations : : : : : : : : : : : : : : : : : : 94
4.7.2 Control Costs : 97
4.7.3 Analyzing Dynamic Organizations : : : : : : : : : : : : : : : : 98
4.7.4 Dynamic Coordination Algorithm for Reorganization : : : : : : : 100
4.7.5 Analyzing the Dynamic Restructuring Algorithm : : : : : : : : : 102

4.7.5.1 Increasing Task Durations : : : : : : : : : : : : : : : 102

4.8 Using Meta-Level Communication : 105
4.9 Summary : 113

5. GENERALIZED PARTIAL GLOBAL PLANNING : 117

5.1 Partial Global Planning : 119

5.1.1 Issues in Extending the PGP Mechanisms : : : : : : : : : : : : : 122

5.1.1.1 Heterogeneous Agents : : : : : : : : : : : : : : : : : 122
5.1.1.2 Dynamic Agents : 123

xi

5.1.1.3 Real-time Agents : 123

5.2 Generalizing the Partial Global Planning Mechanisms : : : : : : : : : : : 124

5.2.1 Uncertainty : 125
5.2.2 Task Interrelationships : 125

5.3 Generalized Partial Global Planning: Conceptual Overview : : : : : : : : 126
5.4 The Agent Architecture : 128
5.5 The Local Scheduler : 129
5.6 The Coordination Mechanisms : 130

5.6.1 The Substrate Mechanisms : 130
5.6.2 Mechanism 1: Updating Non-Local Viewpoints : : : : : : : : : : 132
5.6.3 Mechanism 2: Communicating Results : : : : : : : : : : : : : : 133
5.6.4 Mechanism 3: Handling Simple Redundancy : : : : : : : : : : : 133
5.6.5 Mechanism 4: Handling Hard Coordination Relationships : : : : 136
5.6.6 Mechanism 5: Handling Soft Coordination Relationships : : : : : 136

5.7 Interfacing the Coordination Mechanism with the Local Scheduler : : : : : 137

5.7.1 Scheduler Inputs : 139
5.7.2 Scheduler Output : 141
5.7.3 Interfacing the Coordination Mechanism with the Local Scheduler:

Discussion : 144

5.8 Summary : 145

6. EXPERIMENTS IN GENERALIZED PARTIAL GLOBAL PLANNING : : : : : : : : : : : : : : : 147

6.1 Initial Experiments: The Effect of Facilitation Power and Likelihood : : : : 148

6.1.1 Calculating Delays : 150
6.1.2 A Simple Model of the Utility of Detecting Facilitates : : : : : : : 151
6.1.3 When to Detect and Communicate Facilitates : : : : : : : : : : : 152
6.1.4 Facilitating Real-time Performance : : : : : : : : : : : : : : : : 153
6.1.5 Delay : 156

6.2 GPGP Simulation: Issues : 158
6.3 General Performance Issues : 158
6.4 Taking Advantage of a Coordination Relationship: When to Add a New

Mechanism : 160
6.5 Different Family Members for Different Environments : : : : : : : : : : : 161
6.6 Meta-level Communication: Return to Load Balancing through Dynamic

Reorganization : 163
6.7 Computational Organizational Design : : : : : : : : : : : : : : : : : : : 164

6.7.1 Burton and Obel Experiments : : : : : : : : : : : : : : : : : : : 165

6.8 Exploring the Family Performance Space : : : : : : : : : : : : : : : : : : 167
6.9 Summary : 170

xii

7. CONCLUSIONS : 175

7.1 Summary: Representing Task Environments : : : : : : : : : : : : : : : : 175
7.2 Summary: Analyzing a Distributed Sensor Network Environment : : : : : 177
7.3 Summary: Designing a Family of Coordination Mechanisms : : : : : : : : 177
7.4 Limitations of this work : 180
7.5 Future Work : 181

REFERENCES : 187

xiii

LIST OF TABLES

6.1 Average percent quality increase for various commitment delay values. : : : : : : 157

6.2 Environmental Parameters used to generate the random episodes : : : : : : : : 158

6.3 Overhead associated with individual mechanisms at each parameter setting : : : 159

6.4 Performance comparison: Centralized Parallel Scheduler vs. Balanced GPGP
Coordination and Decentralized DTT Scheduler : : : : : : : : : : : : : : 161

6.5 Performance comparison: Simple GPGP Coordination vs. Balanced GPGP
Coordination : 161

6.6 Parameters used to generate the 40 random episodes : : : : : : : : : : : : : : 166

6.7 Complete KMEANS linear clustering output for all 72 agent types, first three
clusters. All performance parameters were standardized within blocks. : : : : 171

6.8 Complete KMEANS linear clustering output for all 72 agent types, continued.
All performance parameters were standardized within blocks. : : : : : : : : 172

xiv

LIST OF FIGURES

2.1 Secret agents A and B are captured and must decide whether to “Cooperate” with
one another, or to “Defect”. : 40

3.1 Examples of 18 � 18 DSN organizations : 49

3.2 Objective task structure associated with a single vehicle track. : : : : : : : : : : 50

3.3 Objective task structure associated with visiting the post office to buy stamps
and/or mail a package. Assume that every agent has a local method for each
of these tasks. : 58

3.4 A simple model of two tasks with two methods each. : : : : : : : : : : : : : : 59

3.5 Quality at each Method, Task, and Task Group over time in the previous figure : 60

3.6 Objective task structure associated with two agents : : : : : : : : : : : : : : : 61

3.7 Non-local effects in the objective task structure : : : : : : : : : : : : : : : : : 62

3.8 Example of two methods sharing a limited resource of capacity 15. In this example,
if both methods execute in temporally overlapping time periods, the durations
of each method will be lengthened by 50%. : : : : : : : : : : : : : : : : : 63

3.9 Example objective structure of two methods (M1 and M3) that consume a resource,
and one method that replenishes it. : 64

3.10 The finite state machine that describes the meta-structure of single-processor agent
computations. I; C;M are named subsets of the agents beliefs� that represent
information gathering, communication, and method execution actions, respectively. 67

3.11 Example of what is learned in the network diagnosis problem: the correct
scheduling strategy for each objective situation, and the knowledge of which
situation is currently occurring. : 70

3.12 High-level, objective task structure and subjective views for a typical hospital
patient scheduling episode. The top task in each ancillary is really the same
objective entity as the unit task it is linked to in the diagram. : : : : : : : : 74

3.13 Objective task structure for a small airport resource management episode. : : : : 77

3.14 High-level, objective task structure for a two independent queries that resolve at
one point to a single machine. : 79

xv

3.15 Mid-level, objective task structure for a single query for a review of a Macintosh
product showing intra-query relationships. : : : : : : : : : : : : : : : : : 80

3.16 Dynamic Situations in Pilot’s Associate. All tasks accrue quality with Min (AND). 82

4.1 Examples of DSN organizations on an 18 � 18 grid : : : : : : : : : : : : : : : 86

4.2 A comparison of the probability distributions of the outcome of ‘heads’ in the act
of flipping a coin 10 times (the binomial b10;0:5(s)) compared to the outcome
of having 2, 5, or 10 agents flip 10 coins and taking the number of heads
of the agent who flipped the most heads (the max order statistics g2;10;0:5(s)
through g10;10;0:5(s)). : 88

4.3 Actual versus predicted heaviest load ŜN for various values of A, r, o, and N : : 89

4.4 On the left, actual versus predicted maximum number of task groups (tracks) seen
by any one agent for various r, A, and n. On the right, actual versus predicted
average number of agents seeing a single task group (track) for various r, o,
and A. : 91

4.5 Objective task structure associated with a single vehicle track. : : : : : : : : : : 93

4.6 Example of a 3x3 organization, r = 11, o = 5, with 5 tracks. The thick dark grey
boxes outline the default static organization, where there is no overlap. : : : 95

4.7 Detail from the previous figure of the processing that takes place on the track
running from (1,17) to (16,1) : 96

4.8 Actual system termination versus analytic expected value and analytically deter-
mined 50% and 90% likelihood intervals. Runs arbitrarily ordered by expected
termination time. : 98

4.9 On the left is a 3x3 static organization, on the right is the dynamic reorganization
result after agents 3, 4, 5 and 7 attempt to reduce their areas of responsibility
by one unit. In this example the corridors running North to South have been
moved closer by two units to reduce the load on agents 4, 5, and 6 in the
second column. : 100

4.10 Paired-response comparison of the termination of static and dynamic systems the
environment A = 9; r = 9; o = 9; n = 7] (ten episodes). Task durations are
set to simulate the DVMT (see text). : 103

4.11 Paired-response comparison of the termination of static and dynamic systems the
environment A = 16; r = 8; o = 5; n = 4] (ten episodes). Task durations
are set to simulate the DVMT (see text). : : : : : : : : : : : : : : : : : : 103

xvi

4.12 Paired-response comparison of the termination of static and dynamic systems the
environment A = 4; r = 9; o = 3; n = 5] (ten episodes). Task durations are
set to simulate the DVMT (see text). : 104

4.13 Paired-response comparison of the termination of static and dynamic systems the
environment A = 9; r = 10; o = 6; n = 7] (ten episodes). Task durations
are set to simulate the DVMT (see text). : : : : : : : : : : : : : : : : : : 104

4.14 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 5. : : : : : : : 106

4.15 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 10. : : : : : : : 107

4.16 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 20. : : : : : : : 108

4.17 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 5. : : : : : : : : : 109

4.18 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 10. : : : : : : : : 110

4.19 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 20. : : : : : : : : 111

4.20 Effect of decreasing communication costs on expected termination under a static
organization and dynamic restructuring (expected value and 90% likelihood
interval, A = 25; r = 9; o = 9; n = 7). : : : : : : : : : : : : : : : : : : : 112

4.21 Demonstration of both the large increase in performance variance when the
number of task groups n is a random variable, and the small decrease in
variance with dynamic restructuring coordination [A = 9; r = 9; o = 9].
Where n is known, n = 7. Where n is a random variable, the expected value
� = 7. : 113

5.1 Agent A and B’s subjective views (bottom) of a typical objective task group (top) 126

5.2 An Overview of Generalized Partial Global Planning : : : : : : : : : : : : : : 127

5.3 Agents A and B’s local views after receiving non-local viewpoint communications
via mechanism 1. The previous figure shows the agents’ initial states. : : : : 133

5.4 A continuation of the previous figure. At top: agents A and B propose certain
commitments to one another via mechanisms 3 and 5. At bottom: after
receiving the initial commitments, mechanism 3 removes agent B’s redundant
commitment. : 135

xvii

5.5 An example of a complete input specification to the scheduler. : : : : : : : : : 139

5.6 An example of the output of the scheduler for the example problem given above. 143

6.1 Histogram of sizes of task clusters for Prfac = 0:5, N = 642. : : : : : : : : : : 149

6.2 Calculating Delays : 151

6.3 The effect of the power of the facilitates relationship on relative quality at different
likelihoods : 153

6.4 The effect of the power of the facilitates relationship on relative quality at different
likelihoods : 154

6.5 The effect of power and required utilization (system loads) on relative quality : : 154

6.6 Effect of system load on the absolute quality for a one agent system : : : : : : : 155

6.7 Effect of system load on the absolute quality : : : : : : : : : : : : : : : : : : 156

6.8 Other ways of calculating delays. : 157

6.9 Plot of the probability of the modular or simple coordination styles doing better
than the other (total final quality) verses the probability of task quality
accumulation being MIN (AND-semantics) : : : : : : : : : : : : : : : : : 162

6.10 Probability partitions for one style doing the same, better, or worse than the other
given the value of QAF-min. : 163

6.11 Probability that MLC load balancing will terminate more quickly than static load
balancing, fitted using a loglinear model from actual TÆMS simulation data. : 164

6.12 Example of a randomly generated objective task structure, generated with the
parameters in the previous table. : 166

6.13 Example of the local view at Agent A when the team shares private information to
create a partial non-local view and when it does not. : : : : : : : : : : : : : 167

6.14 Standardized Performance by the 5 named coordination styles. : : : : : : : : : 168

6.15 The effect of overlaps in the task environment on the standardized method
execution performance by the 5 named coordination styles (smoothed splines
fit to the means). : 170

xviii

C H A P T E R 1

INTRODUCTION: WHY STUDY COORDINATION?

In ancient times alchemists believed implicitly in a philosopher’s stone which would
provide the key to the universe and, in effect, solve all of the problems of mankind.
The quest for coordination is in many respects the twentieth century equivalent of the
medieval search for the philosopher’s stone. If only we can find the right formula for
coordination, we can reconcile the irreconcilable, harmonize competing and wholly
divergent interests, overcome irrationalities in our government structures, and make
hard policy choices to which no one will dissent.

— Harold Seidman, Politics, Position, and Power

Coordination is the process of managing interdependencies between activities [Malone and
Crowston, 1991]. This dissertation focuses on the problem of representing these interdepen-
dencies in a formal, domain-independent way.

Let us look at the coordination problem in more detail. An agent is some entity that has
some knowledge or beliefs about the world (a state) and can perform actions. The problem of
coordination occurs when any or all of the following situations occur:

� an agent has a choice in its actions within some task, and the choice affects performance

� the order in which actions are carried out affects performance

� the time at which actions are carried out affects performance

The problem in reality is often more complex. An agent will have difficulty in choosing and
temporally ordering its actions because

� it has an incomplete view of the structure of the task of which the actions are a part

� the task structure is changing dynamically

� the agent is uncertain about the outcomes of its actions

Thus an agent finds itself in a situation (which we call an episode) where many of its potential
actions are interrelated. An agent does not exist in isolation. An agent is embedded in
an environment (or set of environments). An environment implies certain patterns and
characteristics of individual episodes within the environment, and of the structures of the tasks
within the episodes.

Everything I’ve said so far applies to a single agent. The final complication is the appearance
of multiple agents—each with its own incomplete and possibly changing view of the current
episode. When the potential actions of one agent are related to those of another agent (because

2

there is a choice about what to do or who to do it, or because the order of actions or the time
they occur matters) we call the relationship a coordination relationship.

For example, in a Distributed Sensor Network (DSN) episode, several computational
agents have physically distributed sensors. The area that each agent can sense overlaps with the
areas of nearby agents. Vehicles move across these areas, and the agents must work together
to track these vehicles. Usually a vehicle will move across the sensed regions of more than one
agent, so no one agent will get to sense the entire track. The performance metric for such a
system is typically how long it takes the tracking computation to terminate. Each agent has a
choice about how to process the data it sees—it might use a fast, low-quality approximation,
or a slow high-quality algorithm. If the data is inside an overlapping area, it might be the case
that only one agent has to process that data, and for another agent to do so would be redundant
and wasteful. It can matter in what order the agents do their tasks. Some types of processing
must be done before others. For example, low level processing must come before higher level
processing of the vehicle tracks. We call this a hard predecessor relationship. There are also soft
action-ordering relationships in the DSN domain. For example, sometimes an agent can have
a faulty sensor that collects noisy signals. These noisy signals take a long time to process. If an
agent with a faulty sensor receives information about the type of vehicle it is tracking from an
agent without a faulty sensor, it can use this information to filter the noisy data and thus do it’s
job more quickly. If there are multiple vehicle tracks, then the order in which these tracks are
processed can also make a difference. Finally, if the agents are facing a deadline for processing
the data, the time at which the actions are carried out can also make a difference. Thus agents
in a DSN environment have to make decisions about the choice and temporal ordering of their
actions.

This dissertation will demonstrate a framework that can be used to specify the task
structure of any computational environment. It will then instantiate an existing methodology
(MAD: Modeling, Analysis and Design [Cohen, 1991]) using this framework to analyze a
particular computational environment (Distributed Sensor Networks) and predict and verify
the performance of two simple coordination algorithms in that environment. Finally, this
dissertation will design a family of generic coordination mechanisms for cooperative, soft
real-time computational task environments and demonstrate their performance and why a
family of mechanisms is needed instead of a single static algorithm.

1.1 Representing Task Environments

As I stated at the beginning, this dissertation is about how to represent coordination
problems in a formal, domain-independent way. Such a representation should abstract out
the details of the domain, and leave the basic coordination problem—the choice and temporal
ordering of possible actions. Our solution to this problem is a framework called TÆMS, which
stands for Task Analysis, Environment Modeling, and Simulation. TÆMS can be used to specify,
reason about, analyze, and simulate any computational environment. The unique features of
TÆMS include:

� The explicit, quantitative representation of task interrelationships. Both hard and
soft, positive and negative relationships can be represented. When relationships in
the environment extend between tasks being worked on by separate agents, we call
them coordination relationships. Coordination relationships are crucial to the design and
analysis of coordination mechanisms. The set of relationships is extensible.

3

An example of a ‘hard’ relationship is enables. If some task A enables another task B,
then A must be completed before B can begin. An example of a ‘soft’ relationship is
facilitates. If some task A facilitates a task B, then completing A before beginning work
on B might cause B to take less time, or cause B to produce a higher-quality result, or
both. If A is not completed before work on B is started, then B can still be completed,
but might take longer or produce a lower quality answer than in the previous case. In
other words, completing task A is not necessary for completing task B, but it is helpful.1

� The representation of the structure of a problem at multiple levels of abstraction. The
highest level of abstraction is called a task group, and contains all tasks that have explicit
computational interrelationships. A task is simply a set of lower-level subtasks and/or
executable methods. The components of a task have an explicitly defined effect on the
quality of the encompassing task. The lowest level of abstraction is called an executable
method. An executable method represents a schedulable entity, such as a blackboard
knowledge source instance, a chunk of code and its input data, or a totally-ordered plan
that has been recalled and instantiated for a task. A method could also be an instance of
a human activity at some useful level of detail, for example, “take an X-ray of patient 1’s
left foot”.

� TÆMS makes very few assumptions about what an ‘agent’ is. TÆMS defines an agent as
a locus of subjective belief (or state) and action (executing methods, communicating,
and acquiring subjective information about the current problem solving episode). This
is important because the study of principled agent construction is a very active area. By
separating the notion of agency from the model of task environments, I do not have
to subscribe to particular agent architectures (which one would assume will be adapted
to the task environment at hand), and I may ask questions about the inherent social
nature of the task environment at hand (allowing that the concept of society may arise
before the concept of individual agents [Gasser, 1991]). Such a conception is unique
among computational approaches. I will adapt Shoham’s Agent Oriented Programming
terminology when I need to be more specific about an agent’s internal architecture (in
Chapter 5).

� The representation of the task structure from three different viewpoints. The first view
is a generative model of the problem solving episodes in an environment—a statistical
view of the task structures. The second view is an objective view of the actual, real,
instantiated task structures that are present in an episode. The third view is the subjective
view that the agents have of objective reality.

For example, in the DSN environment, the generative model describes how to generate
a DSN episode. The generative model will describe how to generate the number of
vehicles that are involved in an episode, and how to generate the objective task structure
associated with each vehicle. The resulting objective model describes what tasks are
possible at the start of the generated problem solving episode and how those tasks are
related. Also generated by the generative model is information about what portions
of the generated objective task structure are available to the agents. When an agent

1For example, imagine that that your task is to find a new book in a library, and you can do this either before
or after the new books are unpacked, sorted, and correctly shelved.

4

executes an ‘information-gathering action’ the agent then receives a subjective model of
some portion of the objective task structure. The ‘information-gathering action’ here
corresponds to the agent requesting data from its sensors.

� TÆMS allows us to clearly specify concepts and subproblems important to multi-agent
and AI scheduling approaches. For example, we will discuss the difference between
“anytime” and “design-to-time” algorithms in TÆMS. Garvey [Garvey et al., 1993] uses
TÆMS to define the concept of a minimum duration schedule that achieves maximum
quality.

� This dissertation is about computational task environments, where methods are things
like blackboard knowledge source instantiations. However, I will also describe extensions
of TÆMS to represent physical resource constraints.

The TÆMS representation of an objective task structure is not intended as a schedule or
plan representation, although it provides much of the information that would go into such
uses. TÆMS is not only a formal framework, but also a system for simulating environments:
generating random episodes, providing subjective information to the agents, and tracking their
performance. The TÆMS simulator is written in portable CLOS (the Common Lisp Object
System) and uses CLIP[Westbrook et al., 1994] for data collection.

We validate this framework by building a detailed model of the complex DSN environment
of the Distributed Vehicle Monitoring Testbed (DVMT). Our model includes features that
represent approximate processing, faulty sensors and other noise sources, low quality solution
errors, sensor configuration artifacts, and vehicle tracking phenomena such as training and
ghost tracks. Simulations of simplified DSN models show many of the same characteristics as
were seen in the DVMT [Durfee et al., 1987]. We also will describe models of many other
environments: hospital patient scheduling, a post office problem, airport resource management,
multi-agent Internet information gathering, and pilot’s associate. Finally, we have validated
our framework by allowing others to use it in their work—on design-to-time scheduling, on
parallel scheduling, on the diagnosis of errors in local area networks, and in the future to model
software engineering activities.

1.2 Analyzing a Distributed Sensor Network Environment

The second major result reported here is a detailed analysis of a simplified DSN envi-
ronment. The methodology behind this analysis is an instantiation of the MAD (Modeling,
Analysis, and Design) methodology [Cohen, 1991], with TÆMS providing the modeling and
simulation components. This part of the dissertation returns to the work of Durfee, Lesser,
and Corkill [Durfee et al., 1987] that showed that no single coordination algorithm uniformly
outperformed the others. This dissertation explains this result, and goes on to predict the
performance effects of changing:

� the number of agents

� the physical organization of agents (i.e., the range of their sensors and how much the
sensed regions overlap)

� the average number of vehicles in an episode

5

� the agents’ coordination algorithm

� the relative cost of communication and computation

These predictions are verified by simulation.
For example, in Chapter 4 we derive and verify an expression for the time of termination of

a set of agents in any arbitrary simple DSN environment that has a static physical organization
and coordination algorithm. The total time until termination for an agent receiving an initial
data set of size Ŝ is the time to do local work, combine results from other agents, and build the
completed results, plus two communication and information gathering actions:

Ŝd0(VLM) + (Ŝ � N̂)d0(VTM) + (a � 1)N̂d0(VTM) + N̂d0(VCM) + 2d0(I) + 2d0(C) (1.1)

We can use Eq. 1.1 as a predictor by combining it with the probabilities for the values of
Ŝ and N̂ . We verify this model using the simulation component of TÆMS.

Our analysis explains another observation that has been made about the DVMT—that
the extra overhead of meta-level communication is not always balanced by better performance.
This work represents the first detailed analysis of a DSN, and the first quantitative, statistical
analysis of any Distributed AI system outside Sen’s work on distributed meeting scheduling for
two agents [Sen and Durfee, 1994]. This is important because much of the earlier work in this
area has been ad hoc, anecdotal, or based on a small number of hand-constructed examples.

1.3 Designing a Family of Coordination Mechanisms

The third major result reported here is the design and evaluation of a family of coordination
mechanisms for cooperative computational task environments. We call the collection of
resulting algorithms the Generalized Partial Global Planning (GPGP) family of algorithms.
GPGP both generalizes and extends Durfee’s Partial Global Planning (PGP) algorithm [Durfee
and Lesser, 1991]. Our approach has several unique features:

� Each mechanism is defined as a response to certain features in the current subjective task
environment. Each mechanism can be removed entirely, or parameterized so that it is
only active for some portion of an episode. New mechanisms can be defined; an initial
set of five mechanisms is examined.

� GPGP works in conjunction with an existing agent architecture and local scheduler. The
experimental results reported here were achieved using a ‘design-to-time’ soft real-time
local scheduler developed by Garvey [Garvey and Lesser, 1993].

� GPGP, unlike PGP, is not tied to a single domain.

� GPGP allows more agent heterogeneity than PGP with respect to agent capabilities.

� GPGP mechanisms in general exchange less information than the PGP algorithm,
and the information that GPGP mechanisms exchange can be at different levels of
abstraction. PGP agents generally communicate complete schedules at a single, fixed
level of abstraction. GPGP mechanisms communicate scheduling commitments to
particular tasks, at any convenient level of abstraction.

6

An example of a GPGP coordination mechanism is one that handles simple method
redundancy. If more than one agent has an otherwise equivalent method for accomplishing a
task, then an agent that schedules such a method will commit to executing it, and will notify
the other agents of its commitment. If more than one agent should happen to commit to
a redundant method, the mechanism takes care of retracting all but one of the redundant
commitments. The fact that most of the GPGP coordination mechanisms use commitments
to other agents as local scheduling constraints is the reason that the GPGP family of algorithms
requires cooperative agents. Nothing in TÆMS the underlying task structure representation,
requires agents to be cooperative, antagonistic, or simply self-motivated.

In verifying the GPGP family of algorithms, we first show that they duplicate and subsume
the behaviors of the PGP algorithm. We look at several other issues:

General Performance: We examined the general performance of the most complex (all mech-
anisms in place) and least complex (all mechanisms off) members of the GPGP family
in comparison to each other, and in comparison to a centralized scheduler reference
implementation (as an upper bound). We looked at performance measures such as the
total final quality achieved by the system, the amount of work done, the number of
deadlines missed, and the termination time. The centralized schedule reference system
is not an appropriate solution to the general coordination problem, even for cooperative
groups of agents, for several reasons:

� The centralized scheduling agent becomes a possible single point of failure that can
cause the entire system to fail (unlike the decentralized GPGP system).

� The centralized scheduling agent requires a complete, global view of the episode—a
view that we mentioned earlier is not always easy to achieve. We do not account for
any costs in building such a global view in the reference implementation (viewing
it as an upper bound on performance). We do not allow dynamic changes in the
episodic task structure (which might require rescheduling).

� The centralized reference scheduler uses an optimal single-agent schedule as a
starting point. Since the problem of scheduling actions in even fairly simple task
structures is NP-complete, the optimal scheduler’s performance grows exponentially
worse with the number of methods to be scheduled. Since the centralized reference
scheduler has a global view and schedules all actions at all agents, the size of the
centralized problem always grows faster than the size of the scheduling problems
at GPGP agents with only partial views. The size of the episodes was kept small
so that the centralized reference scheduler could find an optimal schedule in a
reasonable amount of run time.

The performance of set of agents using all of the currently defined GPGP coordination
mechanisms is good in comparison to the centralized reference system—GPGP agents
produce on average 85% of the quality of the centralized upper bound reference solution,
and do not miss any more deadlines.

Adding a Mechanism: We demonstrate that the addition of a particular mechanism can
improve the system performance.

7

Family Design Space: We demonstrate the range of performance exhibited by different mem-
bers of the GPGP algorithm family, obtained by simple parameterization of the individual
coordination mechanisms.

Different Environments: We show that different environments require different family mem-
bers.

Load Balancing: We demonstrate how a new sixth mechanism, a load balancing mechanism,
can be defined and integrated. We use this mechanism to show that the costs of using
this mechanism are better balanced by performance improvements precisely when there
is a large variance in the amount of work each agent would do by default. This result
agrees with similar results in the distributed processing community on decentralized load
balancing [Mirchandaney et al., 1989].

Computational Organization Design: We recreate a set of experiments done by Burton and
Obel [Burton and Obel, 1984] that examined the effects of technical interdependencies
and organizational structure on the performance. GPGP team-oriented coordination
mechanisms were used to define the organizational (team) structure, and TÆMS task
structures defined the problem (as opposed to Burton and Obel’s linear programs). We
reach the same conclusions as Burton and Obel (that both do have an effect), and argue
that one future application for TÆMS is as a tool for computational organization design.

1.4 Placing This Work in a Context

Computer scientists, trying to design a coordination mechanism for multiple computational
agents, face a problem subtly different from that of the scientists who studied coordination
before them: organizational theorists, sociologists, and economists. Sociologists, through
observation, want to explain how a particular coordination mechanism came into existence,
and to describe how it is perceived versus how it really works. Traditional economists
propose a simple and fairly well-understood coordination mechanism—the market—as the
proper mechanism for the idealized rational, utility-maximizing agent. Organizational the-
orists come from both camps—sociologists and economists—and use explanations about
the past observations and proposals about particular mechanisms to predict future behav-
ior. In reality, these distinctions are of course blurred: some computer scientists build
sociological descriptions of coordination processes [Hewitt, 1986]; some organizational the-
orists really attempt the design of new coordination mechanisms [Burton and Obel, 1984,
Galbraith, 1977]; some computer scientists, both in DAI and in distributed processing, use mar-
ket coordination mechanisms [Malone et al., 1983, Wellman, 1993], the more complex game
theoretic mechanisms [Rosenschein and Genesereth, 1985, Zlotkin and Rosenschein, 1991,
Gmytrasiewicz et al., 1991], or team theory [Ho, 1980].

The older schools of thought invariably use either quantitative or qualitative methods of
description for the task environment in which the agents under study are immersed. Sociologists
need descriptions of the environment to explain “Why?”. Neoclassical economists need to
make certain assumptions about the environment for their predictions to be correct (and a
great deal of work has also been done by economists on what happens when the assumptions
are violated). Organizational theorists predict the outcomes of coordination mechanisms given
the environment, or show how certain mechanisms are only rational in certain environments.

8

Furthermore, these descriptions go beyond the enumeration of specific, particular domains to
general characteristics of environments.

Artificial Intelligence, growing as it has from the goal of modeling individual intelligence,
or at least replicating or augmenting it, has focused primarily on representations of individual
choice and action. A large effort has gone into describing the principled construction of agents
that act rationally and predictably based on their beliefs, desires, intentions, and goals [Cohen
and Levesque, 1990, Shoham, 1991]. Fairly recently, researchers concerned with real-world
performance have also realized that Simon’s criticisms and suggestions about economics [Simon,
1957, March and Simon, 1958, Simon, 1982] also hold for many realistically situated individual
agents—perfect rationality is not possible with bounded computation [Horvitz, 1988, Boddy
and Dean, 1989, Russell and Zilberstein, 1991, Garvey et al., 1993]. Distributed AI has,
for the most part (see Chapter 2), kept the individualistic character of its roots, and focused
on the principled construction of individual agents. It hasn’t even, so far, really concerned
itself with the questions of bounded rationality in real-time problem solving when it comes
to the principled construction of individual agents. Worst of all, it has failed yet to bring the
environment to center stage in building and analyzing distributed problem solving systems.

In contrast, the organizational science community has since the 60’s (e.g. [Lawrence
and Lorsch, 1967]) regarded the task environment as a crucial, central variable in explaining
complex systems, and a whole branch of research has grown up around it (contingency theory).
Representations in this community are rarely formal in nature but rather try to present very rich
descriptions using terms such as uncertainty, decomposability, stability, etc. (see Chapter 2).

TÆMS, as a framework to represent coordination problems in a formal, domain-independent
way, is unlike any existing representation that is focussed on coordination issues. As a problem
representation, it is richer and more expressive than game theory or team theory representations.
For example, a typical game or team theory problem statement is concerned with a single
decision; a typical TÆMS objective problem solving episode represents the possible outcomes
of many sequences of choices (interrelated with one another). TÆMS can represent a game
theoretic problem, and we could boil down a single decision made by an agent faced with a
TÆMS task structure into a game theoretic problem (if there were no uncertainty involved—see
Chapter 2).2 Because TÆMS is more expressive, we can use it to operationalize some of the
rich but informal concepts of organizational science (such as decomposability in Section 6.7).
Another difference between TÆMS and traditional distributed computing task representations
is that TÆMS indicates that not all tasks in an episode need to be done.

To put the second part of this dissertation in context, the analysis of a simple distributed
sensor network presented here is the first formal quantitative analysis of a DSN or DAI system,
other than Sen’s analysis of a two-agent distributed meeting scheduling system (developed at the
same time) [Sen and Durfee, 1994]. Our analysis of a DSN system answers several questions,
and explains phenomena observed in the work with the Distributed Vehicle Monitoring Testbed
(DVMT) such as why different algorithms perform differently in different situations. The work
described here moves beyond anecdotal data to design rules for DSN systems.

GPGP, the last major contribution of this dissertation, extends Durfee’s work on Partial
Global Planning by being domain independent, adding time deadlines, allowing the agents

2TÆMS does not say how agents make their decisions. It is perfectly reasonable for an agent to use game-theoretic
reasoning processes.

9

to be more heterogeneous, requiring less communication, and allowing communication at
multiple levels of detail. GPGP is a cooperative approach, and thus is different from algorithms
that assume the agents act in rational self-interest only. For example, agents usually make
decisions with much less a priori knowledge of the other agents’ utilities than competitive
game theory approaches. However, agents using GPGP mechanisms still make decisions in
a boundedly rational way—choosing from among schedules in an attempt to maximize the
system-wide utility given whatever subjective information they have.

1.4.1 Scope

As I stated at the beginning, coordination is the act of managing interdependencies between
activities [Malone and Crowston, 1991]. Coordination behaviors can be divided roughly into
specification behaviors (creating shared goals), planning behaviors (expressing potential sets of
tasks or strategies to accomplish goals), and scheduling behaviors (assigning tasks to groups or
individuals, creating shared plans and schedules, allocating resources, etc.). This work will
be primarily concerned with scheduling behaviors. Coordination behaviors in turn rest on
more basic agent behaviors such as following rules, creating organizations, communicating
information, and negotiation or other conflict resolution mechanisms. The agents can be
humans, computer programs, or some mixture of the two.

Let us look at an example of these types of behaviors:

Specification. Household robots, business units, and national governments all apply different
specification behavior mechanisms to arrive at consensus on more-or-less shared goals.
For example, the robots should not run into one another, the business will decide what
products to produce, and the government will decide what initiatives to pursue. For the
robots, the specification may take place outside of the robots control, in the social fabric in
which the robots will be placed. If the robot designers make an arbitrary choice—having
the robots always pass one another on the right, for instance—their human owners in
England, Australia, or Japan may constantly find themselves in the sidestepping dance
common to American tourists walking down the street in these countries. The point is
that the specification of passing behavior for the household robot has taken place outside
of the robot’s control.

Planning. For each shared goal, multiple plans to achieve that goal are possible. These plans
may involve multiple agents but are not always laid out explicitly. The robots’ behavior
may be mostly pure preconceived reaction; the business unit may carefully construct
and compare potential plans; the government may embark on multiple, potentially
conflicting plans simultaneously.

Scheduling. Finally, planning (or lack thereof) leads to scheduling action—the robots move
while integrating the obstacle avoidance behavior with plans to achieve other, private,
goals; within the business unit tasks are assigned to people, resources are allocated, and
explicit schedules are created; organizations within the government change standard
operating procedures and alter decision criteria to incorporate new policies.

All of these classes of behavior—specification, planning, and scheduling—are closely
related. Agents plan to meet multiple goals, and schedule actions from multiple plans.
Schedulable actions can include the derivation of new goals or plans, either locally or at

10

other agents. When I say that this thesis will focus on scheduling behaviors I mean that I
will not discuss where the goals come from, or how planning occurs (which is itself of course
the subject of considerable study in AI). I will however consider the existence of multiple,
potentially incompatible goals, and multiple, potentially incompatible plans.

1.4.2 Applications

The work described here was developed with many applications in mind. This section
briefly describes some example multi-agent coordination problems in many different domains.

For example, in an office or concurrent engineering environment, both independent com-
puterized agents (usually controlling access to resources) and intelligent assistants to office work-
ers can exist[Malone, 1988]. In real offices, activity is taking place semi-autonomously, and cen-
tralized control and detailed global views are rarely available or socially possible [Hewitt, 1986,
Nirenburg and Lesser, 1988]. In the intelligent office assistant domain, then, coordination
algorithms can be applied to providing guidance to an office worker (for instance, a computer
programmer) about how to prioritize tasks (“what are the most important things to do next?”),
given known and discovered relationships between one worker’s goals and the goals of others.3

Coordination algorithms do not supply a solution for problems of negotiating outcomes or
resolving disparate views, but rather try to avoid negative interactions between agent goals or
planned actions (avoiding conflicting actions or inter-agent action sequences), and recognize
positive or helpful interactions (such as the potential to do another agent a favor, or send some
preliminary, predictive information)[v. Martial, 1990]. Often the coordination process triggers
a process of negotiation. Similar arguments apply to other domains, such as the concurrent
engineering of products or the myriad of scheduling domains (including distributed meeting
scheduling [Sen and Durfee, 1994]).

For an example involving computational agents only, imagine a large, heterogeneous local
area network and a set of distributed network diagnosis agents assigned to detect and diagnose
network communication problems [Sugawara and Lesser, 1993, So and Durfee, 1992]. Now
imagine the situation of a low-bandwidth communication link between two subnets. Two
agents have a diagnosis method that uses the low-bandwidth link. When a problem occurs,
perhaps due to this low-bandwidth link, each (initially uncoordinated) agent may execute its
copy of these diagnosis methods at the same time, and the link is saturated—the agents have
caused the very problem they are trying to diagnose! Sugawara discusses a solution to this
problem where the agents learn coordination rules as they are needed. Later I will discuss
the representation of this problem and how such a representation leads to a generalization of
Sugawara’s solution.

Another example application is agile manufacturing scheduling. Today’s manufacturing
systems are moving beyond just being ‘flexible’ (manufacturing many different items) to being
‘agile’ (adapting production schedules quickly to changes—in orders, production problems,
in supplies or equipment) Distributed factory scheduling systems can operate at two levels:
between companies (i.e. contractor or supplier relationships, JIT manufacturing, enterprise
integration) and within a company. Within a single company, distributed scheduling can still
be worthwhile—for example each workcell might schedule its tasks in parallel, and conflicts

3Some computer supported cooperative work (CSCW) research has concentrated on the act of the intelligent
assistant discovering the goals of the human worker[Broverman et al., 1987, Huff and Lesser, 1988].

11

that arise between workcells during the day (errors, equipment failures, faulty estimates) might
be rescheduled as they happen (scheduling processes can also be developed to be resistant to
such errors in the first place). How should workloads be shifted (rescheduled) when a failure
occurs? When a customer asks for a delivery date, can a much more accurate date be given by
actually adding the potential order to the existing schedule (as a query) rather than giving a
seat-of-the-pants estimate? [Sycara et al., 1991, Neiman et al., 1994]

Long-haul telephone switching networks are already sophisticated distributed statistical
control applications. The basic problem is how to route calls from, for example, one side
of the country to another. When a switch becomes overloaded, neighboring switches need
to route calls around the overloaded switch. Current solutions to this problem use statistical
techniques to re-route calls and balance the load (based on local statistical information).
However sometimes re-routing is not the correct solution. If, for example, the overloaded
switch is servicing a national call-in talk show, the rerouted calls that are for the talk show
should not be re-routed, but denied instead [Adler et al., 1989]. The implication is that
statistical routing could be supplemented with a decision process that takes into account
symbolic information about call content, or other types of non-local information.

Distributed delivery tasks are another example application [Sandholm, 1993, Durfee and
Montgomery, 1991]. For example (from TRACONET), requests for pick-up and delivery at
arbitrary locations come into various regional trucking centers. Given the particular deliveries
being made, the number of trucks, etc., often it is worthwhile (because of lower mileage) to
exchange jobs with other centers (both centers ending up better off in a distributed search for
Pareto-optimality). Such coordination processes can be useful even between different trucking
companies (a situation where a centralized scheduler would not be appropriate).

Coordination behaviors in distributed sensor network (DSN) applications like the Dis-
tributed Vehicle Monitoring Testbed (DVMT) will be discussed in great detail in this thesis.
To state the problem briefly, several agents with physically distributed sensors have the task
of tracking vehicles moving through the combined sensed area. Coordination opportunities
include avoiding redundant work in areas where the sensors overlap, balancing the processing
load, and providing helpful results when some sensors are faulty or the data is open to many
possible interpretations.

Distributed information gathering applications might look something like the following:
The original user query would be transformed into set of agents, each with their own plans for
gathering information, where some plan elements must deal with the coordination of activities
and construction of the final query response. Agents could be assigned to concurrently pursue
different sources to answer different aspects of the query or to make use of alternative types
of sources (e.g., text vs. images) to generate a more comprehensive answer. The agents would
proceed to work in a distributed,asynchronous fashion, but there may be a need for coordination
among the agents. For example, the results of work by one agent may suggest the need for
some of the existing agents to gather additional information from their sources or use alternate
sources, or the results might suggest the need for additional agents. The agents must also
deal with uncertainties about the availability of sources and the workload associated with the
sources, which may require a new division of tasks among the agents [Carver, 1994].

Computational organization design tools use computer modeling of coordination. Exam-
ple work includes the Virtual Design Team simulator for civil engineering projects [Levitt et
al., 1994], designing organizations for decision-making under stress [Lin and Carley, 1993],

12

the Business Process Handbook project [Malone et al., 1993], computer-based modeling of
software engineering processes [Mi and Scacchi, 1990], the ACTION system for re-engineering
electronic small-parts manufacturing organizations [Hulthage, 1994], and the work I will
describe in this dissertation on modeling computational agent environments and designing
new coordination mechanisms.

1.5 Chapter Summary

A coordination problem consists of some environment, the occurrence of episodes within
that environment, and the structure of tasks within the episodes. Activities are related to one
another so that the choice and temporal ordering of the activities affects some performance
criteria. Agents may have incomplete views, task structures may change during problem solving,
and agents are uncertain about the outcomes of their actions.

The basic problem which this dissertation addresses is how to state coordination problems
in a formal, domain-independent way. Our approach is to first develop a framework, TÆMS,
to directly represent the salient features of a computational task environment. The unique
features of TÆMS include that it quantitatively represents complex task interrelationships, and
it divides a task environment model into generative, objective, and subjective levels. We then
extend a standard methodology to use the framework and apply it to the first published analysis,
explanation, and prediction of agent performance in a distributed sensor network problem.
We predict the effect of adding more agents, changing the relative cost of communication and
computation, and changing how the agents are organized. Finally, we show how coordination
mechanisms can be designed to respond to particular features of the task environment structure
by developing the Generalized Partial Global Planning (GPGP) family of algorithms. GPGP
is a cooperative (team-oriented) coordination component that is unique because it is built of
modular mechanisms that work in conjunction with, but do not replace, a fully functional
agent with a local scheduler. GPGP differs from other previous approaches in that it is not
tied to a single domain, it allows agent heterogeneity, it exchanges less global information,
it communicates at multiple levels of abstraction, and it allows the use of a separate local
scheduling component. We prove that GPGP can be adapted to different domains, and learn
what its performance is through simulation in conjunction with a heuristic real-time local
scheduler and randomly generated abstract task environments.

The next chapter, Chapter 3, will present and discuss the TÆMS modeling framework in
detail. Chapter 4 will present the analysis and verification of a model of a simple distributed
sensor network environment, and Chapters 5 and 6 will present and verify the GPGP family
of cooperative coordination algorithms. Chapter 2 will discuss other work related to this
dissertation. Finally, Chapter 7 summarizes this work and points out the many short- and
long-term research pathways that arise from it.

C H A P T E R 2

RELATED RESEARCH

There is no best way to organize. Any way of organizing is not equally effective.

— Jay Galbraith, 1973

Our intent is to show that overly specialized organizational structures allow effective
network performance in particular problem-solving situations, but that no such
organization is appropriate in all situations.

— Durfee, Lesser, and Corkill, 1987

We also expected different dimensions to resolve [coordination] conflicts better in
different situations. : : :We also expected each dimension to be applicable at different
levels of detail, with varying results.

— Durfee and Montgomery, 1991

The first subsection discusses briefly the reasoning behind the task environment modeling
approach. The next two sections discuss the questions of ‘What is a coordination behavior?’ and
‘How does the task environment affect coordination behavior?’. These sections will concentrate on
the organizational theory literature, because it is probably much less well known to computer
scientists. Afterwards I’ll return to the Distributed AI conceptual view. General background
on Distributed AI has been published by the author in [Decker, 1987]. An introduction to
Distributed AI testbeds was published by the author in [Decker, 1994a].

2.1 Task Environments

The reason we have built a framework for task environment modeling is rooted in the
desire to produce general theories in AI [Cohen, 1991, Cohen, 1992]. At the very least, our
framework provides a featural characterization and a concrete, meaningful language with which
to state correlations, causal explanations, and other forms of theories.

The form of a task environment model in our framework is drawn from several sources.
First and foremost is our own and others work in the DVMT and similar domain environment
simulators [Corkill and Lesser, 1983, Lesser and Corkill, 1983, Durfee and Lesser, 1987,
Durfee et al., 1987, Cohen et al., 1989, Decker et al., 1990, Carver et al., 1991, Decker et al.,
1991, Decker et al., 1992]. It is from this work that the basic model form—the execution of
interrelated tasks—is taken.

One possible form might have been to create a simulator (ala Tileworld [Pollack and
Ringuette, 1990]), but it would be very hard to state good featural characterizations using a
simulator. The second input to the form of the model is the mathematically formal work
in DAI (for example, [Genesereth et al., 1986, Rosenschein and Genesereth, 1985, Malone,

14

1987, Cohen and Levesque, 1990, Gmytrasiewicz et al., 1991]). There was no reason that
the complexities that occur in our earlier DVMT simulation work could not be given clear
semantics.

The existing formalisms, however, universally eschew much complexity to allow for
optimal analyses to be carried through. For example, Malone [Malone, 1987] formalizes
classical organizational and economic coordination devices (i.e., product hierarchies, functional
hierarchies, centralized and decentralized markets) and analyzes them using queuing theory.
This analysis is oriented mostly toward task assignment (i.e., how much time does it take
to assign and execute a task, how much communication is needed, and how vulnerable is
the structure to a failure of some component). Tasks are assumed to be independent with
exponential arrival times, and all tasks must be completed. The work of Cohen and Levesque
(for example, [Cohen and Levesque, 1990]) makes few assumptions about the environment:

“: : :we model individual agents as situated in a dynamic, multi-agent world, as
possessing neither complete nor correct beliefs about the world or the other agents,
as having changeable goals and failable actions, and as subject to interruption from
external events.” [Levesque et al., 1990]

Instead, Cohen and Levesque concentrate on giving formal definitions and semantics to terms
such as ‘intention’, ‘commitment’ and ‘joint intention’—although they “: : :do not explore
how these ideas can be applied in computational systems that reason about action: : : ”. In
[Genesereth et al., 1986, Rosenschein and Genesereth, 1985, Gmytrasiewicz et al., 1991],
computationally tractable decision processes are worked out for particular environmental
situations, such as the prisoner’s dilemma and other game theoretical environments. Often
game theoretical models of environments [Luce and Raiffa, 1958] are unappealing because
they assume a great deal of certain, static knowledge about the structure of the environment.
Of course this work is still very useful in providing bounds and comparisons to more complex
situations.

The second desired characteristic of our task environment modeling framework is, then,
to provide clear semantics but not to force the person doing the modeling to simplify things
just so that an optimal solution can be found. In this way we hope to build richer and more
realistic models—but ones that are still undeniably simplifications of real problems. We will
make simplifications to allow analytical solutions to be derived (see the Prisoner’s Dilemma
example in Section 2.4.5.4 and the DSN analysis in Chapter 4). We will also use simulation
techniques when we don’t make such simplifications (see Chapter 5).

The third input to the form of a task environment model was the desire to avoid the
individualistic agent-centered approaches that characterize most AI (which is probably fine)
and DAI (which may not be so fine). The view that what you and I would both agree to call
an ‘organization’ can be described as some sort of ‘larger’ individual agent is faulty [Allison,
1971] (I’ll come back to this in the next subsection). This is the reason the task environment
model goes to considerable length to avoid formalizing, say, the mental structure of an agent
interacting with the environment. This perhaps stubborn feature of the model allows us to
adapt to the individualistic semantics of Cohen, Rosenschein, or Shoham. What I mean by
this is that I can use an environment model I build in conjunction with one of these agent
architectures to explore how those agents behave in that environment. I will, for example, use
a fairly Shohamesque agent architecture to demonstrate GPGP in Chapter 5. Look back at the

15

quote from Cohen and Levesque: our modeling framework should provide such a dynamic
world of incorrect and incomplete beliefs, changeable goals, failable actions, and interruptions.
We wish to allow the model to provide:

“: : : a fabric of knowledge, resources, and actions out of which agents actively and
flexibly construct and reconstruct themselves by adding and subtracting resources and
changing agent-knowledge boundaries. It is the overall collection of problem solving
knowledge that is fixed—not the definition of agents.” [Gasser and Ishida, 1991]

This provides a potentially more open system and social perspective than is usual in DAI
research [Hewitt, 1991, Gasser, 1991].

A final problem remains with the form of the model that I can only address as a “future
direction”: that of the mutual construction of agents and their environment. The organization
of the world is not wholly dictated either by people individually or by their environments [Agre,
1991, Latour, 1987].

2.1.1 Example Task Environments

For the purposes of discussion and illustration, several of the concepts in this chapter will
refer to two task environment simulators developed at the University of Massachusetts: the
DVMT and Phoenix.

DVMT.

The Distributed Vehicle Monitoring Testbed (DVMT) [Lesser et al., 1987] simulates a
network of vehicle monitoring nodes (agents), where each node is a problem solver that analyzes
acoustically sensed data to identify, locate, and track patterns of vehicles moving through a
two dimensional space. Each problem-solving node is associated with a sensor or sensors.
In the simulated domain environment, each vehicle generates sounds (at particular locations
and discrete times) that are described by a grammar in terms of signal groups, which are then
described in terms of low-level, detectable signal frequencies. We will be analyzing an abstract
simplification of this problem in Chapter 4.

Phoenix.

The Phoenix firefighting testbed [Cohen et al., 1989] is another domain simulator.
Although not primarily a DAI testbed, it does have multiple agents (firebosses and bulldozers)
operating semi-autonomously in a highly dynamic environment (a fairly complex fire simulation
based on weather conditions, Yellowstone National Park’s physical features, and firefighting data
of the burn rates of various land types). Some work has been done on coordinating multiple
firebosses [Moehlman et al., 1992] through negotiation over bulldozers considered as resources.

2.2 What is Coordination Behavior: The Social View

When beginning our consideration of how the environment affects coordination, I early
on came across the following general problem:

16

Consider the difficulties facing the experimenter asking the following question: “What
effect does the environment have on learning ability”? This question meets all the
criteria of a problem and yet is stated in such a vague way that the investigator could
not pinpoint what was to be investigated. The concepts of environment and learning
ability are vague. What environmental characteristics? Learning of what?

— An Experimental Psychology Textbook

This problem of conceptual vagueness can be considered yet another reason behind our
extensive mathematical modeling of the environment discussed in the previous section, and
the cautious set of basic agent behaviors (execution, communication, information gathering).
This is also the reason for focusing our causal model on the production of local scheduling
constraints (a basic, observable, measurable output that may be based on other behavior such
as communication, negotiation, organization, etc.)

In this section I will first discuss how researchersview coordination behavior, and then I will
discuss in what way other researchers have proposed that the environment has an effect on such
coordination behavior. Here I will cover the views of social/organizational researchers. Until
recently, DAI has had a very impoverished view of coordination, often equating coordination
behavior merely with the communication of messages, thus it is profitable to be inclusive about
other’s ideas. I will return to the DAI perspective later in this chapter (Section 2.4).

The recurrent problem in sociology is to conceive of corporate organization, and study
it, in ways that do not anthropomorphize it and do not reduce it to the behavior of
individuals or of human aggregates.

— Guy E. Swanson, The Tasks of Sociology

Several schools of thought in sociology and management science have their own views of
coordination behavior: the rational systems school, the natural and institutional schools, the
open systems school, the economic systems school. These researchers often separate normative
(expected or predicted assuming no outside influences) and observed behaviors. The next
several sections will briefly summarize the point of view of each school on what is coordination
behavior.

2.2.1 What is Coordination Behavior: Rational Systems

In the rational systems view the most important features of organizations are what
their specific goals are and what their normative structure is. Organizational activities and
interactions are coordinated to achieve these goals; the goals themselves are explicit and include
criteria for choosing the best activity. Agents interact explicitly according to the rules of
the normative structure, which describes roles and interactions separately from the personal
attributes of the agents occupying those roles [Scott, 1987].

The fundamental rational systems normative structure is the bureaucracy. The term has
a technical sense, apart from its pejorative colloquial use [Perrow, 1986, Weber, 1947]. This
normative structure promotes several types of coordination behaviors:

Rules and Regulations: The creation and adherence to rules and regulations is one coordina-
tion behavior observed by rational-legal bureaucracies. Rules and regulations apply to
individual agents or subgroups. Their purpose is to:

17

� Justify decisions or actions (especially unpleasant ones)

� Control interactions with the environment

Standardization: The creation and use of standards is a special case of regulations put into
place to reduce uncertainty, both within and organization and in its interactions with
the environment.

Hierarchy: Hierarchies specify where knowledge, skills and other resources lie, and thus contain
communication information. Most importantly, hierarchies outline the nominal power
structure — who makes which decisions. Constructing or accessing hierarchies is a
coordination behavior.

Specialization: individuals or groups with tightly coupled communication requirements are
often departmentalized. This functional division is another coordination behavior.

There exists a natural tension between hierarchy and task specialization. A hierarchy
groups together routinely related tasks, but in non-routine situations may be a hindrance
to coordination of widely separated groups. The modern solution, from the rational open
systems view, is to create special task groups that set apart from the routine hierarchy for
non-routine situations, transferring the appropriate decision making power to a closer point.
If the non-routine situation persists, it may result in a permanent change in the organization.
Thus the creation of special task groups is another coordination behavior (although it would
be properly classified as a ‘rational open system’ approach).

2.2.2 What is Coordination Behavior: Natural Systems and Institutions

The natural systems, human relations, and institutional views have in common the fact
that they are all reactions to the the rational systems view. They point out that organizations
are made up of people, not automatons, and the rational systems view does not take that
sufficiently into account.

Of course, for our purposes of studying coordination in distributed problem solving
systems, organizational actors are (often) automatons! Thus these points-of-view do not
provide me with the easy insights that the rational (and rational open) systems views do. I cover
these views here for the light they may shed on mixed human-computer coordination behavior.
Furthermore, some amount of “irrationality” may in fact facilitate effective problem solving
[Lesser 1991, personal communication]. For example, the node skepticism idea [Corkill
and Lesser, 1983] advocates indirect organizational structuring, which allows each agent to
decide whether to accept its organizational role. A node may choose to be guided more by
the proposed organizational structure (to be a “company node”) or may decide that its own
interests are more important (an “entrepreneurial node”). This freedom is important since the
organizational structuring was done with uncertain and incomplete information and therefore
may be incorrect. A certain fraction of nodes with each ‘personality’ may result in a more
robust organization in the face of changing environments, an observation that has been made
in reference to colonies of honey bees [Reed and Lesser, 1980].

A common tenet of these views is the concept of structural-functionalism, i.e., organizational
structures can be explained by examining their functions, and certain functions imply certain
structures; however [Perrow, 1986]:

18

The explanation for organizational behavior is not primarily in the formal structure
of the organization, the announcements of goals and purposes, the outputs of goods and
services. It lies largely in the myriad subterranean processes of informal groups, conflicts
between groups, recruitment policies, dependencies on outside groups and constituencies,
the striving for prestige, community values,the local community power structure, and
legal institutions.

Institutional organization theory [Meyer and Scott, 1983] tries to explain the actions of
organizations as attempts to manage their perceived, external image so as to secure support
from external sources. Thus an organization will prefer to pattern its structure and operations
as a copy of other institutions rather than attempting to maximize its efficiency or some other
rational-systems-view measurement. For example, Meyer and Rowan [Meyer and Rowan,
1977] argued that when Congress enacted affirmative action legislation, many organizations
created an “Office of Equal Opportunity” as a symbolic response—no genuine response was
intended.

A primary coordination behavior observed by natural systems and institutional researchers
is the construction and use of informal channels [Chisholm, 1989], i.e., communications
channels that neither exist in the formal hierarchy, nor were created by formal mechanisms.
These communication channels can exist both within an organization and between parts of the
organization and the environment.

2.2.3 What is Coordination Behavior: Open Systems

The original conceptions of the rational and natural systems views tended to view organiza-
tions in isolation from their environments, with a static set of participants and goals (including
the survival of the organization itself). The open systems point of view stresses the environment
that the organization operates in — how do participants come to the organization and why do
they become a part? How does the organization obtain resources (including physical resources,
agents, knowledge, and time) from the environment? Scott summarizes the open systems
definition as [Scott, 1987]: “organizations are coalitions of shifting interest groups that develop
goals by negotiation; the structure of the coalition, its activities, and its outcomes are strongly
influenced by environmental factors.”

The open systems view of coordination behaviors includes:

� Negotiation and adoption of shared goals by groups and individuals. This is the most
complex coordination behavior, often underlying many of the others mentioned here1.

� The construction and execution of multi-agent actions (plans).

1Negotiating coordination strategies include contracting (of course), bargaining, and ‘co-optation’. The last
one is coordination by representation. Suppose I have two large CDPS systems that are separate, but have strong
mutual coordination relationships in some overlapping area. One coordinating activity is to simply involve a
representative from each organization in the decision process of the other — rather than for Agent A to try to
transmit all of its plans to B, simply ask A to make a choice from B’s palette of choices. A will use it’s own
information and decision procedure, and B can factor A’s decision in with it’s own view. Other styles of this
strategy can exist between large networks of agents where the agents themselves can be traded or merged into new
permanent or temporary organizations.

19

� The commitment behavior defined by Gerson [Gerson, 1976]. A commitment is a de-
pendency, or “side-bet”, relating initially unrelated negotiations or potential negotiations
and their outcomes to those in the situation at hand. The commitment is a flow or
constraint on the flow of resources. For example a schedule is a time commitment, a
budget a monetary commitment, loyalty is a commitment of solidarity.

� Power sharing — two mostly independent organizations may share seats on their boards
of directors, which is a coordination behavior. Delegation of authority is also in this
category of coordination behavior.

� Professionalization — some complex problems are solved by giving complete control to
a single agent. This agent both makes decisions and executes tasks.

� Slack — creation of slack in resources (computational (‘satisficing’), informational
(‘information buffers’), or physical (‘stockpiling’)) is a coordination behavior. It works
by reducing the need for tight coordination.

� Coding — preprocessing organizational inputs reduces uncertainty and complexity in
the environment, which in turn eliminates or simplifies other coordination behaviors.

� Forecasting or prediction is a typical coordination behavior if the environment allows it.

� Growth — especially forward or backward vertical integration [Perrow, 1986]. Again,
usurping control over part of the environment can either eliminate or reduce the need
for coordination, and so certain types of growth can be viewed as coordination behavior.

2.2.4 What is Coordination Behavior: Economic Systems

The newest school of organizational theorists are, or are influenced by, economists. Thus
the driving force behind coordination behaviors of agents is the maximization of their individual
utilities. This should not be too surprising, given the game theoretic approaches to DAI
[Genesereth et al., 1986, Rosenschein and Genesereth, 1985, Gmytrasiewicz et al., 1991].
While the detractors of these theories have strong arguments [Perrow, 1986], many of the
arguments are based on natural systems views and are not as convincing when applied to
collectively engineered CDPS systems. The DAI work in this area has focussed on making
rational decisions when outcomes will be affected by what multiple agents do—this is really a
different problem than the distributed scheduling problem addressed by GPGP.

These economic theories do not postulate new behaviors, but rather new explanations for
existing behaviors. The first, principal-agent theory, explains hierarchical organizational behavior
in exactly these terms—self-interested agents maximizing their individual utilities [Moe, 1984,
Perrow, 1986]. The second, transaction costs economics, takes a more encompassing approach
in explaining hierarchical organizational structures as arising from bounded rationality, uncer-
tainty, and other features of the environment. I will explain these relationships in Section 2.3.

This section has briefly discussed a few perspectives on coordination behavior that do
not originally come from the AI community. The purpose of this section was to get the
reader thinking about the idea that there are many different coordination mechanisms and
perspectives on these mechanisms. The next section will try to briefly summarize some
non-computational perspectives on the the relationship between the task environment and
these different coordination mechanisms. It is not an exhaustive list.

20

2.3 How Does the Environment Affect Coordination Behavior: The Social View

The social conception of the environment [Scott, 1987] is that no organization exists in
isolation, but rather in a complex set of relationships with its environment. The environment
constrains the types of participants that can make up an organization and includes what other
organizations those participants belong to. The environment is the source of inputs to the
organization, the source of technologies2 with which to process those inputs, and the sink
for organizational outputs. The things that are goals from the organizational point of view
are the specialized functions of the organization from the environment’s point of view. The
complexities of the environment are reflected in the complexities of the organization’s structure.
Organizations and their environments are interdependent, and each can influence the other.

In characterizing the environment, one has to decide what level of analysis is appropri-
ate. Perrow [Perrow, 1986] enumerates possible analyses at the individual, group, division,
organization, inter-organizational, network, industrial, national, and world levels, to name
a few. For our purposes in DAI, individual (i.e., an agent with a virtual single locus of
control), organizational, and network analyses seem the most applicable. Network analysis is
the process of modeling the control and influence relationships arising from an organization.
While the boundaries of a single organization, a hospital for example, are more-or-less clear
(there are always boundary problems, however), the network of organizations that make up its
environment is large and fuzzy (including other hospitals, federal, state, and local governmental
agencies, labor unions, professional societies, support groups, etc.) Constructing a model of a
single organization without reference to the network it is part of is an error.

Another way to look at the interactions between units of study, and the levels above and
below the units, is to think of the sources of inputs, the markets for outputs, the competitors,
and the regulators [Scott, 1987]. One can then characterize the environment as a place where
resources are located, both physical and information. An organization can be dependent on a
physical resource, or have uncertainty because it lacks some information. Various sociological
studies have shown causal effects between certain variables and organizational dependence and
uncertainty. Scott mentions the following (I’ve added my own examples using the DVMT and
Phoenix (Section 2.1.1) which he may or may not agree with):

� Dimensions affecting dependency

Degree of munificence/scarcity: How easy are the resources to come by? Also called
environmental capacity. Phoenix has a limited number of bulldozers with which to
fight fires, but a potentially unlimited amount of fireline can be built. Time can be
considered a resource. The fixed DVMT sensors are limited resources.

Degree of concentration/dispersion: How are the resources spread out in the environ-
ment? DVMT sensors are fixed, and evenly distributed. Vehicles can appear
anywhere. Bulldozers can be moved anywhere, at the cost of time lost. Fire can
appear almost anywhere.

Degree of coordination/non-coordination: Are the entities in the environment execut-
ing orchestrated or structured actions? For example, in the DVMT, some vehicles

2Means for doing work. Machines, knowledge, and skills are technologies. This is a sociological term; computer
scientists would probably use the term resources.

21

can be part of a single pattern, and act in a coordinated way with one another. By
contrast, in Phoenix, multiple fires are uncoordinated (i.e., the fires don’t decide
on a joint plan to burn an area) and independent.

� Dimensions affecting uncertainty

Degree of homogeneity/heterogeneity: How similar are the entities in the environment
to which the organization must relate? Also complexity, diversity. Vehicles have
noticeable differences. Bulldozers are all the same (although one can easily imagine
the addition of helicopters, and different types of bulldozers, etc.). Also, the
homo-/hetero- geneity of the terrain can lead to changes in the qualities of fires
(see also “degree of stability/variability” below).

Degree of stability/variability: How quickly, (or, alternately, evenly) are the entities in
the environment changing? The DVMT has a very stable environment. The
Phoenix environment is more variable when one considers the changing winds and
weather.

Degree of threat/security: Is the organization/entity under study vulnerable to its envi-
ronment? Will “inefficiencies and errors by an organization result in its demise”
[McKelvey, 1982]? The DVMT is secure; The Phoenix organization is secure but
the bulldozers are not.

Degree of interconnectedness/isolation: To how many, and how closely, is the entity
under study linked to other entities in the environment in a way that the other
entities can affect the one under study? Both the DVMT and Phoenix agents are
partially isolated from their environments, but fires can directly affect the fireboss
by destroying bulldozers. The intra-entity connections, between DVMT agents or
between multiple Phoenix firebosses, are very strong.

Degree of coordination/uncoordination: This dimension effects uncertainty about the
environment as well as dependence on environmental resources (that may be
controlled by other entities).

Scott notes that these independent variables (uncertainty and dependence) are orthogonal.
For example, if the entities in the environment are highly coordinated, it decreases environmen-
tal uncertainty (they are more predictable) but may increase dependence (because it reduces
the number of independently available resource locations).

Another point to keep in mind when analyzing an environment, which should be clear
from the proceeding discussion, is that the analysis of an environment is inextricably linked
to “: : : the organization, the cognitive work of its participants and their structure of attention,
and its information system” and “the characteristics and goals of the organization [: : :]
each [organization] functions in a different domain”[Scott, 1987]. Or, in other words, the
environment is linked to the agent (organization) architecture and the desired agent (organization)
behaviors3[Cohen et al., 1989]. Scott points out the difference between what the characteristics

3One of the reasons that the Partial Global Planning coordination algorithm works is goal reinforcement —
when a remote goal is equivalent to, or is compatible with, local goals, then the combined goal is rated highly;
this happens to be a good thing in the DVMT domain and environment[Decker and Lesser, 1990]. To the extent
that one believes goal reinforcement is true in the world at large, the above similarity is encouraging.

22

of the environment are and how the entities perceive those environmental characteristics.
Perceptions can be used to predict entity actions or outputs (goods, services, problem solutions),
but unperceived characteristics can still affect outcomes, which are the results of the interaction
between outputs and the environment. What agents don’t know can hurt (or help) them[Scott,
1987]. Scott (and Perrow) demonstrate that market perceptions held by recording industry
executives can predict who will get a recording contract, but not how well the record will sell.

An illustrative example of outcome vs. outputs in the DVMT is the case of the ghost track.
A ghost track is a weakly sensed vehicle track caused by sonic reflections from a real vehicle, and
occurring nearby. A ghost track is coordinated with the track of the vehicle that it is a ghost
of; this fact was true in early DVMT environments. However, the DVMT had no knowledge
about ghost tracks; it did not perceive the coordination between ghost tracks and vehicle tracks;
it was blind to that characteristic of the environment.

2.3.1 How Does the Environment Affect Coordination Behavior: Contingency Theory

One theme of this dissertation is the development of a method of designing coordination
algorithms for CDPS systems. Some very special coordination algorithms have provably
good behavior under restrictive conditions [Rosenschein and Genesereth, 1985, Zlotkin and
Rosenschein, 1990]. Some algorithms claim much greater generality but have a large number
of parameters (PGP has 12 cooperation parameters used in the hill-climbing task reordering
algorithm, the meta-level organization chosen, and the time-cushion parameter used in the
predictability and responsiveness experiments) or are known or believed not to perform well
in certain classes of situations (i.e., heterogeneous, dynamic, and ‘real-time’ situations [Decker
and Lesser, 1990]). In any case, there is to this date no coordination algorithm that is truly
general.

If we are interested in designing coordination algorithms for intelligent agents, it only makes
sense to look at the design of coordination algorithms for humans. Human organizational
design was once (before the ’60s) faced with myriad designs that all tried to be good for all
situations. It was then noticed that very different organizational designs flourished in industries
with different technologies (problem solving methods & knowledge), and in industries where
external change took place more quickly or more slowly.

It was clear that there was not a single good organizational structure, but it remained to
be shown that the structure mattered. Perhaps one would be as good as another. Lawrence
and Lorsch [Lawrence and Lorsch, 1967] built a model (using the aforementioned studies and
their own studies) that relates uncertainty in the environment to differentiation and integration
in the organizational structure. This model and its elaborations are called contingency theory.
Lawrence and Lorsch define their independent and dependent variables as follows:

2.3.1.1 Definitions

To apply the definitions below, you should have a clear level in mind. An organization
is made up of parts. For example, the organization “U.S. Government” is composed of an
“executive branch”, “legislative branch”, and “judicial branch” (the parts). Obviously parts can
also be organizations themselves.

The organization “General Electric” comprises “the service businesses”, the “aerospace
businesses” and “the core businesses”. Note that a level of analysis is not necessarily the same,

23

in human organizations, as the org chart. There are a lot of reasons for this that I doubt anyone
is interested in : : : but the formal org chart can be a starting place.

The organization “DVMT” comprises “DVMT agents”. DVMT agents comprise a control
component and a domain component. Each of these is composed of knowledge sources.
Phoenix is composed of a fireboss, a group of bulldozers, a group of watchtowers, and a group
of helicopters (?). Each group comprises individuals.

In the set of studies from which this was derived, there are a set of numerical measures
associated with the definitions. I can’t see these as being too useful, since they are oriented
towards the business world. If this is a useful theory, I should be able to build models of our
systems with it, but I will need a different operationalization of the variables. For example, I
would have tremendous difficulty trying to determine the change in profits the DVMT made
before and after the Partial Global Planning mechanisms, but I can easily come up with other
operationalizations of performance, like “on the same test suite, the new DVMT found X%
more solutions, was Y% more confident in them, and did it executing Z% fewer KSIs.”

So I will give the original definitions in order to be concrete, but encourage you to
think of how the concepts transfer. The data used to develop this theory came from several
environments, but the examples I give are from the plastics environment. An organization
in the plastics environment comprises research, applied research, marketing, and production
parts. Each part interacts with its own subenvironment in the plastics industry.

Environmental Uncertainty: Environmental uncertainty can be measured by three factors:

1. Clarity or uncertainty associated with inputs or measurements. For example,
the environment associated with the research part of organizations in the plastics
industry has a higher degree of uncertainty associated with its inputs than any other
part of an organization in the plastics industry.

In the DVMT world, I would say that a DVMT agent with a faulty sensor has high
uncertainty associated with its inputs or measurements.

2. Uncertainty associated with causal relationships. For example, in the plastics
industry, “the performance characteristics required by the customer are well known,
but as far as research is concerned,you might as well be asking for the perfect plastic.”

In DVMT world, there are questions like ‘do all ducks attack fish?’, etc. There is a
great deal of uncertainty associated with the causal and deductive relationships in
the DVMT, but it is the same for each agent.

3. Time span of definitive feedback after making a decision. In the plastics industry,
it may be years before a research program pays off or pans out, but errors in
plastics production are usually noticed (and corrected) within a week. Research
and production are parts of organizations in the plastics industry.

In the DVMT I can also measure the amount of time between when a decision is
made (i.e., a KS is run) and when I know if it is a correct one. However, for the
purposes of Theorem 1.1 below, it is sufficient to note that this feedback time is
not significantly different for each agent.

Degree of Differentiation: Two organizational parts are considered to be more differentiated
the more they differ along the following 3 dimensions:

24

1. Formality or rigidity of their structures (are they unorganized, adaptable, or rigid).
For example, the production part of one plastics organization was very formal and
rigid because it had a deep hierarchy of managers and frequently reviewed their
performance and rarely allowed the lines of authority to be breached. The same
plastics organization had a research lab that had only a handful of lab managers
to whom all scientists, engineers, and support staff reported to. The research
lab encouraged (by decree and monetary incentives) collaboration between staff
members. Each DVMT agent has the same internal structure.

2. Time-frame orientations (do they solve problems over the course of minutes,
hours, days). In one plastics organization, production and sales were concerned
with problems and schedules that often lasted less than a month, while research
often planned projects lasting years. Each DVMT agent has the same time-frame
orientation.

3. Attention to high-level goals (are they equally interested in the quality of the
solution, the solution cost, efficiency, utilization). This was simply a measure of
whether the smallest studied parts of a part of an organization actually performed in
accordance with the organization’s stated goals for that part. The scoop in plastics,
for example, was that low-level employees did, in fact, behave consistently with
the high-level goals except for research scientists, who seemed to have more of an
orientation toward production and sales goals than could be assumed from the
stated research goals. Each DVMT agent, by construction, attends to system goals.

A fourth dimension, interpersonal orientation, was also used as a sign of differentiation,
but I had trouble operationalizing the concept. It was measured on a 2 unit scale: a or-
ganizational part was either “task-oriented” (research) or “socially oriented” (marketing).

Required Integration: For a given partitioning of an organization into parts, some amount
of collaboration, to achieve unity of effort, will be required between any two parts by
the overall environment under which they operate. This can be measured on a binary
scale—either the linkage is critical or it is routine. For example, in the environment of the
plastics industry, there is a critical link between production and research (manufacturing
innovative products), and another between sales and research (finding customers for
innovative ideas and finding ways to create what the customers want). The link between
sales and production, or sales and applied research, is routine. In a different environment,
say the container manufacturing industry, the same parts are not critically linked in the
same way. Critical linkages in the container industry occur between production and sales
(delivery constraints) and production and research (quality control problems)

The classic DVMT environment places critical linkages between agents whose sensor
areas are spatially overlapping, because of the need to (1) reinforce the discovery of a
track and (2) look for other parts of a multi-vehicle pattern.

Effective Organization: Effectiveness can be measured by technical performance, for example,
a business can be ranked by its change in profits, sales volume, and new products
introduced over the past 5 years.

Incarnations of the DVMT have been ranked by quality of solution, number of KSIs
executed, and (probably unfortunately) CPU time and memory usage.

25

The model can then be expressed by the following 3 propositions:

1. In effective organizations, the degree of differentiation between the parts of the organi-
zation varies proportionally with the diversity of uncertainty in the environments of the
parts.

In other words, the more different the environments were (as measured by environmental
uncertainty) the more different the parts of the organization in those environments were,
for effective organizations. Poorly performing organizations tended to either force all parts
of the organization to remain undifferentiated in the face of environmental differences,
or to allow differentiation where the environment did not require it.

Analyzing at the agent level, the classic DVMT, while its environment is uncertain, is
not diverse (not different for each part, in this case an agent). The model predicts that
DVMT agents should be undifferentiated, and explains this by pointing out that the
subenvironment of each individual DVMT agent has an equal amount of uncertainty
present (measured by uncertainty of inputs, uncertainty in causal relationships, and time
spans of feedback on agent decisions).

2. Effective organizations achieve better integration at the critical environmental linkages
than less effective organizations.

For business organizations, the quality of integration was measured using surveys of the
management. For example, “Relations between these two units are: (1) Sound — full
unity of effort is achieved : : : (4) Average — sound enough to get by even though there
are many problems achieving joint effort : : : (7) Couldn’t be worse — bad relations —
serious problems exist that are not being solved”

One way to measure the quality of integration between DVMT agents, off the top of
my head, would be to measure the percentage of possible joint solutions that are actually
discovered by a pair of spatially adjacent (i.e., critically linked) agents. The model
predicts that the DVMT should discover a greater percentage of joint solutions between
spatially adjacent agents than between spatially non-adjacent agents.

3. I’ll break this into two parts:

[A] There is an inverse relationship between integration and differentiation.

[B] When parts of an organization are both highly differentiated and highly
interdependent it is necessary for the organization to develop more compli-
cated mechanisms for achieving integration between them (if the organization
is to be effective).

The relationship [A] was discovered by pairwise comparison of organizational parts.
For each pair, measure the amount of differentiation by the definition above. Now
measure the quality of integration actually achieved as described in Theorem 1.2. For all
organizations in all environments, the more differentiated the parts were, the lower the
quality of integration between the parts.

The relationship [B] is discovered by looking at all organizations operating in the same
environment. The better the measured performance of the organization, the higher
the quality of integration. Thus high-performing organizations achieved high quality

26

integration even when highly differentiated. The rest of this and many other studies
goes on to explore the mechanisms that these organizations used to achieve high quality
integration between highly differentiated organizational parts.
Part [A] predicts for the DVMT that its undifferentiated agents should all have the same
amount of resources devoted to integration.
Part [B] doesn’t make a prediction for the DVMT, which is undifferentiated.

These are weak conclusions about the DVMT, and are mostly meant for illustrative purposes.
The important point is that Lawrence and Lorsch’s work shows that:

1. not only was there no single good structure,

2. but that the choice of structure really did matter.

Galbraith [Galbraith, 1977] further illuminated this model by examining why uncertainty
in the environment should be a key independent variable. To Lawrence and Lorsch’s correlation
he added the following causal link:

The greater the amount of uncertainty of the task, the greater the amount of information
that has to be processed between decision makers during its execution. If the task is
well understood prior to performing it, much of the activity can be preplanned. If
it is not understood, then during the actual execution of the task more knowledge is
acquired which leads to changes in resource allocations, schedules, and priorities. All
these changes require information processing during task performance.

Thus the correlations observed by Lawrence and Lorsch can be explained by strategies to
increase the ability of an organization to preplan activities, increase flexibility to adapt in the
face of not being able to preplan, and decreasing the level of performance required to solve the
problem.

2.3.2 How Does the Environment Affect Coordination Behavior: Information Processing

In newer work [Stinchcombe, 1990], Stinchcombe returns to the structure of the uncer-
tainties facing economic organizations that is the basis of contingency theory (and arguably
a progenitor of transaction costs economics, below [Padgett, 1992]). Organizations grow
toward, and structure themselves around, sources of information important to them. An actual
mechanism is postulated: the resulting structures are not so much a result of self-conscious
rational choice, or unintended environmental selection4, but trial and error learning. The
information toward which an organization grows is not so much that which is used to forecast
or predict the future, but rather information as news, information about particular outcomes
that indicate with some certainty how the future is going to be, in some way important to the
organization:

I propose that information about the uncertain future becomes progressively available in
distinct social locations [: : :] What resolves the uncertainty of [agents] is the earliest
available information that will show what direction the [agent] ought to be going
because of the way the future of the world is, evidently, turning out [Stinchcombe,
1990].

4Another popular organizational model I have not talked about in detail is that of ‘natural selection’, or the
‘population-ecology model’ [Perrow, 1986].

27

2.3.3 How Does the Environment Affect Coordination Behavior: Principal-Agent Theory
and Transaction Costs Economics

Why do hierarchical organizations exist? From the DAI perspective,why aren’t contract net-
style protocols all we need for DAI coordination problem solving? Both principal-agent theory
and transaction cost economics answer this question by denying the benevolent agent assump-
tion [Rosenschein and Genesereth, 1985, Genesereth et al., 1986, Zlotkin and Rosenschein,
1990] (again, from the DAI perspective). We will illustrate this with examples drawn from a
hypothetical contract-net style system. These illustrations are drawn from [Williamson, 1975,
Moe, 1984, Perrow, 1986, Stinchcombe, 1990], although of course none of these authors are
referring to DAI systems!

First, imagine a contract net agent putting a task to bid without the benevolent agent
assumption. In such a system there would have to be some utility, or ‘reward’, for an agent
to accept a task—probably the bid specification would indicate the amount of the reward—
otherwise why would an agent ever accept a task?. Imagine that there are many agents capable
of accepting the task, but that they are not all equally capable. The agents examining the
bid specification know just how capable they are in accomplishing the specified task, but the
contracting agent cannot know these capabilities as well (without spending too many resources).
For any given level of reward, some agents that are very capable will find the reward offered
insufficient for them to take on the task. Other agents will find the reward generous for their
meager capabilities, and thus eagerly accept the contract. Thus a situation referred to by the
abstruse term adverse selection occurs, where the best agents for a task definitely do not bid on
it, while the worst agents definitely do. Such things happen all the time in the real world,
for example when hiring employees (“With all my experience and education, I’m worth much
more than you are offering”), or when selling insurance (“I can’t believe these low rates. They
must not have found out about our string of equipment fires,” thinks Springfield nuclear plant
owner Mr. Burns on The Simpsons).

The problem of adverse selection can be mitigated somewhat by designing jobs for the
common denominator—you don’t have to have the best, just the average for some package
of skills. Perrow points out that the adverse selection problem, especially with employment
contracts, can run both ways (i.e., the individual doesn’t really know exactly what their new job
will entail (and thus not really how capable they are); how awful their new working conditions
will be; how many times grad student fees, suspiciously not covered by their waiver, will triple,
etc.)

A similar problem occurs after the contract starts. The task that was just contracted out
is very complex—the result will have to be judged on a multiple criteria basis, such as on its
certainty, precision, and completeness. Each of these terms will have to be operationalized, and
probably watered down to a number in the process. The contracting agent does not have the
resources to constantly monitor progress of the other agent, except perhaps for a few progress
reports along the way. Since the agent is judged by this set of simpler criteria, rather than the
true, hard to specify, original goal, what is to keep the contractor agent from doing as little as
possible, orienting its work to these secondary criteria rather than the original goal and then
sleeping the rest of the day (or, perhaps for computers, moonlighting with other contracts that
will also be done just barely to specification)? The recondite term for this situation is moral
hazard. In the real world, after getting hired, the employee does as little as possible (‘shirking’),
and what little they do is oriented toward how they are evaluated by management (think Homer

28

Simpson); after getting fire insurance, there’s no real reason to practice fire safety at the plant
since it probably won’t burn down anyway.

In both cases, there is uncertainty present—an ‘ informational asymmetry ’ between the
agents involved.

The solution, incredibly enough, is capitalism!

— Charles Perrow, Complex Organizations

2.3.3.1 Principal-agent Theory

Principal-agent theory uses moral hazard (shirking) as the basis of the existence of hi-
erarchical organization. Let us assume we have several agents who work together to track
vehicles, and they gain some global utility for their results. How do they divide up the rewards?
Without the benevolent agent assumption, they cannot trust each other to tell the truth about
their individual efforts. “Precisely because of the complex interdependence of tasks” [Moe,
1984] and the processing distance between the sensor inputs and the final tracks, it is hard
or impossible to objectively determine each individual agent’s contribution. If the agents just
split things up equally, each agent will bear its own costs and only get part of the reward—but
if the agent shirks, the savings accrue only to it, while the reduced reward will be split among
all the agents. Thus it may be only rational for the agents to shirk. Depending on the exact
costs of work to each agent and the benefits accrued with and without shirking, the situation
can be viewed similarly to a multi-way Prisoner’s Dilemma, where the defector(s) cannot be
pinpointed.

The principal-agent theoretical solution is for the agents to hire a principal which will
spend its computational resources to monitor the agents, determining their individual efforts
and safeguarding against shirking. The principal will allocate rewards to each agent appropriate
with their effort, and is given the ability to fire and hire new agents to get rid of shirkers.
But how do you keep the monitor from shirking? By giving the principal the excess rewards
(residuals) left over after each agent gets its share. The principal agent theorists sternly assert
that the resulting arrangement is not any type of ‘authority’ relationship, but more like a set of
spot contracts entered into willingly and rationally by all the parties involved.

This type of analysis can be applied to employee / employer relationships, management /
stockholder relationships, and even politician / bureaucrat or citizen / politician (as discussed
by Moe, but with the idea of a ‘residual’ redefined). The criticisms also abound, ranging
from simple ones about the exact optimal form for a specific environment (should the agents
also get part of the residual? could the principal position be rotated among the agents?), to
Perrow’s vehement attack (basically, the model suffers from the wildly unrealistic assumptions of
neoclassical economics; that agents can always leave the principal without cost, and principals
fire and hire agents without cost; that it assumes that not all principals will cheat, bringing the
system to a stable point where the principals get everything and the agents little; that authority
or unequal possession of power does not effect the model; etc.) Nilakant and Rao [Nilakant and
Rao, 1994] argue that by concentrating on adverse selection, moral hazard, and randomness
as the primary contributors to uncertainty in performance outcomes, principal-agent theory
overlooks two critical sources of uncertainty in outcomes:

� incomplete knowledge about the relationship between effort and outcome

29

� lack of agreement about the measurement of effort, P-A theory preferring to measure
only quantity of effort, and not quality or type of effort.

Nilikant and Rao also argue that principal-agent theory ignores facilitative effort, where an
agent does not directly effect the outcome.

In the beginning, there were markets.

— Oliver Williamson, Markets and Hierarchies

2.3.3.2 Transaction Costs Economics

Williamson’s transaction costs approach [Williamson, 1975] combines microeconomic
theory with traditional organizational concerns such as bounded rationality and environmental
uncertainty. Again, the question being answered is why hierarchical organizations exist—
Williamson answers this by showing the conditions under which the open-ended contractual
transactions identified with hierarchical organization are more efficient than short- (‘spot’)
or long-term market transactions (and thus rationally preferred). Under this approach,
organizational boundaries are not fixed, but rather arise from linkages between distinct features
of the task environment and the agents. The approach has gained much support because of
its simple explanations of exactly why and where big, vertically integrated firms will come into
existence, and where small firms will operate through markets.

The first of these linkages is between environmental uncertainty/complexity and agent
bounded rationality. As we have pointed out several times before, coordination is much simpler
without the presence of environmental uncertainty, since complete rational decision making
is possible (i.e., cooperation without communication [Genesereth et al., 1986]). Imagine,
for example, how Phoenix might have been structured in an environment with an unlimited
bulldozing service market if fires were easily predictable—make the certain projection, get
the price of a bulldozer from the market, and make the tradeoff computation between price-
of-bulldozers and amount-of-land-burned. But of course the problem isn’t that simple; the
Phoenix planner can not make a certain projection, or even a finite number of possible
contingencies to specify in advance, a feature of both the intrinsic complexity of fire growth,
the environmental uncertainties (wind speed and direction, for instance), and the bounded
rationality induced by the planners’ finite computational resources. Thus the Phoenix system
becomes vertically integrated, acquiring bulldozers that it can control dynamically as certainties
about the environment are revealed, rather than by pre-specifying complex contingencies5.

The second linkage is between small numbers of agents in the environmental market and
opportunism (including intentional lying) on the part of those agents. Imagine Phoenix again
with independent, and duplicitous, bulldozers. Imagine also that the central planner gets
most of its information about the spread of the fire from the bulldozers (adding informational
asymmetry to the problem). A bulldozer could lie about the size of the fire, inflating it so
that it gets a bigger share (for less work), but this would not tend to work if there are large
numbers of bulldozers, so that inter-bulldozer rivalry will tend to damp out opportunism.
Small number of bulldozers won’t matter if they do not act opportunistically (in the sense of
making self-disbelieved statements). It is the twin features of small numbers and duplicitous

5Note how this fits in with Stinchcombe’s view of information as news that indicates the particular future that
is becoming reality.

30

behavior that causes the market to become inefficient with respect to a hierarchicalorganization.
Furthermore, Williamson points out, markets that are originally large-numbers may become
small numbers because of first-mover advantages or experience—witness how companies (or the
Department of Defense) become tied to their suppliers. Even if the parties have no information
asymmetry but have incomplete information, market contract problems can occur when it is
hard to judge (or specify unambiguously and completely how to judge) the outcome of the task
in question.

Stinchcombe and Williamson both point out that the decision between market and
hierarchy is not really a black-and-white one. Market contracts can, and often are, be written
to have the effect of organizational hierarchies, blurring the distinctions. Perrow, in his critique
of Williamson, points out that the original treatment often downplays the intra-organizational
transaction costs—hierarchies do not remove uncertainty (although they may make it easier to
respond to), and small-numbers opportunism may occur within a hierarchy (although more
powerful monitoring is possible, at some price).

2.3.4 How Does the Environment Affect Coordination Behavior: Social Structural Analysis

Social structural analysis is another approach to understanding the behavior of organizations
[Burt, 1982, Pfeffer, 1991]. Organizational structure is one component of social structure.
The social structure also contains the patterns across an organization of any important social
attribute, such as income, tenure in the organization, or gender. Social structure can also involve
the physical environment and the patterns of communications. Social structure theorists have
shown that some actions are more influenced by the social structure than by the attributes of the
individual agents involved. For example, although individuals prefer to marry into their own
ethnic background, groups that have large numbers of mixed ethnicities show correspondingly
larger numbers of mixed marriages [Blau and Schwartz, 1984]. Other examples include the
effect of the percentage of women in a law school class on the percentage of women who
participate more in class [Spangler et al., 1978], and the effect of the size of youth cohorts on
the amount of juvenile delinquency [Pfeffer, 1983].

2.3.5 Summary: How Does the Environment Affect Coordination Behavior—The Social
View

In this section we described several views of the way the environment affects agent
coordination behavior. The most important thing to take from this is the recognition in
the organizational community of the importance of environmental characteristics such as task
structure (dependencies), and various types of environmental uncertainty—features we will
represent in TÆMS and return to in the dissertation many times. Furthermore, these theories
should be viewed as reasons why these features need to be represented in any environmental
modeling framework. In the next section I will describe the state of the DAI field with respect
to coordination behaviors.

This chapter has not included all of organization theory, which has become a much
larger field since the early days when the rational systems view ruled. There has been much
more fragmentation in the field, and “the old polarities between agency and structure, formal
and informal, power and authority no longer apply” [Burrell et al., 1994]. Pfeffer [Pfeffer,

31

1993] claims that organizational studies has become a low-consensus field, very pluralistic and
non-elitist.6

2.4 What is Coordination Behavior: DAI Perspective

In their introduction to Readings in Distributed Artificial Intelligence [Bond and Gasser,
1988], Bond and Gasser (both familiar with sociology and organizational theory) devote a
section to the discussion of coherence and coordination that is notable for its breadth. Coherence
refers to the evaluation of a system as a unit, including such things as solution quality, efficiency,
clarity, and graceful degradation. Coordination, on the other hand, “is a property of interaction
among some set of agents performing some collective activity.”

Bond and Gasser enumerate a set of coordination behaviors exhibited by distributed AI
systems:

Organization: This category of behaviors includes forming centralized, hierarchical decision-
making or authority structures, markets (such as Malone’s work and the Contract Net
[Davis and Smith, 1983, Malone, 1987]), and structured communities (such as the
Scientific Community Metaphor [Kornfeld and Hewitt, 1981]).

Increased Localization: These behaviors are oriented towards decreasing the interactions nec-
essary between agents, and includes specialization (narrowing, constraining, reducing,
or focusing an agent’s responsibilities) and reducing dependencies between agents. See
also specialization in reference to rational systems (Section 2.2.1), and professionalization,
slack, and growth in reference to open systems (Section 2.2.3).

Increased Local Capability: Activities involved in making better local decisions can be con-
sidered coordination behaviors. This is a driving note in much of Lesser and Durfee’s
work [Durfee et al., 1987, Durfee et al., 1989]—increased local capabilities (especially
better self-realization of an agents plans and problem-solving abilities) can potentially
lead to increased coherence (through increased coordination). In other words, there is a
synergy that can occur where agents with better self-knowledge can coordinate themselves
more effectively. Thus the local planning mechanism in the Classic DVMT could be
considered to exhibit coordination behavior when it constructs a local node plan.

Planning: Planning is often a coordination behavior (sometimes coordination with elements of
the external environment). Bond and Gasser break it into two finer gradations — multi-
agent planning, where one agent plans for several (for example, Georgeff ’s work [Georgeff,
1983, Georgeff, 1984]), and distributed planning, where plans are constructed mutually
by the agents (for example, PGP [Durfee and Lesser, 1987], distributed NOAH [Corkill,
1979], or Ephrati’s work [Ephrati and Rosenschein, 1994]). See also planning in reference
to open systems, Section 2.2.3. The only work on taking advantage of positive plan
interactions is von Martial’s work on exploiting the favor relationship [v. Martial, 1990,
v. Martial, 1992].

Increasing Contextual Awareness: Another coordination behavior is the exchange of infor-
mation regarding agent roles and responsibilities (network views, such as in PGP). This

6And thus perhaps not as influential as it could be [Burrell et al., 1994].

32

is often followed by behaviors such as creating models of other agents (their plans,
beliefs, knowledge, or all three) and predicting their actions [Genesereth et al., 1986,
Halpern, 1986, Wesson et al., 1981]. This is related to communicating abstractions and
meta-level information, below.

Managing Communication: Another coordination behavior is observed when agents carefully
manage their communication behavior. This management can be in terms of relevance,
timeliness, and completeness [Durfee et al., 1987], expectation driven communication
[Decker, 1987], or discriminatory or diagnostic content [Wesson et al., 1981, Carver et
al., 1991].

Managing Resource Use: Agents that manage their use of resources (usually consumable or
otherwise limited resources), including time, are engaging in a coordination behavior.
Managing resources can include creating ‘slack’ and various relaxation and least commit-
ment strategies [Fox, 1981, Chandrasekaran, 1981, Cammarata et al., 1983]. See also
slack in reference to open systems, Section 2.2.3, and resource dependency in reference to
the social concept of environments, Section 2.3.

Managing Uncertainty: There are many kinds of uncertainty and many behaviors in reaction
to them. Some aspects of uncertainty in the environment seem to impact on agent and
organizational coordination behaviors (see Section 2.3 and Section 2.3.1). Fox [Fox,
1981] discusses how various types of uncertainty (informational uncertainty, algorithmic
uncertainty, environmental uncertainty, behavioral uncertainty) affect organizational
structures, according to contingency theory [Galbraith, 1977] and transaction costs
economics[Williamson, 1975, Moe, 1984, Perrow, 1986]. Approximate processing can
be viewed as a coordination behavior when it is used to create slack (processing) resources
[Lesser et al., 1988, Decker et al., 1990].

Pluralism: Organizational behavior where multiple agents or groups attack the same problem
from different viewpoints are exhibiting pluralistic behavior, another form of coordina-
tion behavior. The FA/C paradigm is cited as an example [Lesser and Corkill, 1981].
Bond and Gasser also consider negotiation from multiple conflicting viewpoints to arrive
at a shared viewpoint or temporary solution due process coordination behavior [Hewitt,
1986].

Abstraction and Metalevels: The idea here is that forming and communicating abstractions,
or exchanging meta-information about the state of coordination processes, are both
important coordination behaviors. These ideas are most clearly embodied in the PGP
line of research, where the exchange of meta-level information about the schedules of
remote node was used, for example, to avoid redundant work [Durfee, 1987]. The work
that has followed this has emphasized the use of abstraction to reduce communication
and detect activity interactions [Decker and Lesser, 1992, Durfee and Montgomery,
1990].

Adaptation: Self-organization of multi-agent systems is another coordination behavior. The
Contract Net, and other related market-based organizations, represents one style of
self-organization as agents create temporary organizational structures through contracting
in response to incoming tasks. A very different style is used by Gasser and Ishida [Gasser

33

and Ishida, 1991] where agents themselves are created and destroyed, and knowledge is
moved between agents, in response to a changing task load.

This has been a brief description of where work was when my work started. In the rest of
this section I will describe some especially relevant pieces of DAI work in more detail.

2.4.1 Malone’s Organizational Models

Communication between nodes was the only coordination behavior measured by Malone
[Malone, 1987, Malone and Crowston, 1991]. It was measured as the amount of communi-
cation between individuals needed in order to assign tasks. It was a fixed constant for some of
the organizations he studied (product hierarchies and centralized markets (modeled the same as
functional hierarchies)), and proportional to the number of agents for a decentralized market.
Malone compared organizational structures with one another, keeping anything that might be
considered an environmental factor fixed. Malone’s purpose was not in assessing the impact
of the environment on coordination, but on assessing the impact of various organizational
structures — what I would call coordination algorithms — on the production, coordination
(communication), and vulnerability costs. The systems Malone modeled exhibited other
coordination behaviors — they used hierarchies, and took part in negotiations — but these
behaviors were not modeled.

2.4.2 Partial Global Planning

Partial global planning [Durfee and Lesser, 1987, Durfee and Lesser, 1989] was developed
as a distributed control technique to insure coherent network problem solving behavior. It
is a flexible approach to coordination that does not assume any particular distribution of
subproblems, expertise, or other resources, but instead lets nodes coordinate in response to the
current situation. Each node can represent and reason about the actions and interactions of
groups of nodes and how they affect local activities. These representations are called partial
global plans (PGPs) because they specify how different parts of the network plan to achieve
more global goals. Each node can maintain its own set of PGPs that it may use independently
and asynchronously to coordinate its activities.

Of all the behaviors that this system exhibited, four of them can be construed as coordina-
tion behaviors by Malone’s definition:

� It avoids redundant work among nodes by noticing interactions among the different local
plans. Specifically, it notices when two node plans have identical intermediate goals, i.e.,
when they are working on the same time region. This occurs in the DVMT because in
the interests of reliability nodes have overlapping sensors. (subdividing goals into tasks,
assigning tasks to groups or individuals, communication of information)

� It schedules the generation of partial results so that they are transmitted to other nodes
and assist them at the correct time. To do this it uses the estimates of the times that
activities will take and the inferred relation that if node A estimates that it will take less
time than node B to complete an intermediate goal, and the goals are spatially near, that
node A can provide predictive information to node B. (assigning tasks to individuals,
communication of information, (computational) resource allocation)

34

� It allocates excess tasks from overloaded nodes to idle nodes. Node plans provide the
information needed to determine if a node is overburdened or underutilized. A node
is underutilized if it is either idle or participates in only low-rated PGPs. A node is
overburdened if its estimated completion time of a subgoal of goal G is much later than
the completion time of all the other subgoals of G [Durfee and Lesser, 1989]. (assigning
tasks to groups or individuals, resource allocation)

� It assumes that a goal is more likely to be correct if it is compatible with goals at other
nodes. In the DVMT task, a goal represented a processing task to ascertain whether a
vehicle was moving in a region r at time t. This goal could, in fact, be wrong — based
on noise or erroneous sensor data that was the basis for the preliminary task analysis that
generated the goal. Nodes choose local plans to work on based on the highly rated PGPs
they have received. Thus, if the intermediate goals of a node become part of a PGP, then
they are worked on before other intermediate goals in other local plans the node may
have (even though the node may have rated those local plans higher in its local view).
(assigning tasks to groups or individuals, conflict resolution between agents)

In Durfee’s thesis [Durfee, 1987], the partial global planning mechanisms are claimed to
exhibit most of the following coordination behaviors:

� Form subsolutions in parallel

� Form solution construction graphs (that show when partial results are to be delivered
and to whom)

� Exchange predictive information

� Assign important tasks to multiple agents

� Exchange tasks between agents

� Avoid redundant activities

� Verify other agent’s results

� Generate independent work

� Selectively exchange messages

As I will discuss in Section 5.1.1, the work on Generalized partial Global Planning (GPGP)
that I will describe in Chapters 5 and 6 extends the PGP ideas. It does this by allowing more
agent heterogeneity, the exchange of more truly partially global information at multiple levels
of abstraction, the use of separate scheduling algorithms, etc. We will return to Partial Global
Planning in more detail when we introduce GPGP in Section 5.1.

2.4.3 Hierarchical Behavior Space

Early in this dissertation, I asserted that coordination behavior could be divided into three
general areas: specification (creating shared goals, instantiating goals into tasks and subdividing
them, standardization, etc.), planning, and scheduling. In more recent work, Durfee and
Montgomery [Durfee and Montgomery, 1990] have worked on the specification side of things,
developing a set of six hierarchies—who, what, when, where, how, and why—for specifying
agent behaviors. This rather arbitrary but nonetheless useful hierarchical standardization

35

mechanism allows goals to be specified, compared, and subdivided by potentially heterogeneous
agents. Durfee and Montgomery also present a ‘protocol’ (algorithm) for using this information
for scheduling coordination, however the mechanism is very general (agents communicate to
avoid bad interactions and take advantage of positive interactions) and little work has been
done on prescribing exactly what is good behavior in a given environment (see the quote in
Section 2.3.1). More recent work has shown that using abstraction does in fact result in less
communication [Montgomery and Durfee, 1992]. In the chapter on GPGP (Chapter 5) we will
discuss several mechanisms that are much more detailed, and can be used together to construct
an extendable family of coordination algorithms. One of those mechanisms (non-local view)
tries to minimize communication; we have also argued elsewhere (and at about the same time
frame) that such a mechanism can be implemented in a hierarchical manner[Decker and Lesser,
1992] to reduce communication.

2.4.4 Distributed AI and the Concept of Agency

The conception of agency in DAI has a different scope and direction from that of principal-
agent theory (see Section 2.3.3). The primary theoretical focus has always been so called
‘BDI’ (Beliefs, Desires, and Intentions) architectures, probably because of the long history of
mathematical logics of knowledge and belief extending back far before AI or modern computer
science (Halpern links it to the Greek study of epistemology (‘the study of knowledge’) [Halpern,
1986]). A large amount of this work is not computational (e.g., Cohen and Levesque’s comment
from the start of this chapter that they “: : : do not explore how these ideas [of intention and joint
intention] can be applied in computational systems : : : ” [Levesque et al., 1990]). Informally,
BDI architectures state exactly how an agent chooses its actions based on its current set of
beliefs and its current set of desires (or goals). Intentions are used to link desires or goals (or
plans to achieve goals) to actions.

A good example of a computational expression of these ideas is Shoham’s AGENT-0
[Shoham, 1991]. It is not the only such expression (see for example at least [Halpern, 1986,
Genesereth et al., 1986, Rosenschein and Genesereth, 1985, Cohen and Levesque, 1990,
Zlotkin and Rosenschein, 1990, Gmytrasiewicz et al., 1991, Shoham, 1991, Jennings, 1993]),
but it is a clear one. The construction of new agent architectures is not the subject of this
dissertation; this example is just one to use as a reference point when I talk about how agents
interact with their environment later in the document. It is also useful to compare this with
the agent architecture used by the GPGP algorithm in Chapter 5.

Shoham’s AGENT-0 is really a simple interpreter based on the more general idea of
agent-oriented programming (AOP). AOP specializes the ideas of object-oriented programming
(in the Actor sense) so that objects become agents that have a formally defined mental state (in
this case, beliefs, commitments, and capabilities rather than beliefs, desires, and intentions) and
that send messages to one another with types inspired by speech act theory (inform, request,
offer, etc.). Commitments are a type of intention, and desires or goals come about from the
speech acts themselves (i.e., requests from other agents). AGENT-0 as a first pass explicitly
excludes more complex intentional stances, plans, or goals and desires.

An agent program consists of some initialization and a set of unordered commitment rules.
These commitment rules refer to the ‘current’ mental state of the agent (including current
incoming messages from other agents). The result of a commitment rule can be a commitment

36

to action at any future point in time. The underlying interpreter makes sure that the agents
honor their previous commitments.

The interpreter has only these two cycles: process the incoming messages (update local
beliefs and then update the commitments by running the commitment rules), and carrying
out the commitments already made for the current time. Information from other agents is
marked as being the beliefs of these other agents (thus achieving common belief given perfect
communication media); if it inconsistent with old beliefs then the old ones are removed
(AGENT-0 allows only simple single facts and their negations, allowing this to happen
fairly quickly). Rather than institute belief revision, AGENT-0 programs note important
preconditions as part of the capability clause of a commitment (so retracting a belief can in
fact cause a commitment to be no longer carried out because the agent is no longer ‘capable’ of
doing it). Such a retraction is always communicated to other agents.

2.4.5 Distributed AI and Distributed Processing

The problems and techniques of Distributed AI in purely computational systems are
somewhat related to those of the distributed computing community [Lampson et al., 1981,
Paker and Verjus, 1983, v. Bochmann, 1983, Chambers et al., 1984, Stankovic, 1984a]. The
differences arise from several sources: focus, approach, and most importantly scope. Much
distributed processing research is focused on the problems of data consistency and transaction
processing that are not the focus of DAI research because DAI research avoids the creation of
consistent global views. Thus one would never build a DAI system for handling bank transac-
tions, but one might build a DAI application to search for instances of fraud on top of such a
system. Many distributed processing approaches to control and scheduling issues use centralized
solutions—perfectly reasonable and efficient solutions in systems where the bottleneck is either
not a problem or can be mitigated by special hardware. Many distributed scheduling approaches
have assumed that tasks are computationally independent; newer scheduling work admits
the scheduling of task groups with precedence relationships (i.e., Spring [Zhao et al., 1987,
Stankovic and Ramamritham, 1987]). Some techniques, such as contracting, have been used
(independently) by researchers associated with both DAI and distributed computing systems
[Malone et al., 1983, Malone et al., 1986]. Most of all, the scope of distributed processing
work is different; often it can provide a structure for the efficient implementation of DAI
systems. In Section 5.7 I will briefly discuss an interface between scheduling and decision
making applicable even to hard real-time scheduling; also see [Garvey and Lesser, 1994,
Garvey et al., 1994].

2.4.5.1 Decentralized Control Theory

Classical and modern control theory is oriented mostly toward the control of continuous
physical processes. A single controller (agent) observes outputs from the environment (plant)
and sets inputs that along with the current environment state determine the new outputs.
Since control theory is the mathematical basis of most engineered systems, a large body of work
exists. One introduction for computer scientists is Dean and Wellman [Dean and Wellman,
1991]. Control theory has been used in AI control for continuous systems like robots. The
types of environments that we will model in this dissertation are in general not continuous
but discrete; less work has been done in discrete control theory. In this dissertation we are

37

interested in control in terms of choosing what activities to do and when to do them, which
is on the surface different from varying continuous plant input variables like the direction of
a robot’s travel or the temperature of a curing process. Of course the extremely general nature
of control theory allows it to express even these types of problems, but few of the standard
control theoretic solution techniques are available. For example, the discrete task environments
with complex interrelationships that we will model in this dissertation do not usually satisfy
the superposition and homogeneity properties required for the system to be linear. Another
difference is that the models we will discuss in this dissertation are more highly structured than
dynamical control theoretic models. Although it is far outside the scope of this dissertation, it
would be easier to develop automated tools for building TÆMS models than arbitrary dynamical
models of computer programs (as opposed to physical systems).

Extensions to control theory include stochastic control, where there is uncertainty in the
environment’s response to inputs and uncertainty in the controller’s (agent’s) observations of
the environmental outputs. The usual control theoretic approach to observational uncertainty
is the Kalman filter approach. This approach can be used to map from observations and a set
of linear dynamical (control theoretic) models to a choice of one of these models that is the
‘best’ (minimum mean-square error). It assumes evenly distributed Gaussian noise as it’s model
of uncertainty, which does not match all of the uncertainties in the systems we model—for
example, one would probably assume that the error in measuring durations of executable
methods would decrease over time.

Other extensions include decentralized control theory ([Šiljak, 1991], for example), where
there are multiple controllers (and plants). This situation is of course again somewhat closer
to the multi-agent systems described in this dissertation, although still focussed on continuous
linear systems. A final important point to make about the applicability of control theory is
that some computer algorithms are currently being developed in the AI community (“anytime
algorithms” [Boddy and Dean, 1989]) and systems communities [Liu et al., 1991] that have
continuous response characteristics, and thus some control theoretic techniques can be adapted
for them.

2.4.5.2 Team Theory

Team theory [Ho, 1980] is a formalization of a simple distributed control decision problem.
Stated informally, this problem is to find a decision rule for each of a set of agents that tells each
agent how to set each agent’s own ‘control’ given some set of potentially uncertain observations.
Furthermore, the decision rules should minimize the expected value of a predetermined loss
criteria based on what the agents do and the true state of nature.

The team theory formalization contains five components [Stankovic, 1984a]:

1. The state of nature: a vector of random variables with given distributions that represent
all the uncertainties that have some bearing on the problem

2. A set of observations on the state-of-nature vector for each agent, based on some function
of the true state-of-nature.

3. A set of decision variables or controls, one per decision maker

4. A decision rule (strategy) for each agent which chooses a value for an agent’s decision
variable given the agent’s observation vector.

38

5. A loss (or payoff) function based on the values of the agent’s decision variables and the
true state of nature.

This fairly simple, static decision problem (i.e. choosing the decision rule for each agent
so as to minimize the expected loss) is in general intractable. Some comparisons to TÆMS are
possible. The state of nature vector is similar to the TÆMS objective level representation of a
problem solving episode; however TÆMS enforces considerable structure on the representation
(i.e., task durations, qualities, and interrelationships). In TÆMS the objective representation
changes over time as the agents make decisions and take action—it is neither static like team
theory nor does the current state of nature come about only externally. The team theory “set
of observations” is somewhat similar to the TÆMS subjective level representation, except for the
addition of considerable structure as I have just indicated. As noted by Stankovic [Stankovic,
1984a], the set of observations made (subjective information) may in fact be a function of both
the true state-of-nature and the actions of other agents. The decision rules (control strategies)
in TÆMS are not about how to set some control variable, but rather are about what actions to
execute and when. The control strategies (like GPGP together with Garvey’s DTT scheduler)
are usually dynamic as well.

2.4.5.3 Distributed OS Job Scheduling

Within the realm of distributed computer systems, there has been a lot of research into
distributed control, but much of it is not very closely related to the types of problems discussed
in this dissertation. For example, work on static, a priori decomposition or task allocation
techniques for assigning tasks to processors will often not be applicable because there is too
much uncertainty in the structure of the task, or because there is no central authority who
can make such decisions (in the case of mixed human/computer systems or self-interested
collections of agents).7 Work on tightly coupled distributed systems (i.e., shared memory
multiprocessors) is also outside the scope of this dissertation, although we have had some success
using early versions of the work described in this dissertation to schedule blackboard system
knowledge source instantiations on true parallel shared memory processors [Decker et al., 1991,
Decker et al., 1993a].

There has been work in distributed computing on the scheduling of jobs in loosely coupled
distributed systems where a priori fixed decomposition is impossible, job arrivals are stochastic,
information about the jobs is uncertain, there is no central authority, etc. The problem is
computationally difficult enough to require heuristic solutions (optimal solutions, even when
optimality criteria can be defined, are not feasible (see the previous section)). Much of this
work has similarities to the distributed scheduling approach of GPGP plus a local scheduler
presented in Chapters 5 and 6. However, most decentralized job scheduling approaches make
different assumptions than GPGP and operate at a lower level of detail.

For example, Stankovic [Stankovic, 1984b] describes three adaptive decentralized job
scheduling algorithms. If we equate a TÆMS task group with a job, these algorithms differ from
GPGP family algorithms in several ways. The algorithms are constrained to operate without
any a priori knowledge about the jobs (no knowledge about duration or resource usage). Once
a job is activated, a separate process scheduler handles the job at a processing node, and the

7We do discuss one static task decomposition in Chapter 4.

39

job scheduler is no longer involved. The jobs are viewed by the scheduler as independent.
Each of the algorithms is very simple an efficient, which is important since they are to be
used at the operating system level. Similarly to GPGP-style algorithms, jobs may arrive at
different rates at different nodes, and the nodes communicate observations about how busy
they are (observations that are out of date when they are received). Communication between
nodes takes non-negligible amounts of time. Stankovic [Stankovic, 1985] also has discussed
decentralized job scheduling using a Bayesian decision theoretic approach.

Work by Cheng, et al. [Cheng et al., 1986] on dynamic, heuristic real-time scheduling has
more similarities. Like the GPGP+DTT approach, Cheng’s approach deals with groups of tasks
(really executable methods in TÆMS terminology) that are interrelated. In Cheng’s case these
are precedence relationships only. All tasks in a group share a deadline. Tasks in a single group
can be divided into clusters that can in turn be executed on different processors. Knowledge of
a task group is not available until the task group arrives at some node in the system. Differences
between this work and the GPGP+DTT approach include that all (or none) of the tasks in a
group must be scheduled, that tasks can execute at any node (homogeneity), and that bidding
is used to decide where to transfer task group subclusters.

2.4.5.4 Game Theory

Game theory [Luce and Raiffa, 1958, Rasmusen, 1989] has been used to model decision-
making situations faced by interacting agents and to show the existence of certain rational
strategies for decision making. The model has been used in distributed AI to show how
systems of rational, self-interested agents can, in fact, “cooperate” without such cooperation
being designed into them beforehand (the “benevolent agent assumption”) [Rosenschein and
Genesereth, 1984, Rosenschein and Genesereth, 1985, Genesereth et al., 1986, Rosenschein
and Breese, 1989].

This early work represented a decision-making situation as a payoff matrix [Rapoport and
Guyer, 1966] showing the utility to be gained by each agent for each possible choice of action.
Such a simple representation allows strong results (including careful definitions of what the
term “rational” might mean with respect to computational agents [Rosenschein and Genesereth,
1985]), but only under fairly restricted conditions. First, the payoff matrix represents only a
single decision. Secondly, most aspects of the problem, such as what choices are possible and
the utility of all of the outcomes, are known a priori by all the agents involved.

We can of course represent such simple situations in TÆMS. For example, Figure 2.1
shows a representation of the traditional Prisoner’s Dilemma problem. Two agents suspected
of a crime are held in separate cells by the authorities. If both agents “cooperate” with one
another (keep silent), the authorities can only charge them with a minor crime. If both “defect”
(confess), the authorities charge them both. If one cooperates and the other defects, the defector
is set free and the other charged. We represent the agents’ individual utilities by /tems/ task
qualities. The initial qualities (q0) may change due to interactions between choices as shown
in the figure. In general, given the restricted conditions above (that there is only one decision
to be made, and that all agents know everything about the decision at hand), it will always be
possible to create a payoff matrix from a TÆMS task structure.8 However, this dissertation will

8Thus some styles of deal-making and negotiation, represented in the game theory research, could be easily
added to the GPGP set of coordination mechanisms.

40

focus on environments that consist of schedulable sequences of actions and uncertainty about
the local and non-local effects of those actions.

A
Defects

q0=5

A

B
Defects

q0=5

A
Cooperates

q0=3

B
Cooperates

q0=3

B

method executable
by agent A only

method executable
by agent B only

max task with quality
accrual function max

subtask relationship

q=0

q=0

q=1

q=1

Figure 2.1. Secret agents A and B are captured and must decide whether to “Cooperate” with
one another, or to “Defect”.

Work has been done on relaxing some of these constraints. For example, Axelrod [Axelrod,
1984] talks about the effect of a continuous sequence of games on solutions to the Prisoner’s
Dilemma problem (i.e., the evolution of a “tit-for-tat” strategy). Kadane and Larkey [Kadane
and Larkey, 1982] discuss the addition of subjective probability. Rosenschein’s early and highly
influential work has led to more recent results in distributed AI. Rosenschein and Breese have
experimented with probabilistic representations of other agents’ decisions [Rosenschein and
Breese, 1989]. Gmytrasiewicz [Gmytrasiewicz et al., 1991, Durfee et al., 1993] has extended
the model to recursively model the beliefs of other agents (the payoff matrix that A believes, the
matrix that A believes that B believes, the matrix that A believes that B believes that A believes,
etc.)

Still, the basic form of the model which represents a single decision can only easily
represent a certain class of problems. Rosenschein and his students have begun working in
more complex and general domains. Rosenschein and Zlotkin have coined three terms for
these increasingly complex domains: task oriented domains, state-oriented domains, and worth
oriented domains. Task oriented domains are those where there is a bundle of non-conflicting

41

jobs to be done by a set of homogeneous agents (e.g. postal delivery) [Zlotkin and Rosenschein,
1990, Zlotkin and Rosenschein, 1991]. State oriented domains have specific goals that the
agents wish to achieve, and actions may interfere with one another (e.g. blocks world planning)
[Ephrati and Rosenschein, 1994]. Worth oriented domains have some utility function for
world states, so that trade-offs are possible [Goldman and Rosenschein, 1993]. While we
have not yet worked on multi-agent planning and negotiation, TÆMS can obviously represent
worth-oriented environments and by inclusion the simpler types as well.

2.5 DAI Modeling

Up until very recently, there have been absolutely no analyses of distributed AI systems
that have the generality of those in this dissertation, which were produced by our methodology.
The sole exception is Sandip Sen’s work on distributed meeting scheduling [Sen and Durfee,
1994]. This work was done at about the same time as my work. Sen analyzed the performance
(success ratio in scheduling n meetings) and efficiency (cost of communication and total
time to schedule) of several meeting scheduling heuristics. These heuristics included different
announcement strategies, bidding strategies, and meeting confirmation strategies. Sen also
uses a probabilistic view of the environment, in this case the current schedules of two agents
for a fixed time period, to compute formulas for the success ratio and total time. Sen verifies
these using a simulation of two agents. Unlike our work, Sen actually runs the two agents
exhaustively on every possible starting condition (‘episode’, in our terminology).

2.6 Summary

The form of the TÆMS framework that I am about to describe in this dissertation
is more detailed in structure than many organizational-theoretic models of organizational
environments, such as Thompson’s notions of pooled, sequential, and reciprocal processes
[Thompson, 1967], Burton and Obel’s linear programs [Burton and Obel, 1984], or Malone’s
queuing models [Malone, 1987], but is influenced by them, and by the importance of
environmental uncertainty, variance, and dependency that appear in contingency-theoretic
and open systems views of organizations [Lawrence and Lorsch, 1967, Galbraith, 1977,
Stinchcombe, 1990, Scott, 1987].

I started this chapter telling you that building task environment models would allow us
to say much more precise things about systems, and might allow us to design coordination
algorithms that are appropriate for the task environment at hand. I also told you that the form
of that task environment model was inspired by social conceptions of task environments as
well as DAI research. The bulk of the chapter then discussed these social conceptions: first I
discussed coordination behavior as conceived by four different schools of thought, and secondly
I discussed how the environment has an impact on coordination behavior, again from several
points of view. The chapter concluded with a discussion of the DAI view of coordination
behaviors and several example systems.

In the next chapter I will introduce and describe in detail TÆMS, which is my modeling
framework for representing and reasoning about task environments. The following chapters
will show TÆMS being used for mathematical analysis in a simplified distributed sensor network,
and for simulation in an implementation of Generalized Partial Global Planning.

42

C H A P T E R 3

A FRAMEWORK FOR MODELING TASK ENVIRONMENTS

[and his students] : : : created a world of the mind, of the intimate imagination, which
is as real in its way as any actual country on the map. Sir Karl Popper, in one of his
most important papers, calls it ‘the third world,’ or ‘world three.’ The first world is the
objective world of things. The second world is my inner, subjective world. But, says
Popper, there’s a third world, the world of objective contents of thoughts. Teilhard de
Chardin calls this third world the noosphere, that is, the world of the mind.

— Sampled from an unknown source by The Orb, u.f.orb:“o.o.b.e”, 1992

This chapter will discuss the characterization of the features, and model of the processes,
in computationally intensive task environments called TÆMS (Task Analysis, Environment
Modeling, and Simulation) [Decker and Lesser, 1993d, Decker and Lesser, 1993e, Decker,
1994c]. No characterization currently exists that formally captures the range of features,
processes, and especially interrelationships that occur in computationally intensive AI task
environments. In the simplest terms, a TÆMS model of a task environment specifies what actions
are available to agents and how those actions relate to one another and to the performance of
the system as a whole. The TÆMS framework is useful not only for the study of coordination
and other related CDPS behaviors (e.g., negotiation), but also for the study of the planning
and scheduling of computation in realistic real-time or parallel task environments [Garvey et
al., 1993, Garvey and Lesser, 1993].

The reason we have created the TÆMS framework is rooted in the desire to produce
general theories in AI [Cohen, 1991]. Consider the difficulties facing an experimenter asking
under what environmental conditions a particular local scheduler produces acceptable results,
or when the overhead associated with a certain coordination algorithm is acceptable given
the frequency of particular subtask interrelationships. At the very least, our framework
provides a characterization of environmental features and a concrete, meaningful language
with which to state correlations, causal explanations, and other forms of theories. The clear
specification of a computational task environment also allows the use of very strong analytic
or experimental methodologies, including paired-response studies, ablation experiments, and
parameter optimization. TÆMS exists as both a language for stating general hypotheses or
theories and as a system for simulation. The simulator is written in standard, object-oriented
Common Lisp (CLOS) for any platform. The simulator also supports the graphical display
of generated task structures, agent actions, and statistical data collection on the TI Explorer
and DEC Alpha, via CLIM (Common Lisp Interface Manager) and CLIP (Common Lisp
Instrumentation Package [Westbrook et al., 1994]).

This chapter will describe TÆMS in detail. First I will give a brief overview, then introduce
the core modeling framework. Next, I will introduce the DSN (Distributed Sensor Network)

44

environment that I will use for the examples in the later chapters (and which I will analyze in
Chapter 4). Section 3.4 will then describe the language for building objective models of task
structure instances in an environment. Section 3.5 will describe the way that TÆMS models the
subjective views that agents have about the objective task structure instances in the previous
chapter. Finally, Section 3.6 will briefly describe the ways that TÆMS could model the processes
of statistically generating objective and subjective task structures in an environment. That
section will also give examples of models outside of the DSN domain, such as hospital patient
scheduling.

3.1 General Framework

The principle purpose of a TÆMS model is to analyze, explain, or predict the performance of
a system or some component. While TÆMS does not establish particular performance criteria,
it focuses on providing two kinds of performance information: the temporal intervals of task
executions, and the quality of the execution or its result. Quality is an intentionally vaguely-
defined term that must be instantiated for a particular environment and set of performance
criteria. Examples of quality measures include the precision, belief, or completeness of a task
result. We will assume that quality is a single numeric term with an absolute scale, although
the algebra can be extended to vector terms. In a computationally intensive AI system, several
quantities—the quality produced by executing a task, the time taken to perform that task, the
time when a task can be started, its deadline, and whether the task is necessary at all—are
arbitrarily affected by the execution of other tasks. In real-time problem solving, alternate
task execution methods may be available that trade-off time for quality. Agents do not have
unlimited access to the environment; what an agent believes and what is really there may be
different.

From the point of view of TÆMS an agent is a locus of belief and action. An agent
may “know” or “believe” in the existence of a certain task structure; the agent has a state. A
computational agent might have a “belief database” where it stores information about the task
structure.1 An agent may also execute methods that are part of this task structure it believes
—this is called a “method execution action”. For example, Agent 1 might gain knowledge of
the task structure in a certain problem solving episode. That task structure might contain an
executable method M1. If Agent 1 executes this method, it will take some amount of time (as
specified in the model) and the agent will accrue some amount of quality (as specified in the
model). The action may have non-local effects on the actions (past, current, and future) of
other agents in the environment.

The model of environmental and task characteristics proposed has three levels: generative,
objective, and subjective. The generative level describes the statistical characteristics required to
generate the objective and subjective episodes in an environment; it is a workload generator.
A generative level model consists of a description of the generative processes or distributions
from which the range of alternative problem instances can be derived, and is used to study

1For the rest of this dissertation, we will usually refer to information the agent has as “belief ” and not
“knowledge”, since agents will often have information in their databases that is false (but believed to be true).
This is a very common epistemological distinction between knowledge and belief [Halpern and Moses, 1985,
Halpern, 1986]. Since in almost any modal logic of knowledge and belief Knows(x)! Believes(x), we don’t lose
any generality.

45

performance over a range of problems in an environment, avoiding single-instance examples.
The objective level describes the essential, ‘real’ task structure of an episode (a particular
problem-solving situation or instance) over time. It is roughly equivalent to a formal description
of a single problem-solving situation such as those presented in [Durfee and Lesser, 1991],
without the information about particular agents. The subjective level describes the agent’s local
view of the objective problem-solving situation over time (e.g., how much does an agent know
about what is really going on, and how much does it cost to find out—where the uncertainties
are from the agent’s point of view). The subjective level is essential for evaluating control
algorithms, because agents must make decisions with only subjective information about the
current episode.2 In the rest of this chapter, we first describe the objective level, because the other
two are linked to its definitions (i.e., generating objective task structures, and determining an
agent’s subjective view of an objective task structure). The objective level is the core of TÆMS.

3.2 TÆMS model summary

This section will lay out the mathematical details of the model without any examples.
Readers who would prefer to be introduced to TÆMS more slowly, through the use of a DSN
example, should skip ahead to the next section. All of the information summarized in this
section is repeated later in the chapter. The following description is top-down, starting with the
environment and ending with what the agent perceives. Thus we do not define a coordination
problem until the final subsection. TÆMS models are discrete state-based models, where the
state of all agents in the system at time t+1 is computed from their state at all previous times.

An environment E is a generator function that takes and arbitrary set of parameters
(including the set of agents), and produces episodes E. This is done according to the generative
model for the specific environment; several examples, including a random environment
generator, are given later in this chapter. A continuous environment produces episodes with
some frequency (a parameter), a discrete environment produces a new episode upon each
invocation.

3.2.1 Objective task structure summary

We will now describe the objective task structure of a problem-solving episode. An episode
E consists of a set of task groups T ; E = hT1;T2; : : : ;Tni. Each task group has an arrival time
Ar(T), and a deadline D(T). A task group represents a set of computationally related actions.3

A task group is represented by a directed acyclic graph. The nodes of the graph are called tasks
T . One task is denoted the root task, and is usually simply indicated by the symbol for the
entire task group, T . Tasks that have no children are called executable methods, or just methods
M for short. Tasks that do have children, but that are not the root task, are straightforwardly
called subtasks. The structure of a task group is meant to reflect the problem’s task structure.

The edges of this graph form the subtask relationship. Task or task group quality at a
given time (Q(T; t)) is based on the subtask relationship. This quality function is constructed

2In organizational theoretic terms, subjective perception can be used to predict agent actions or outputs, but
unperceived, objective environmental characteristics can still affect performance (or outcomes) [Scott, 1987].

3For example, if the environment is the USTravel business in the UMass Campus Center, an episode might
consist of two task groups: one to handle the Westbrook’s trip to Disney World, and another task group to handle
everything related to Garvey’s trip to Seattle.

46

recursively. Formally, the subtask relationship is defined as subtask(T;T; Q), where T is the
set of all direct subtasks of T and Q is a quality function Q(T; t) : [tasks� times] 7! [quality]
that returns the quality associated with T at time t. The semantics of a particular environment
are modeled by the appropriate choice of the quality function Q (e.g., minimum, maximum,
summation, or the arithmetic mean). In particular, we will often write of the quality achieved
at a task group at time t, Q(T ; t), meaning the current quality at the root task.

Executable methods represent domain actions, like executing a blackboard knowledge
source, running an instantiated plan, or executing a piece of code with its data.4 Executable
methods have several functions defined on them. q(M; t) is the current maximum quality that
can be achieved by executing M at time t for its duration d(M; t). d(M; t) is the current
duration of method M at time t. Progress(M; t) is the number of time units spent executing
M . The definitions of q(M; t), d(M; t), and Progress(M; t) are fixed by TÆMS. Q(M; t) is
the quality at M at time t. This function is available for modeling a particular environment,
but it is constrained to obey the identity:

Q(M; t) = q(M; t) if [Progress(M; t) = d(M; t)] ^ [Finish(M) � D(M)]

(i.e. the quality is the maximum quality if the executable method was completed before its
deadline).

Any task T containing a method that starts executing before the execution of another
method M finishes may potentially affect M ’s execution through a non-local effect e. We write
this relation (a labeled arc in the task structure graph) as nle(T;M; e; p1; p2; : : :), where the
p’s are parameters specific to a class of effects. There are precisely two possible outcomes of
the application of a non-local effect on M under our model: duration effects where d(M; t)
(duration) is changed and quality effects where q(M; t) (maximum quality) is changed. An
effect class e is thus a function e(T;M; t; d; q; p1; p2; : : :) : [task�method�time�duration�
quality� parameter 1� parameter 2� : : :] 7! [duration� quality].

Computing d(M; t) and q(M; t). Each method has an initial maximum quality q0(M)
and duration d0(M) so we define q(M; 0) = q0(M) and d(M; 0) = d0(M). If there is only
one non-local effect withM as a consequentnle(T;M; e; p1; p2; : : :), then [d(M; t);q(M; t)]
e(T;M; t;d(M; t � 1);q(M; t � 1); p1; p2; : : :). If there is more than one non-local effect,
then the effects are applied one after the other in an order specified in the model. We will
define sixteen example non-local effects in this chapter.

3.2.2 The subjective mapping and agent actions

We define a subjective mapping ' : [(x 2 E) �A� t] 7! x0 that maps from elements in
the current episode to agent A’s subjective view of those elements. The mapping may be empty
for an element. This is the core of the subjective level model. Later in the chapter we discuss a
simple default definition for '.5

Agents can perform three types of actions: they can execute methods, they can commu-
nicate with one another, and they can perform “information gathering actions”. All of these
actions take some amount of time as specified in the model. For example, executing the method

4An executable method is always an action with context—thus “X-ray Nagi’s foot” is an executable method,
while “X-ray” is not.

5One obvious extension is to make ' return a set of elements, not just one.

47

M at time t takes d(M; t), as we defined earlier. The main or “local” effect of this execution is
the production of some amount of quality at that node in the task structure (Q(M; t)). This
may also change the quality at the task group root (Q(T ; t)). Executing a method may also have
secondary, or non-local effects, as defined earlier. A method might enable, hinder, facilitate,
etc., other methods in the task structure by changing their current duration and maximum
quality. Method execution actions are always part of the environment being modeled.

Communication actions and information gathering actions can be part of the environment
or can be meta-actions. Agents can communicate the results of any task. We define a special
quality function, Qavail(T;A; t) that returns the maximum of the quality available locally
(Q(T; t)) and the quality that has been communicated to the agent. Communication takes
some fixed amount of time between agents as specified in the model.6

Let �tA denote agent A’s set of beliefs at time t (the agent’s belief database). External
information gets into the agent’s belief database via an information gathering action. The
default information gathering action places all communications that have arrived in the belief
database, and places the subjective version ('(x;A; t)) of any newly-arrived elements of the
current episode in the belief database.

3.2.3 Coordination Problems

We can define a performance measure P(E) for the system (or for an agent) that is
a function of the episode. The default is the sum of the task group qualities (P(E) =P

T 2EQ(T ;D(T))). We can also define a control function (alternately, a “strategy”, decision
rule, or control policy) for each agent that given the agent’s current beliefs and the time will
return the action that the agent should take at that time. One statement of a cooperative
coordinated control problem (similar in spirit to the specification of a team theory decision
problem) is then to find a set of such control functions, one for each agent in an environment, so
as to attempt to maximize the expected performance measure for the entire system of agents. A
similar problem studied in DAI is the multi-agent self-interested coordination problem, where
we choose an agent’s control function so as to attempt to maximize only it’s own performance
(with the realization that other agents are doing likewise).

To summarize, using the TÆMS framework involves building a generative model of an
environment that produces episodes that in turn comprise objective task structures. A subjective
model describes a mapping from these objective structures to the information available to
the agents (if the agents execute an information gathering action). All of this together is the
description of the environment that can be used to design and analyze coordination mechanisms.
The next section will introduce our in-depth example environment, a distributed sensor network
environment. Chapter 4 will analyze this environment and two control functions in detail.
The rest of this chapter will focus first on the specification of objective task structures—the
most complex and fully developed part of TÆMS. Then this chapter will discuss subjective
and generative models, and give several short examples from many different problem solving
environments.

6Obvious extensions include extra complexity in the communication subnet model: lost messages, random
variable delays, connectivity delays, etc.

48

3.3 Distributed Sensor Network Example

Before we discuss formally the basic components of an objective model, we turn to an
example environment for which we will build a model using the TÆMS framework. This example
grows out of the set of single instance examples of distributed sensor network (DSN) problems
presented in [Durfee et al., 1987]. The authors of that paper compared the performance
of several different coordination algorithms on these examples, and concluded that no one
algorithm was always the best—not a very surprising result and one that can be viewed as the
central tenet of contingency theory. This is the classic type of result that the TÆMS framework
was created to address—we will explain this result, and better yet, predict which algorithm will
do the best in each situation. In Chapter 4 we do this by extending the analysis to take into
account a statistical view of the environmental characteristics. The level of detail to which
you build a model in TÆMS will depend on the question you wish to answer—here we wish
to identify the characteristics of the DSN environment, or the organization of the agents, that
cause one algorithm to outperform another.

In a DSN problem (as you may recall from Chapter 1), the movements of several
independent vehicles will be detected over a period of time by one or more distinct sensors,where
each sensor is associated with an agent. The performance of agents in such an environment
is based on how long it takes them to create complete vehicle tracks, including the cost of
communication. The organizational structure of the agents will imply the portions of each
vehicle track that are sensed by each agent.

Our task environment model of naturally distributed problems assumes that several
independent groups of tasks arrive at multiple locations over a period of time (the episode). For
example, in a distributed sensor network (DSN) episode the movements of several independent
vehicles will be detected over a period of time by one or more distinct sensors, where each sensor
is associated with an agent. The performance of agents in such an environment will be based
on how long it takes them to process all the data into complete vehicle tracks, including the
cost of communicating sensor data, intermediate task results, and meta-level communication,
if any. The organizational structure of the agents will imply which subsets of which task groups
are available to which agents and at what cost. For example, if DSN agents have overlapping
sensors, multiple agents can potentially work on data in the overlapping area (from its own
sensor) without any extra communication costs. We make several simplifying assumptions in
this DSN model: that the agents are homogeneous (have the same capabilities with respect to
receivingdata, communicating, and processing tasks), that the agents are cooperative (interested
in maximizing the system performance over maximizing their individual performance), that
the data for each episode is available simultaneously to all agents as specified by their initial
organization, and that there are only structural (precedence) constraints within the subtasks of
each task group.7

Any single episode can be specified by listing the task groups, and what part of each
task group was available to which agents, given the organizational structure. Our analyses
in Chapter 4 will be based on the statistical properties of episodes in an environment, not
any single instance of an episode. The properties of the episodes in a DSN environment are
summarized by the tuple D =< A; �; r; o;T (l) > where A specifies the variable number of

7In general there are usually more complex interrelationships between subtasks that affect scheduling decisions,
such as facilitation.

49

agents, � the expected number of task groups, r and o specify the variable structural portion of
the organization by the range of each agent and the overlap between agents, and T (l) specifies
a template for the structure of each task group. Our DSN model will represent each vehicle
track as a separate task group, thus T (l) corresponds to a vehicle track of length l. DSN agent
sensors are assumed to be square, and are arranged as a square. The range parameter specifies
the physical range of the agent’s sensor (the width of a sensed square). The overlap parameter
specifies how wide the overlapping area sensed by two nearby agents is (0 � o � r). Figure 3.1
shows an example. Later sections will describe in detail how the task group structures are
specified.

r=13

o=8

A=4

r=5

o=4

A=196

r=11

o=4

A=4

Figure 3.1. Examples of 18 � 18 DSN organizations

If the summary of a DSN environment is the tuple D =< A; �; r; o;T (l) >, then a par-
ticular episode in this environment can be described by the tupleD =< T1(l1); : : : ;Tn(ln) >,
where n is a random variable generated from a Poisson distribution with location parameter
(central tendency) of �. The li are generated by a more complex process. For each track/task
group, two random points on two different sides of the bounding box around the agents’ sensors
are picked and a line is computed between them. Chapter 4 will analyze this distribution in
some detail. We have just described how to generate an episode D in any DSN environment
D, by generating values for n and l1 : : : ln. This is the generative model.

In our objective-level model of DSN problem instances, each vehicle track is modeled
as a task group Ti. Several task groups (vehicle tracks) may occur simultaneously in a single
problem solving episode. The simplest objective model is that each task group Ti is associated
with a track of length li and has the following objective structure, based on a simplified version
of the DVMT:

� (li) vehicle location methods (VLM) that represent processing raw signal data at a single
location resulting in a single vehicle location hypothesis

� (li � 1) vehicle tracking methods (VTM) that represent short tracks connecting the
results of the VLM at time t with the results of the VLM at time t+ 1

� One vehicle track completion method (VCM) that represents merging all the VTMs
together into a complete vehicle track hypothesis

Non-local effects, which relate the executions of tasks to one another, exist as shown in
Figure 3.2—two VLMs enable each VTM, and all VTMs enable the lone VCM. This

50

structure is fairly common in many other environments, where a large amount of detailed work
needs to be done, the results of which are collected at a single location or agent and processed
again (integrated), and so on up a hierarchy. Coordination is used not only to accomplish the
necessary transfer of results from one agent to another, but to avoid redundant work on the
part of agents with overlapping capabilities, and also to potentially balance the workloads.

VTM

VCM

VLM
VLM

VLM
VLM

T
min

VTM

VTM

T
minT

min

T
min

T
min

method (executable task)

task with quality
accrual function min

subtask relationship

enables relationship

Figure 3.2. Objective task structure associated with a single vehicle track.

We have used this model to develop expressions for the expected value and distribution
of the time of termination of a set of agents in any arbitrary DSN environment that has a
static organizational structure and coordination algorithm (Chapter 4). We have also used
this model to analyze a dynamic, one-shot reorganization algorithm (and have shown when
the extra overhead is worthwhile versus the static algorithm. In each case we can predict the
effects of adding more agents, changing the relative cost of communication and computation,
and changing how the agents are organized (in the range and overlap of their capabilities).
These results were achieved by direct mathematical analysis of the model and verified through
simulation in TÆMS. We will describe these results later (Chapter 4), after discussing more
details about the the objective, subjective, and generative levels in this chapter.

3.4 TÆMS Objective Level Models

The objective level describes the essential structure of a particular problem-solving situation
or instance over time. It focuses on how task interrelationships dynamically affect the quality
and duration of each task. The basic idea is that task groups (problem instances) appear in
an episode at some frequency, and induce tasks T to be executed by the agents under study.

51

Task groups are computationally independent of one another, but tasks within a single task
group have interrelationships. Task groups and tasks may have deadlines D(T). The quality of
the execution or result of each task influences the quality of the task group result Q(T; t) in a
formally-defined way (Section 3.4.1). These quantities can be used to evaluate the performance
of a system.

An individual task that has no subtasks is called a methodM and is the smallest schedulable
chunk of work (though some scheduling algorithms will allow some methods to be preempted,
and some schedulers will schedule at multiple levels of abstraction). There may be more than
one method to accomplish a task, and each method will take some amount of time and produce
a result of some quality. Quality of an agent’s performance on an individual task is a function
of the timing and choice of agent actions (‘local effects’), and possibly other (previous or future)
task executions (‘non-local effects’). When local or non-local effects exist between tasks that
are known by more than one agent, we call them coordination relationships. The basic purpose
of the objective model is to formally specify how the execution and timing of tasks affect the
measure of quality.

3.4.1 Local Effects: The Subtask Relationship

Task or task group quality (Q(T; t)) is based on the subtask relationship. This quality
function is constructed recursively—each task group consists of tasks, each of which consists of
subtasks, etc.—until individual executable tasks (methods) are reached. Formally, the subtask
relationship is defined as subtask(T;T; Q), whereT is the set of all direct subtasks of T and
Q is a quality function Q(T; t) : [tasks� times] 7! [quality] that returns the quality associated
with T at time t. In a valid model, the directed graph induced by this relationship is acyclic
(no task has itself for a direct or indirect subtask). A task with no subtasks is called a method.
Methods represent computation or physical actions; quality accrual at methods is described in
the next section.

The semantics of a particular environment are modeled by the appropriate choice of the
quality function Q (e.g., minimum, maximum, summation, or the arithmetic mean). For
example, if subtask(T1;T; Qmin), then Q(T1; t) = Qmin(T1; t) = minT2TQ(T; t). In this
case the quality that is associated with task T1 is the minimum quality associated with any of
its subtasks. The four most popular non-method task quality combination functions are the
following:

Minimum. The quality that is generated is the minimum subtask value. This is sometimes
referred to as an AND (but see also Average below) because the quality of the parent remains at
a minimum until every subtask has been completed. Often, this is used when all subtasks of
the task must be completed before any value is generated (by making each method have quality
0 before it is executed).

Qmin(T1; t) = min
T2T

Q(T; t) (3.1)

Maximum. This is sometimes referred to as an XOR or OR (but see also Sum below)
because only one subtask needs to be executed to gain quality at the parent task. Often this is
used to model the situation where only one of the subtasks must be completed to receive value.
One can construct situations where completing additional subtasks may generate additional
value. For example, if two tasks have potential maximum qualities of 10 and 5, and the agent

52

achieves the 5, the agent may at a later time come back and achieve the 10 (adding 5 to the
quality of the parent).

Qmax(T1; t) = max
T2T

Q(T; t) (3.2)

Sum. This means that the quality generated for a task is the sum of the qualities generated
by its subtasks. Another common meaning for OR.

Q�(T1; t) =
X
T2T

Q(T; t) (3.3)

Average. This means that the quality generated for a task is the mean of the quality
generated by its subtasks. This is what the DVMT considered an AND.

Qavg(T1; t) =

P
T2TQ(T; t)

jTj (3.4)

Other functions may be used for modeling particular environments.8 Another possible
function is one that represents diminishing returns to a fixed maximum, similar to the linear
Qlin function defined in the next section, or various convex curves such as 1

1�et
. Functions like

sum and average indicate the possibility that not all tasks in the environment need to be carried
out. Computational task structures may represent search processes where agents are satisficing,
not optimizing. We have now described how quality is modeled at tasks that have subtasks,
and now turn our attention to methods.

3.4.2 Local Effects: Method Quality

Each method M at a time t will potentially produce (if executed by an agent, see
Section 3.5.3.1) some maximum quality q(M; t) after some amount of elapsed time d(M; t)
(we will defer any further definition of the functions d and q until we discuss non-local effects
in Section 3.4.3). The execution of methods is interruptible, and if multiple methods for a
single task are available, the agent may switch between them (typically, alternative methods
tradeoff time and quality). We model the effect of interruptions, if any, and the reuse of partial
results as non-local effects (see Section 3.4.3).

8The set of possible aggregation operators include three basic classes: conjunctions, disjunctions, and trade-offs.
Dubois and Prade have shown that the Triangular norms (including min), averaging operators (including mean),
and Triangular conorms (including max and summation) are the most general families of binary functions that
respectively satisfy the semantic requirements of the three basic classes of aggregation operators [Bonissone and
Decker, 1986, Dubois and Prade, 1984].

53

Let Progress(M; t) be the current amount of progress on the execution of M . If M were
not interruptible and Start(M) and Finish(M) were the execution start time and finish time,
respectively, of M , then:

Progress(M; t) =

8><
>:

0 t � Start(M)
t � Start(M) Start(M) < t < Finish(M)
Finish(M)� Start(M) t � Finish(M)

We typically model the quality produced by a method Q(M; t) using a linear growth function
Qlin:

Qlin(M; t) =

(
Progress(M;t)

d(M;t) (q(M; t)) Progress(M; t) < d(M; t)

q(M; t) Progress(M; t) � d(M; t)

Other models (besides linear quality functions) have been proposed and are used, such as
concave quality functions (must execute most of a task before quality begins to accumulate),
convex quality functions (most quality is achieved early on in a method, and only small increases
occur later), and ‘mandatory and optional parts’ quality functions [Liu et al., 1991]. The desired
Q(M; t) can be easily defined for any of these.

As an example of the power of this representation, we consider the two main schools of
thought on quality accumulation: the anytime algorithm camp [Boddy and Dean, 1989] and
the design-to-time (approximate processing) camp[Decker et al., 1990, Garvey and Lesser,
1993]. We can represent their ideas succinctly; in the anytime algorithm model partial results
are always available,9 as in the definition of Qlin(M; t) above, while in the design-to-time
model results are not available (quality does not accrue) until the task is complete, as in the
definition of QDTT(M; t):

QDTT(M; t) =

(
0 Progress(M; t) < d(M; t)
q(M; t) Progress(M; t) � d(M; t)

Another difference between design-to-time (DTT) and other approaches will show up in our
generative and subjective additions to this model—DTT does not assume that Q(M; t) is fixed
and known, but rather that it is an estimator for the actual method response. Finally, deadlines
can be associated with task groups or individual tasks, and quality accumulation defined such
that any work done on a task after its deadline does not increase quality.

3.4.3 Non-local Effects

Any task T containing a method that starts executing before the execution of another
method M finishes may potentially affect M ’s execution through a non-local effect e. We write
this relation nle(T;M; e; p1; p2; : : :), where the p’s are parameters specific to a class of effects.
There are precisely two possible outcomes of the application of a non-local effect on M under
our model:

duration effects: where d(M; t) (duration) is changed

quality effects: where q(M; t) (maximum quality) is changed.

9In Boddy’s paper, the assumption is made that Q(M; t) has monotonically decreasing gain.

54

An effect class e is thus a function e(T;M; t; d; q; p1; p2; : : :) : [task � method � time �
duration� quality� parameter 1� parameter 2� : : :] 7! [duration� quality].

The amount and direction of an effect is dependent on the relative timing of the
method executions, the quality of the effect’s antecedent task, and whether information was
communicated between the agents executing the methods (in multi-agent models). Some
effects are continuous, depending on the current quality of the effect’s antecedent Q(T; t).
Some effects are triggered by a rising edge of quality past a threshold; for these effects we
define the helper function �(T; �) that returns the earliest time when the quality surpasses the
threshold: �(T; �) = min(t) s.t. Q(T; t) > �.

Communication. Some effects depend on the availability of information to an agent. We
indicate the communication of information at time t about task Ta to an agent A with a delay
of �t by comm(Ta; A; t; �t). There are many models of communication channels that we could
take for a communication submodel; since it is not our primary concern we use a simple model
with one parameter, the time delay �t.10 For defining effects that depend on the availability of
information, we define the helper function Qavail(T; t;A) that represents the quality of a task
T ‘available’ to agent A at time t. If T was executed at A, Qavail(T; t;A) = Q(T; t). If T was
executed (or is being executed) by another agent, then the ‘available’ quality is calculated from
the last communication about T received at agent A prior to time t.

Computing d(M; t) and q(M; t). Each method has an initial maximum quality q0(M)
and duration d0(M) so we define q(M; 0) = q0(M) and d(M; 0) = d0(M). If there is only
one non-local effect withM as a consequentnle(T;M; e; p1; p2; : : :), then [d(M; t);q(M; t)]
e(T;M; t;d(M; t � 1);q(M; t � 1); p1; p2; : : :). If there is more than one non-local effect,
then the effects are applied one after the other in an order specified in the model.

The maximum quality function q can also be defined for tasks or task groups. The precise
definition depends on the set of quality accrual functions in the model. Using the four quality
accrual functions we have already discussed (minimum, maximum, summation, mean) the
definition of maximum quality for a non-method task q(T; t) is as follows:

q(T; t) =

8>>>><
>>>>:

maxx2T q(x; t) if subtask(T;T; Qmax)
minx2T q(x; t) if subtask(T;T; Qmin)P

x2T q(x; t) if subtask(T;T; Q�)P
x2T

q(x;t)

jTj
if subtask(T;T; Qmean)

The current duration function d has no meaningful objective definition when applied to
non-method tasks. “Maximum duration” could be defined, but is generally a useless concept. A
more useful concept for scheduling—the minimum duration required for achieving maximum
quality at a task—is explored in [Garvey et al., 1993]. The clear specification of such concepts
is one of the benefits of using our framework.

3.4.3.1 Non-local Effect Examples

Non-local effects are the most important part of the TÆMS framework, since they supply
most of the characteristics that make one task environment unique and different from another.

10Other parameters, such as channel reliability, could be added. The description of an agent’s control and
coordination algorithms will describe when and where communicationactually occurs (see communicationactions
in Section 3.5.3.2, and the concept of agency in Section 3.5.1).

55

Typically a model will define different classes of effects, such as causes, facilitates, cancels,
resource�constrains, inhibits, and enables [Decker and Lesser, 1992]. This section contains
definitions for four common classes of effects that have been useful in modeling different
environments. When non-local effects occur between methods associated with different agents,
we call them coordination relationships.

Enables. If task Ta enables method M , then the maximum quality q(M; t) = 0 until Ta
is completed and the result is available, when the maximum quality will change to the initial
maximum quality q(M; t) = q0(M). Another way to view this effect is that it changes the
“earliest start time” of enabled method, because a rational scheduler will not execute the method
before it is enabled.

enables(Ta;M; t; d; q; �) =

(
[1; 0] t < �(Ta; �)
[d0(M);q0(M)] t � �(Ta; �)

(3.5)

Facilitates. Another effect, used by the PGP algorithm [Durfee and Lesser, 1991] but
never formally defined, is the facilitates effect. In organization theory, Stinchcombe defines
facilitation as an ‘external effect’ in relation to the spatial properties of environmental activities
[Stinchcombe, 1987], but also recognizes computational facilitation through the transmission
of information. Computationally, facilitation occurs when information from one task, often in
the form of constraints, is provided that either reduces or changes the search space to make some
other task easier to solve. A simple to understand example of this relationship in computation
is the relationship between sorting and searching. It is faster to retrieve an item from a sorted
data structure, but sorting is not necessary for retrieval. Hence the sorting task facilitates the
retrieval task.

In our framework, one task may provide results to another task that facilitates the second
task by decreasing the duration or increasing the quality of its partial result. Therefore the
facilitates effect has two constant parameters (called power parameters) 0 � �d � 1 and
0 � �q � 1, that indicate the effect on duration and quality, respectively. The effect varies
not only through the power parameters, but also through the quality of the facilitating task
available when work on the facilitated task starts (the ratioR, defined below). Note that before
work is started on a method, Start(M) = t (i.e. formulae are evaluated as if execution were
about to start).

R(Ta; s) =
Qavail(Ta; s)

q(Ta; s)

facilitates(Ta;M; t; d; q; �d; �q) = [d(1� �dR(Ta; Start(M)));

q(1 + �qR(Ta; Start(M)))] (3.6)

So if Ta is completed with maximal quality, and the result is received before M is started, then
the duration d(M; t) will be decreased by a percentage equal to the duration power �d of the
facilitates effect. The second clause of the definition indicates that communication after the
start of processing has no effect. In Chapter 6 we will explore the effects on coordination of a
facilitates effect alone and with other effects.

Hinders. The hinders effect is the opposite of facilitates, because it increases the duration
and decreases the maximum quality of the consequent. It can be used expressively in a model to
represent situations that reduce some baseline performance measures (as opposed to facilitates,
which represents an increase in the baseline). Such situations occur computationally when

56

there are multiple methods for a task and one fails to provide as many constraints as the other.
hinders can also be used as a high-level model of distraction [Durfee et al., 1987], where
inappropriate constraints communicated from one agent to another lead the second agent on
a wild goose chase.

Precedence. We define the precedes effect as a combination of enables and hinders. That
is, one task must be done before another and the first task must be done well or later tasks
will suffer for it. This definition comes about because it models the behavior of the DVMT.
If Ta precedes M , then M has infinite duration and 0 maximum quality until some quality
is accrued at Ta. Afterwards, the duration drops toward the initial value and the maximum
quality increases to the initial value according to the ratio of available and maximum quality
and the precedence effect’s power parameters (�d � 0 and �q � 0). The following formula is
more easily understood if one keeps in mind that, in general, the ratio of available quality to
maximum quality will go from 0 to 1 as methods are executed.

precedes(Ta ;M; t; d; q; �d; �q) =

8<
:

[1; 0] Qavail(Ta; Start(M)) � 0
[d0(M)=R�d(Ta; Start(M));
q0(M)R�q(Ta; Start(M))] Qavail(Ta; Start(M)) > 0

(3.7)

Causes. Task Ta causesmethod Mb, if the completion of the execution of Ta, in effect, also
completes the execution of Mb (potentially an action at a distance; no explicit communication
action is implied) and all properties of the completion of Mb ensue. More formally:

causes(Ta;M; t; d; q; �) =

(
[d; q] t < �(Ta; �)
[0; q] t � �(Ta; �)

(3.8)

Causal relationships are rare in the computational scheduling domains that most of our work
has been in.

Shares-Results. The general class of facilitates relationships can also be used to model the
effect of re-using partial results when switching between tasks (methods). This is modeled
by the parameter 0 � � � 1, the retained time percentage. When � = 1, switching tasks is
like starting over completely; when � = 0, the new method is credited with all the time used
under the original method. For example, assume we have methods Ma and Mb, with durations
d(Ma) and d(Mb). Assume an agent starts using Ma and then switches to method Mb at
time t1 < d(Ma) + Start(Ma). We defined sharing results (in [Garvey and Lesser, 1993]) as
follows:

shares�results(Ta;M; t; d; q; �) =(
[d; q] t < Start(M)
[d� (1 � �)(Start(M)� Start(Ta)); q] t � Start(M)

Note that the final quality is always limited by the maximum quality of the last method
used (this definition could be expanded to hinder the following methods when going from a
low-quality method to a higher-quality one; typically agents move from high- to low-quality,
however). If there are several methods and the ‘better’ methods (with higher q(M)) share
results with ‘worse’ methods, then credit for time spent is cumulative.

Cancels. Informally, Ta cancels Tb if the completion of Ta, without any communication,
causes Q(Tb; t) = 0 for times t > Finish(Ta).

57

Favors. The favors relationship as described by von Martial [v. Martial, 1992] can be
expressed as a combination of relationships already described. To put it simply, it is not really
a new NLE (Non-Local Effect), but rather the presence of any positive (quality-improving)
coordination relationship11.

Von Martial describes a favor action predicate that holds for actions (in TÆMS, we call them
methods): a favor action is an action which an agent does not have to execute locally and one
that “the agent would be pleased to have executed by another agent” [v. Martial, 1992]. Von
Martial then defines a favor relationship between two plans as holding when there exists some
favor action a that is directly enabled by the plan actions, or can be enabled by adding a set of
actions to the plan. Of course not all possible favor actions are worthwhile or cost effective!
We can represent von Martial’s concept in TÆMS as a relationship between a TÆMS method
(the favor action) and a task (which represents a potential plan goal). A favors relationship
between a method M and a task T holds when the method M can positively effect T (directly
or indirectly) and M is executable by some agent beside the agent that has task T . That second
agent then has a possibility of doing a ‘favor’ for the first agent by scheduling and executing
M . How much of a ‘favor’ it is depends on the local utility of executing M , from the point of
view of the agent offering the favor. M might be in that agent’s current schedule, so the favor
is essentially for free (except for communication and any necessary temporal synchronization,
including a deadline on the completion of M). Alternately, M might not be in the current
schedule, and a new schedule and a potentially new set of actions would be needed before and
after executing M . Our definition is broader than von Martial’s because the favor action M in
our case does not have to be executable by both agents (only the agent who is doing the favor).

Figure 3.3 shows the canonical von Martial post office example. Assume that there are
two agents and that each agent has a method for every task in the picture. Also assume that
agent 1 wants to buy some stamps (task T1) and agent 2 wants to mail a package (task T2).
The fact that agent 1 can execute a method for ‘mail package’, and the presence of the subtask
relationship between ‘mail package’12 and task T2 means that agent 1 can do a ‘favor’ for agent
2 and do the ‘mail package’ task. Since agent 1 is already buying stamps, and thus already
going to the post office and returning, such a favor might be fairly inexpensive. However,
notice that packages must be mailed at the post office counter, while stamps can be bought at
a self-service machine. If agent 1 is on a very tight schedule, it might not be possible to use the
longer duration ‘use counter’ method. On the other hand, the same favor relationship exists
from ‘buy stamps’ to task T1—agent 2 can also do a favor for agent 1 and buy the stamps.
Since agent 2 is already committed to using the counter, no extra wait is involved.

Although I will not talk about the GPGP coordination mechanisms until Chapter 5, I
will briefly discuss the implementation of a von Martial ‘favors’ coordination mechanism for
cooperative agents. Such a mechanism would communicate the names of tasks on which agents
want to achieve quality. Let’s call these named tasks ‘goals’. Agents then loop through each
favor action (in von Martial’s case, any action that can be executed by more than one agent;
in our case the more general definition of any method or task that is related by a positive
coordination relationship to another agent). If the favor action can positively affect the other

11Remember, a coordination relationship is an NLE between task structures at different agents.
12‘Mail package’ is the favor action in the definition in the last paragraph, and subtask is the coordination

relationship.

58

Go to Post
Office

Buy
stamps
(max)

Mail
package

Return
from Post

Office

Use
machine

Use
Counter(shorter

duration)
(longer
duration)

max task with quality
accrual function max

subtask relationship

enables relationship

T1 T2

Figure 3.3. Objective task structure associated with visiting the post office to buy stamps and/or
mail a package. Assume that every agent has a local method for each of these tasks.

agent’s goals, then we mark it as a potential favor for that agent. This part of the algorithm
is a straightforward restatement of von Martial’s algorithm. At this point, von Martial would
compute certain cost measures; in our case, we would query the local scheduler for the effect
of adding a Do commitment on the favor action.

3.4.3.2 An Example of Facilitates and Shares-results

In this example we have one task group with two tasks, Ta and Tb, each with two
methods, M1 and M2, and the non-local relationships indicated in Figure 3.4. For both tasks,
q(M1) = 20 and q(M2) = 5, and d(M1) = 15 and d(M2) = 5. This example depends on
our view of method execution at an agent that is discussed in Section 3.5.3.1.

This example uses the following assumptions:

� the execution of M1A begins at time 0

� at time 4 the agent switches from method M1A to M2A

� communication of results from task Ta to task Tb occurs at the completion of M2A (with
no time delay)

� we use the linear quality model Qlin

� method M2b is scheduled for task Tb

Quality associated with each task and method then accrues over time as shown in Figure 3.5.

59

T
∑

A
Max

M1A M2A M1B M2B

B
Max

facilitates(50%)

shares-result(50 %)
shares-result(50 %)

Figure 3.4. A simple model of two tasks with two methods each.

3.4.4 Expanding the DSN Model

We will now add some complexity to the distributed sensor network model. The length
of a track li mentioned earlier is a generative model parameter. Given a set of these generative
parameters, we can construct the objective model for a specific episode (problem-solving
instance). Figure 3.2 shows the general structure of episodes in our DSN environment model.
To display an actual objective model, let us assume a simple, concrete situation: there are
two agents, A and B, and that there is one vehicle track of length 3 sensed once by A
alone (T 1), once by both A and B (T 2), and once by B alone (T 3). We now proceed
to model the standard features that have appeared in our DVMT work for the past several
years. We will add the characteristic that each agent has two methods with which to deal
with sensed data: a normal VLM and a ‘level-hopping’ (LH) VLM (the level-hopping VLM
produces less quality than the full method but requires less time; see [Decker et al., 1990,
Decker et al., 1993b] for this and other approximate methods; a similar technique can be used
to model agents who have different capabilities such as processor speed). Furthermore, only the
agent that senses the data can execute the associated VLM; but any agent can execute VTMs
and VCMs if the appropriate enablement conditions are met.

Figure 3.6 displays this particular problem-solving episode. To the description above, we
have added the fact that agent B has a faulty sensor (the durations of the grayed methods
will be longer than normal); we will explore the implications of this after we have discussed
the subjective level of the framework in the next section. An assumption made in [Durfee
et al., 1987] is that redundant work is not generally useful; this is indicated by using max as
the combination function for each agent’s redundant methods. This would not be a good
assumption for an environment where the independent derivation of a result is a positive
thing—we can alter the assumption by simply changing this function (to mean or sum).
Another characteristic that appeared often in the DVMT literature is the sharing of results
between methods (at a single agent); we would indicate this by the presence of a sharing
relationship (similar to facilitates) between each pair of normal and level-hopping VLMs

60

0

2

4

0 5 10 15 20

0

3

5

0 5 10 15 20

0

3

5

0 5 10 15 20

0 5 10 15 20

0

3

6

0 5 10 15 20

0

3

6

0 5 10 15 20

Time

0.0

6.0

12.0

0 5 10 15 20

Q
(M

1A
)

Q
(M

2A
)

Q
(A

)
Q

(M
1B

)
Q

(M
2B

)
Q

(B
)

Q
(T

)

Figure 3.5. Quality at each Method, Task, and Task Group over time in the previous figure

61

(note: this is not indicated in the figure). Sharing of results could be only one-way between
methods.

faulty sensor method

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

VCM
A T

min
T

min

T
min

VCM
B

VTM
A

VTM
B

VTM
A

VTM
B

VLM
A (LH)

VLM
B

VLM
A

VLM
B (LH)

VLM
A (LH)

TVLM

max

VLM
A

VLM
B

VLM
B (LH)

TVLM

max
TVLM

max

TVTM

max
TVTM

max

TVCM

max

1

2,31,2

2 3

1,2,3

type
agent

Figure 3.6. Objective task structure associated with two agents

Now we will add two final features that make this model more like the DVMT. First,
low quality results tend to make things harder to process at higher levels. For example, the
impact of using the level-hopping VLM is not just that its quality is lower, but also that it
affects the quality and duration of the VTM it enables (because not enough possible solutions
are eliminated). To model this, we will use the precedence relationship (precedes) instead
of enables: not only do the VLM methods enable the VTM, but they can also hinder its
execution if the enabling results are of low quality. Secondly, the first VLM execution provides
information that slightly shortens the executions of other VLMs in the same vehicle track
(because the sensors have been properly configured with the correct signal processing algorithm
parameters with which to sense that particular vehicle). A similar facilitates effect occurs
at the tracking level. These effects occur both locally and when results are shared between
agents—in fact, this effect is very important in motivating the agent behavior where one agent
sends preliminary results to another agent with bad sensor data to help the receiving agent in
disambiguating that data. Figure 3.7 repeats the objective task structure from the previous
figure, but omits the methods for clarity. Two new tasks have been added to model facilitation
at the vehicle location and vehicle track level.13 TVL indicates the highest quality initial work
that has been done at the vehicle level, and thus uses the quality accrual function maximum.
TVT indicates the progress on the full track; it uses summation as its quality accrual function.

13Note that these tasks were added to make the model more expressive; they are not associated with new
methods.

62

The more tracking methods are executed, the easier the remaining ones become.14 This model
has implications for a multi-agent episode. For instance, the model describes the effect of the
communication time on communicating partial results to another agent: the later an agent
delays communication, the more the potential impact on the other agent (because the quality
is increasing), but the more the other agent must delay. We examine this question in somewhat
more detail in Chapters 4, 5, and 6.

T
min

task with quality
accrual function min

subtask relationship

precedence relationship

facilitates relationship

T
min

T
min

T
min

TVLM

max
TVLM

max
TVLM

max

TVTM

max
TVTM

max

TVCM

max

TVL

max

TVT

Σ

1

2,31,2

2 3

1,2,3

Figure 3.7. Non-local effects in the objective task structure

At the end of the next section, we will return to this example and add to it subjective
features: what information is available to agents, when, and at what cost.

3.4.5 Resources

Physical resources, be they people, equipment, or computational resources such as files, are
very important to model in many domains [Zhao et al., 1987, Cheng et al., 1988, Ramamritham
et al., 1990, Shen et al., 1993, Sycara et al., 1991, Neiman et al., 1994]. This dissertation is
mainly concerned with the modeling of computational task structures that do not use external
physical resources (physical resources other than the processor). This section will briefly
describe how we could extend TÆMS to model physical resources. The rest of the dissertation
will concentrate on purely computational environments—we will not carry out any simulation
experiments with physical resources in this dissertation. We believe this is an important future
direction, see the Future Work section in Chapter 7.

14In the real DVMT, the effect only works to a point, so that the first four data points or so bring about most
of the effect. We could model this more precisely by replacing the summation with a Max and a Sum (a piecewise
linear approximation) or by using an exponential (1

1�ex
).

63

We have recently extended TÆMS so that resources can be represented directly in task
structures. From the point of view of task environment specification, the only effect of
resources, with respect to computational tasks, is to change the duration or quality of other
tasks, and so we represent this as a set of non-local effects (NLE’s). Because the NLEs are linked
(i.e., not just between two nodes) we add a resource node to the task structure and associate
any state information needed with it. From the point of view of the discrete, state-based
mathematics behind TÆMS(summarized in Section 3.2), a resource looks like a task—but
instead of a quality vector, a nominal state vector is used, and there is no associated duration
or subtask relationships. This idea is very similar to the way we added tasks to represent the
amount of work done on the first vehicle location and the vehicle track in Figures 3.6 and 3.7
in Section 3.3.

Instead, methods are related to the resource via one kind of NLE (e.g. uses, replenishes,
consumes, reads, writes), and another NLE runs from the resource to the methods (e.g.
exclusiveaccess, limitedbandwidth, consumable). The method-to-resource NLE’s change the
state of the resource, and the resource-to-method NLE’s affect duration and max quality as
usual.

For example, take the situation of a low-bandwidth communication link as described in
[Sugawara and Lesser, 1993]. Two agents have a diagnosis method that uses the low-bandwidth
link. When more than one of these diagnosis methods are executed at the same time, the link
is saturated and the durations of the methods are lengthened. We represent this situation as
shown in Figure 3.8; the two new NLE’s are defined as follows:

uses(Ta; R; t; d; q; �) =

(
[d; q + �] Start(Ta) < t < Finish(Ta)
[d; q] otherwise

(3.9)

limits(R;M; t; d; q; �; �d) =

(
[�dd; q] Q(R; t) > �

[d; q] otherwise
(3.10)

Diagostic
Method
Agent 5

Diagostic
Method
Agent 6

Limited
Bandwidth

Communication
Resource

Use
s(1

0)
Uses(10)

Limits(15,50%)Limits(15,50%)

Figure 3.8. Example of two methods sharing a limited resource of capacity 15. In this example,
if both methods execute in temporally overlapping time periods, the durations of each method
will be lengthened by 50%.

64

The NLE uses indicates the amount of limited resource capacity used by the method with
the parameter �. In Figure 3.8 each diagnostic method uses 10 units of the communication
resource’s capacity (the arc labeled uses(10)). The NLE limits indicates that the resource has
maximum capacity (saturation) � and that beyond that point duration is affected by percentage
�d (alternately, �d could be defined as a function of the level of oversaturation). In Figure 3.8
the communication resourcehas a saturation point � = 15, so the resource will not be saturated
if either diagnostic method uses the resource alone, and will be saturated if the two methods
happen to overlap in their execution. The effect will only be active during the overlap, and will
cause the duration of both methods to be increased (in this example) by 50%. Note that when
methods can be interrupted, the lengthening of method durations due to a blocked resource is
not associated with lengthening the amount of continuous computation—the blocked method
can be interrupted and other computations performed until the method is no longer blocked.

It is important to note that our purpose here is not to develop a full-fledged resource
representation language, but merely to argue that we could do so at a later time (see Future
Work in Chapter 7). The extensibility of TÆMS, including the addition of new task and
resource relationships, is one of its major advantages. The exciting thing is that at the lowest
level, we can define resource effects without adding to the basic, simple TÆMS mechanisms.
Note that the formulae above and below use the Quality variable to hold state information for
the resource; if a resource requires more than one state variable then we can represent it by
using a quality vector, as we noted at the start of this chapter.

M1

M2

M3
R1Con

sumes(10) Consumes(10)

Consumable(10) Consumable(10)

Rep
le

ni
sh

es
(1

0) Full(100)

Figure 3.9. Example objective structure of two methods (M1 and M3) that consume a resource,
and one method that replenishes it.

Similar NLE’s can be defined for representing consumable resources and their associated
operations (see Figure 3.9):

consumes(Ta; R; t; d; q; �) =

(
[d; q� �] t > Finish(Ta)
[d; q] otherwise

(3.11)

consumable(R;M; t; d; q; �) =

(
[1; 0] Q(R; t) < �

[d; q] otherwise
(3.12)

65

replenishes(Ta; R; t; d; q; �) =

(
[d; q+ �] t > Finish(Ta)
[d; q] otherwise

(3.13)

full(R;M; t; d; q; �) =

(
[1; 0] Q(R; t) > �

[d; q] otherwise
(3.14)

Thus in Figure 3.9 Methods 1 and 2 consume 10 units of Resource 1, if that amount is available
and Method 3 when executed replenishes Resource 1 by 10 units, unless Resource 1 already has
over 100 units, in which case it cannot be replenished (it is ‘full’). Note that this is an objective
example. A generative model would (for example) say if Method 1 always consumes 10 units
or Resource 1, or if the amount is drawn from some distribution. The subjective model would
say if an agent, making a decision about Method 1, “knows” that Method 1, in fact, consumes
10 units, or believes that it consumes more or less units, or knows only the generative model.

3.5 TÆMS Subjective Level Models and Agent Actions

The purpose of a subjective level model of an environment is to describe what portions of
the objective model of the situation (current state) are available to ‘agents’. It answers questions
such as “when is a piece of information available,” “to whom is it available,” and “what is the cost
to the agent of that piece of information”. This is a description of how agents might interact
with their environment—what options are available to them. Of course agents both acquire
information and act on that information. This chapter will discuss agent actions—acquiring
information, executing methods, and communicating with one another.

To build such a description we must introduce the concept of agency into the model. Ours
is one of the few comprehensive descriptions of computational task environments in AI, but
there are many formal and informal descriptions of the concept of agency (see [Gasser, 1991,
Hewitt, 1991, Moe, 1984], Sections 2.3.3 and 2.4.4). Rather than add our own description,
we notice that these formulations define the notion of computation at one or more agents, not
the environment that the agents are part of. Most formulations contain a notion of belief that
can be applied to our concept of “what information an agent has about its environment”. Our
view is that an “agent” is a locus of belief and action (such as computation), as stated in the
introduction to this chapter.

The form of the rest of this section is as follows:

� How does the environment affect the beliefs of the agents? This is described by a TÆMS

“subjective” level model.

� How do the beliefs of agents affect their actions? This is basis of the coordination
and control problem. The rest of the dissertation will describe and analyze various
mechanisms to accomplish this step.

� How do the actions of the agents affect the environment? /tems/ is a discrete, state-based
model. We will describe in this section how the state of the environment and the agents
changes when the agents act. There are three types of agent actions: method executions,
communications, and information gathering actions.

66

3.5.1 The Subjective Mapping

Each agent can be thought of to have a “belief database” �A. We use the symbol �tA to
denote this set of beliefs of agent A at time t. We will use the modal operator Bt

A(x) to mean
agent A subjectively believes x at time t, that is, �tA j= x (from Shoham[Shoham, 1991]).

We define a subjective mapping ' : [(x 2 E) �A� t] 7! x0 that maps from elements in
the current episode to agent A’s subjective view of those elements. The mapping may be empty
for an element. This is the core of the subjective level model. For example, we could define
a mapping ' where each agent has a probability p of believing that the maximum quality of
a method is the objective value, and a probability 1 � p of believing the maximum quality
is twice the objective value. Any objective assertion has some subjective mapping, including
q (maximum quality of a method), d (duration of a method), deadlines, and the relations
subtask, nle, and comm and their associated parameters. Section 3.5.4 will describe a few
examples of this mapping.

Finally, we will define an action that can be taken by an agent, called an information
gathering action, which will take some amount of time and result in the addition of new
information to the agent’s belief database. In particular, we define a task arrival information
gathering action such that

�A ; �A ['(x;A; t)j(x 2 E) ^ ('(x;A; t) 62 �A)

This action places a subjective version of new information from the objective episode into the
agent’s belief database.

3.5.2 Deciding What to Do Next: Coordination, Scheduling, and Control

The beliefs of an agent affect its actions through some control mechanism. Since this is the
focus of most of our and others’ research on local scheduling, coordination, and other control
issues, we will not discuss this further in this chapter (but see Chapters 4 through 6). The agent’s
control mechanism uses the agent’s current set of beliefs �A to update three special subsets of
these beliefs I; C;M� �A defined here as the sets of information gathering, communication,
and method execution actions to be computed. These subsets describe the agent’s intentions.
For example, if an agent intends to execute method M1, it creates a method execution action
that indicates M1 as the method to execute.15 The agent then adds this method execution
action set of intended method executionsM. The next section describes what happens to an
agent’s intended actions.

The agents that we build typically further divide control into local scheduling and co-
ordination (see Chapters 5 and 6), but this is not required. Besides describing how an
agent’s beliefs entail commitments to particular information gathering, communication, and
method execution actions, a control component model must also describe the duration of its
deliberations. This feature allows us to analyze questions concerning the cost of control without
becoming mired in implementation details.16

15It might indicate other things, like on which processor to execute M1 if the agent is a multiprocessor, or a
time limit for M1, execution monitoring information, etc. None of these extensions are a part of this dissertation.

16Understanding the details of the control costs of particular algorithm implementations is important, but
usually not at early stages of research. Information about control duration can also be used by the TÆMS simulator
if it is available.

67

3.5.3 Computation

Our model can support parallel computation, but for brevity we will just describe single
processor computation as a sequence of agent states. Agent A’s current state is uniquely
specified by �A. We provide a meta-structure for the agent’s state-transition function that is
divided into the following 4 parts (see also Figure 3.10:

1. control (as described in the previous section—basically asserting one or more intentions)

2. method execution (of the methods inM)

3. information gathering (doing the information gathering actions in I)

4. communication (doing the communication actions in C)

start

Control Information
Gathering

Communication

Method
Execution

 I
≠Ø

 I≠Ø

 C=Ø

 I=Ø I=Ø

 C=Ø C≠Ø

 C≠Ø

M=Ø

M=Ø

M≠Ø

M≠Ø

Figure 3.10. The finite state machine that describes the meta-structure of single-processor agent
computations. I; C;M are named subsets of the agents beliefs � that represent information
gathering, communication, and method execution actions, respectively.

First the control mechanisms assert (“intend”) information-gathering, communication,
and method execution actions and then these actions are computed one at a time, after which
the cycle of meta-states repeats.

A simple model of parallel computation, similar to the implementation in [Decker et al.,
1993a], is to allow control, information gathering, and communication to run on one (abstract)
processor, and multiple method executions on the other processors. Any important interactions
between methods executing in parallel would be represented by non-local effects.

68

3.5.3.1 Method Execution

How do the actions of an agent affect the environment? Both the objective environment
(e.g. quality of the executing method) and the subjective mapping (e.g. information available
via ') can be affected. We use two execution models: simple method execution, and execution
with monitoring, suspension, and preemption. These follow from the discussion of QDTT and
Qlin in Section 3.4.2, and are simple state-based models. Basically, for non-interruptible, single
processor method executions, the agent enters a method execution state for method M at time
Start(M) and remains in that state until the time t when t� Start(M) = d(M; t). Method
execution actions are similar to what Shoham terms ‘private actions’ like DO[Shoham, 1991].

We have also considered pre-emptable method execution, where a method execution action
is given a set upper time limit, after which computation will proceed to the next meta-state.
The agent can then monitor the execution of long methods, and interleave their execution with
other actions or pre-empt them entirely [Garvey and Lesser, 1993].

Formal Definition of Simple Method Execution. Let M 2 M be the method that an
agent is about to execute. We identify several parts of the objective model O of the external
environment: q(M; t), the true maximum quality of M at time t computed from some initial
q0(M) and all of the non-local effects on M as described in Section 3.4.3; d(M; t), the true
duration of M at time t computed from some initial d0(M) and all of the non-local effects on
M as described in Section 3.4.3; and Q, the mathematical model of the way quality accrues
during the execution of M (QDTT, for example).

At the start of execution at time t0, the state of the environment is updated by an agent
A such that hStart(M) = t0i 2 O. The state of the environment includes the values of
q(M; t0) and d(M; t0) computed as described in Section 3.4.3. Agent A at time t0 is in a state
where it believes Bt0

A hStart(M) = t0;q(M; t0) = '(q(M; t0));d(M; t0) = '(d(M; t0))i.
Depending on the model of quality accrual Q, the quality of M at time t + 1 may change,
which may trigger non-local effects, etc.

From its state at an arbitrary time t the environment moves to a new state at time
t + 1 by updating the values of q and d for all M , given the addition of new start times
Start(M) for methods as agents execute them, and new finish times Finish(M) as agents
finish execution (described next). The agent also moves to a new state at time t + 1: if
t+1 < Start(M)+d(M; t)17 then the agent remains in the state where it believesBt+1

A = Bt
A,

otherwise it finishes execution, and adds to its beliefs and the objective model the assertion
Finish(M) = t+ 1.

The simple model of execution does not allow agents to preempt, suspend, or otherwise
modify the execution of a single method. This capability can be added by extending this
model so that a method execution intention is a pair [M; t] = M which means to execute
M for t time units, or until it finishes, if it finishes early. This simple extension allows both
monitoring and preemption, and improves the model because the local scheduler can intend
information-gathering actions (i.e., see if new tasks have arrived) at the monitoring points.

3.5.3.2 Communication

How do the actions of an agent affect other agents? Communication actions allow agents
to affect each others’ beliefs to a limited extent. Many people have worked on formalizing

17Note that d(M; t) is the actual objective duration of M at time t, not the agent’s belief in its duration.

69

aspects of communication; the semantics of communication actions can be freely defined for
each environment. The simplest communication act is to send another agent the ‘current
result/value’ of a method—the effect is to change the available quality Qavail(T; t;A) at the
remote agent after the message has been received. What happens when a communication is
‘received’? The reception of information, by changing the available quality of a task, may
trigger a non-local effect as we described earlier, and may influence the behavior of an agent as
specified by its control algorithm. Communication actions may take time themselves (defined
in a TÆMS model) and there may be a delay in communication between agents (as discussed in
section 3.4.3).

3.5.3.3 Information Gathering

An information gathering action trades-off computational resources (time that could be
spent executing methods) for information about the environment. For example, one useful
information gathering action is the task arrival information gathering action we described
in Section 3.5.1 that queries the environment about the arrival of new tasks or task groups.
Another information gathering action causes any communications that have arrived at an
agent to be ‘received’ (added to the agent’s belief database). A third kind of information
gathering may identify coordination relationships—non local effects that span multiple agents
(see Chapter 5). Both communication and information gathering actions take some period
of time (not necessarily constant) to execute, as specified in the model. A fourth type of
information gathering might be a call to a ‘planner’.

3.5.4 Subjective Modeling Example

Let’s return to the example we began in Section 3.3 to demonstrate how adding a subjective
level to the model allows us to represent the effects of faulty sensors in the DVMT. We will define
the default subjective mapping to simply return the objective value, i.e., agents will believe
the true objective quality and duration of methods and their local and non-local effects. We
then alter this default for the case of faulty (i.e., noisy) sensors—an agent with a faulty sensor
will not initially realize it (d0(faulty-VLM) = 2d0(VLM), but '(A;d0(faulty-VLM)) =
d0(VLM)).18 Other subjective level artifacts that are seen in [Durfee et al., 1987] and
other DVMT work can also be modeled easily in our framework. For example, ‘noise’ can be
viewed as VLM methods that are subjectively believed to have a non-zero maximum quality
('(A;q0(noise-VLM)) > 0) but in fact have 0 objective maximum quality, which the agent
does not discover until after the method is executed. The strength with which initial data is
sensed can be modeled by lowering the subjectively perceived value of the maximum quality
q for weakly sensed data. The infamous ‘ghost track’ is a subjectively complete task group
appearing to an agent as an actual vehicle track, which subjectively accrues quality until the
hapless agent executes the VCM method, at which point the true (zero) quality becomes known.
If the track (subjectively) spans multiple agents’ sensor regions, the agent can potentially identify
the chimeric track through communication with the other agents, which may have no belief
in such a track (but sometimes more than one agent suffers the same delusion). In general,

18At this point, one should be imagining an agent controller for this environment that notices when a VLM
method takes unusually long, and realizes that the sensor is faulty and re-plans accordingly.

70

having different subjective mappings for different agents or classes of agents allows us to model
situations where some agents are more, less, or simply differently ‘informed’ than others.

3.5.5 Sugawara’s Network Diagnosis System

Let us briefly return to Sugawara’s network diagnosis system, as introduced in Section 3.4.5
and figure 3.8. Sugawara’s system makes decisions about how to schedule and coordinate
diagnosis tasks based on its subjective, perceived view of the environment. This subjective view
may be wrong. The diagnosis system monitors its own progress and when progress does not
match its subjective expectations, it may generate an explanation of this discrepancy and update
its subjective view. The new subjective view may result in tasks being scheduled or coordinated
differently. For example, Figure 3.11 shows a subjective view where the resource is essentially
unlimited—this situation results in no coordination when executing the diagnostic methods.
However, if the real objective situation is the one on the lower right, a problem will occur if the
two methods are executed simultaneously and the diagnosis system will spot this. Information
gathering actions will then be added to detect which situation is occurring and coordination
actions will be added to the schedule to avoid overloading the bottleneck resource if necessary.

Agent's Subjective View

Possible Objective Realities

Diagostic
Method
Agent 5

Diagostic
Method
Agent 6

Limited
Bandwidth

Communication
Resource

 U

ses
(10

)

 Uses(10)

Diagostic
Method
Agent 5

Diagostic
Method
Agent 6

Limited
Bandwidth

Communication
Resource

 U

ses
(10

)

 Uses(10)

Diagostic
Method
Agent 5

Diagostic
Method
Agent 6

Limited
Bandwidth

Communication
Resource

 U

ses
(10

)

 L
im

ite
d(1

5,5
0%

)

 Uses(10)

 Limited(15,50%
)

Figure 3.11. Example of what is learned in the network diagnosis problem: the correct
scheduling strategy for each objective situation, and the knowledge of which situation is
currently occurring.

We have explained the objective and subjective levels of our modeling framework, and
presented an example of a moderately complex task structure. Next we turn to generative level
models, where we specify the statistical properties of an environment across many episodes.

71

3.6 TÆMS Generative Level Models and Framework Examples

3.6.1 The Generative Level

By using the objective and subjective levels of TÆMS we can model any individual situation;
adding a generative level model allows us to go beyond that and determine what the expected
performance of an algorithm is over a long period of time and many individual problem
solving episodes. A generative-level model can be viewed as a workload (episode) generator for
an environment. In our work we have used statistical generative models of task inter-arrival
times (exponential distribution), amount of work in a task group (Poisson), task durations
(exponential), and the likelihood of a particular non-local effect between two tasks (we’ll see
more of this in Chapters 5 and 6 [Decker and Lesser, 1993b, Decker and Lesser, 1993a,
Garvey and Lesser, 1993]. Generative level statistical parameters can also be used by agents
in their subjective reasoning. For example, an agent may make control decisions based on its
knowledge of the expected duration of methods.

A generative level model can be constructed by careful analysis of the real environment
being modeled, or by observing the statistical properties of real episodes (if that is possible).
Even when certain parameters of the real world are unknown, they can be made variables in the
model and then you can ask questions about how much they affect the things you care about.
Our approach so far has been to verify our assumptions about the environment with simple
statistical approaches [Kleijnen, 1987]. Detailed model verification will be more important
when using our framework to optimize parameters in a real application, which is not a focus of
this dissertation. In this dissertation we will focus on learning the general effects of parameters
on a coordination algorithm (see Chapters 5 and 6).

An excellent way to proceed in building a generative model (the one we have used) is to
gather several detailed TÆMS objective and/or subjective task structures for specific episodes.
These can be then examined to determine the obvious endogenous features of the episode that
are provided by the environment. For example, the number and lengths of tracks in DSNs; the
set of tests ordered for patients in a hospital scheduling problem; arrival lateness and resource
failure rates for an airport resource management problem. Developing a task structure for
several episodes constrains and focuses the model-builder. Future work could examine the
possibility of inducing generative parameters from the observation of episodic task structures.

In our DSN model example, any single episode can be specified by listing the task groups,
and what part of each task group was available to which agents, given the organizational
structure. Our analyses are based on the statistical properties of episodes in this environment,
not any single instance of an episode. The properties of the episodes in a DSN environment are
summarized by the tuple D =< A; �; r; o;T (l) > where A specifies the number of agents, �
the expected number of task groups, r and o specify the structural portion of the organization by
the range of each agent and the overlap between agents19, and T (l) specifies the homogeneous
task group structure (as discussed in Sections 3.3 and 3.5.4). A particular episode in this
environment can be described by the tuple D =< T1(l1); : : : ;Tn(ln) > where n is a random
variable drawn from a Poisson distribution with an expected value of �, and the li are generated
as described in Section 3.3. If we were to extend this generative model to cover every feature
we added to the objective and subjective models in Sections 3.3 and 3.5.4, we would need to
add the likelihood of a sensor being faulty (noisy), the likelihood of a ghost track, etc.

19We also assume the agents start in a square geometry, i.e, 4 agents in a 2�2 square, 25 agents arranged 5�5.

72

3.6.2 The TÆMS Simulator Generator

In order to test coordination and scheduling algorithms in general environments, the TÆMS

simulator has a random task structure generator. Describing this generator will give you an
example of how generative-level models of abstract task environments can be constructed. This
generator does not generate structures from a “real” application environment; the structures it
generates are quite abstract. When working with TÆMS on a particular application (such as in
the DSN problem in the next chapter), we do not use this random generator, but rather one
crafted to match the specific environment. These random, abstract environments are useful for
general experimentation and performance analysis of scheduling and coordination algorithms.

The random environment generator has three parts: specifying general environmental
parameters such as the inter-agent communication delay, specifying a generative subjective
template, and specifying the potential classes of task groups (generative objective templates).

The default generative subjective template takes a list of agent names and a simple
probability poverlaps for the chance of overlapping methods. For each objective method
generated and for each other agent, there is a poverlaps chance that the agent will have an
overlapping method. All objective values are passed unchanged to the agents. Agents who
execute information-gathering actions will receive information on all methods executable by
them, and all parents of those methods, recursively. The default generative subjective template
guarantees no other subjective properties.

A random environment will consist of one generative subjective template and a list of
generative objective templates (one for each potential class of task groups). Each generative
objective template takes the following parameters:

branching-factor: The average number of children of a task in the task structure. Specified as
the mean (equals the variance) of a Poisson distribution.

depth: The average depth of the task structure (not counting the leaf methods). Specified as
the mean (equals the variance) of a Poisson distribution.

duration: The average initial duration (d0) of a method. Specified as the mean of an
exponential distribution.

max-quality: The average initial max-quality (q0) of a method. Specified as the mean of an
exponential distribution.

QAF: The distribution of potential Quality Accumulation Functions for tasks. Specified as a
custom discrete distribution such as “50% Min, 50% Max”.

Deadline: Deadline tightness. The deadline for the task group is set to �ESAET + � where
ESAET is the Estimated Single Agent Execution Time of the actual instantiated task
group, and � and � are the specified parameters. The calculation of ESAET is only an
estimate because it ignores non-local effects.

Inter-Arrival-Time: The mean time between arrivals of instances of this task group class.
Specified as the mean of an exponential distribution.

Redundant-QAF: The Quality Accumulation Function to use when combining overlapping
methods. If the methods are redundant, then MAX is an appropriate choice.

73

The TÆMS random structure generator also allows the specifications of certain ‘patterns’ of
relationships on top of this basic structure. These patterns have parameters that are in addition
to the generative objective template parameters just mentioned:

Random-Relations: Generates hard and soft relationships with some probability but in no
particular pattern. Hard relationships are always generated across siblings to prevent
loops (i.e., pick a sibling, test if it should be hard-related to any of the remaining siblings,
then pick one of the remaining siblings and continue until no siblings are left). The
random-relations pattern takes two new parameters:

hard-rels: A discrete distribution of potential relationships or NIL for no relationship.
For example, “10% enables, 90% NIL”.

soft-rels: A discrete distribution of potential relationships or NIL for no relationship.
For example, “20% facilitates, 10% hinders, 70% NIL”.

cleanup-methods: One possible environmental pattern (seen in the DVMT) is the presence of
a method that must be done at the completion of other subtasks of an AND task. The
VTM’s and VCM in Figure 3.2 are a few examples. This pattern generates such ‘cleanup
methods’ that are subtasks to an AND task and that are enabled by all the other subtasks
of the AND task. The cleanup-methods pattern takes one new parameter:

cleanup-prob: The simple probability that such a method is actually generated.

Fast-fallback-at-leaves: In environments where design-to-time scheduling is useful, there are
often multiple ways of achieving some task that do not all have to be done. A quick-and-
dirty method that can be executed when the agent is under severe time pressure is called
a ‘fast fallback method’. This pattern generates such methods as alternatives to existing
‘regular’ methods at the leaves of the task structure. The fast-fallback-at-leaves pattern
takes three new parameters:

fast-fallback-prob: The probability that a given method will have a fast-fallback alter-
native.

fast-fallback-percentage: A specification of the time/quality tradeoff represented by the
fast fallback method (how much faster and how much less quality).

fast-fallback-hinders-p: Often doing something the quick and dirty way will end up
hurting you later on (for example, the hindering precedence relationship in the
DVMT structure of Figure 3.7). This parameter, if not NIL, specifies the
parameters to a hinders relationship between the the fast fallback method and
its parent task’s parent task.

3.6.3 Examples

In this section I will present several examples of TÆMS models for several quite different
environments. This will demonstrate the flexibility of the approach, and allow me to discuss the
impact of each task environment on coordination issues (even with relatively sketchy models).
The distributed sensor network model, which has been the focus of the examples in the last
three chapters, will not be repeated here.

74

3.6.3.1 Hospital Patient Scheduling

This description is from an actual case study [Ow et al., 1989]:

Patients in General Hospital reside in units that are organized by branches of medicine,
such as orthopedics or neurosurgery. Each day, physicians request certain tests and/or
therapy to be performed as a part of the diagnosis and treatment of a patient. [: : :] Tests
are performed by separate, independent, and distally located ancillary departments in
the hospital. The radiology department, for example, provides X-ray services and may
receive requests from a number of different units in the hospital.

min task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)type

min

Barium X-Ray
Physical
Therapy

min

Draw
Blood

Test 1

Test 2

min

min

min min min min min

min

Nursing Unit 1

min

min min min min min

min

min

Barium X-Ray

Ancillary 1 Ancillary 2 Ancillary 3

min task already communicated
to ancillary

requires delay

inhibits

Nursing Unit 2

resource

resource-constrains

Patient
1

Patient

1
Patient

2

Figure 3.12. High-level, objective task structure and subjective views for a typical hospital
patient scheduling episode. The top task in each ancillary is really the same objective entity as
the unit task it is linked to in the diagram.

Furthermore, each test may interact with other tests in relationships such as enables,
requires�delay (must be performed after), and inhibits (test A’s performance invalidates test
B’s result if A is performed during specified time period relative to B). Note that the unit
secretaries (as scheduling agents) try to minimize the patients’ stays in the hospital, while the
ancillary secretaries (as scheduling agents) try to maximize equipment use (throughput) and
minimize setup times.

A generative level model of this environment would focus on the mean time between
patient arrivals, and the number and distribution of patient tests. Other generative parameters
would include the specification of the ‘agents’ in this environment: the number of nursing units
and the number and type of ancillaries and their associated resources (i.e., how many X-ray
machines can be used in parallel by ancillary 1). Thus an episode generator for Ow’s hospital
would have a fixed number of nursing units and ancillaries, and a fixed set of test templates
corresponding to taking X-rays, physical therapy, blood tests, etc. These templates would also

75

contain duration distributions on how long it takes to take the x-ray, etc. Then, we would
postulate an arrival rate for patients, and for each patient a distribution of tests (instantiated
from the set of templates). Thus when each patient arrives, linked to that patient is a unique
task structure of what needs to be done to that patient.

Figure 3.12 shows a hand-generated example objective TÆMS task structure corresponding
to an episode in this domain, and the subjective views of the unit and ancillary scheduling
agents after four tests have been ordered. I use min (AND) to represent quality accrual because
in general neither the nursing units nor ancillaries can change the doctor’s orders—all tests
must be done as prescribed. This figure is different from the earlier one in that it explicitly
represents the patient as a non-sharable resource (resource�constrains represents the pair of
NLE’s uses and limits). Note that the patient is not needed for all portions of all tests (i.e., the
blood work after the blood samples have been drawn). Also note that I have not represented the
patient’s travel times in any way—this is an important difference from the airport environment
described in the next section. The reason for not representing this is that the scale of the
problem is such that patient travel time can be fixed beforehand (auxiliaries can assume that
the patients will be delivered from their rooms rather than from other auxiliaries). I will go so
far as to point out the future implications of this downplay of travel times—this hospital will
have to change its organization, i.e. its coordination and scheduling mechanisms, if it has to
face significant travel delays with more than one ancillary. This could happen if, for example, it
is a smaller hospital and cannot afford its own MR scanner or CAT scanner and doctors take
to prescribing MR and CAT scans at another hospital. Patients requiring both MR and CAT
scans now have a significant facilitates effect in their task structures to do both scans nearly
consecutively (potentially affecting the coordination structures of both hospitals).

The requires�delay relationship says that a certain amount � of time must pass after
executing one method before the second is enabled. I’ll repeat the definition I gave in the first
chapter here:

requires�delay(Ta;M; t; d; q; �) =

(
[d0(M); 0] Start(M) < Finish(Ta) + �

[d0(M);q0(M)] Start(M) � Finish(Ta) + �
(3.15)

Examining the hospital’s current coordination structure is enlightening because it shows a
mismatch between the structure and the current hospital environment (this mismatch having
triggered the study in the first place). From this mismatch we can guess at how the environment
has changed over time, assuming that the current hospital structure was in fact a good structure
when it was originally put into place.20

The current hospital structure is described by Ow as follows [Ow et al., 1989]:

After receiving a request from a physician, the unit secretary conveys the test request
to the secretary of the relevant ancillary department. In turn, the ancillary secretary
determined the appropriate time for the test to be run. The unit secretary is notified
immediately prior to that scheduled time slot and not sooner. The actual time the
patient is scheduled is known only to the ancillary secretary (i.e., it is not relayed back
to the requesting unit). Since each ancillary schedules independently (and without
knowledge) of all other ancillaries, conflicts arise when a patient is scheduled in
overlapping (or nearly overlapping) time slots in different ancillaries. Such conflicts

20Ow calls this the sympathetic structure[Ow et al., 1989].

76

must be resolved by the unit secretaries. However, as the unit secretaries are made
aware of the scheduled ancillary times only when the request to “deliver” the patient
comes from the ancillary, little slack time remains to resolve scheduling conflicts and
delays, This can disrupt the care of the patient.21

While this structure seems sorely lacking when compared to the current environment, it
may at one time have been a reasonable, low overhead arrangement. It may be that in the past
doctors ordered fewer tests on less complex ancillary equipment (there has been quite an ex-
plosion in medical technology in the last decade) and (concomitantly) interfering relationships
between these technologies. The structure is adapted for a different task environment.

Ow, et al. describe a new set of coordination mechanisms, using computer support, that
are better adapted to the hospital’s current task environment. Two types of computer agents
are defined—a unit subsystem that collects, disseminates, and monitors the test requests and
resulting schedules for the patients in a unit, and an ancillary subsystem that receives test
requests from the unit subsystems and schedules them. Two communication protocols rest on
this structure:

Primary: The unit subsystems inform the appropriate ancillary about the test request (trans-
mitting part of the task structure). The request includes a soft deadline (the ‘flow due
date’) for the task. The ancillary will schedule the test immediately, using a shared
primary performance criteria of not missing the deadline, and secondary local criteria
such as minimizing setups, maximizing throughput, etc. All other criteria being equal,
the ancillary picks the earliest slot. As soon as the slot is chosen, the scheduled slot
(what I will later call a commitment in the discussion of GPGP in Chapters 5 and 6) is
communicated back to the unit subsystem.

Secondary: As soon as a slot is scheduled for a patient at an ancillary, the slot (commitment)
is broadcast to all other ancillaries, thus effectively blocking that slot from consideration
by the other ancillaries for any tests on that patient (as indicated in the diagram by the
resource�constrains relationships.

One thing to note about this new system is that it does not explicitly handle interactions
between tests at different ancillaries. The GPGP family of coordination algorithms (Chapters 5
and 6) could be configured to respond to these interactions as well as eliminate broadcast
communication.

3.6.3.2 Airport Resource Management

The UMASS ARM (Airport Resource Management [Hildum, 1994]) and Dis-ARM
(Distributed ARM [Neiman et al., 1994]) systems solve airport ground service scheduling
problems. The function of such systems is to ensure that each airport flight receives required
ground servicing (gate assignment, baggage handling, catering, fuel, cleaning, etc.) in time to
meet its arrival and departure deadlines [Neiman et al., 1994]:

21Additional problems may also ensue. For example, in some cases the sequence of multiple tests are important—
a wrong sequence can result in patient stay delays as the residual effects of one test may influence the earliest start
time of another test [Ow et al., 1989].

77

The supplying of a resource is usually a multi-step task consisting of setup, travel,
and servicing actions. Each resource task is a subtask of the airplane servicing
supertask. There is considerable parallelism in the task structure: many tasks can
be done simultaneously. However, the choice of certain resource assignments can often
constrain the start and end times of other tasks. For example, selection of a specific
arrival gate for a plane may limit the choice of servicing vehicles due to transit time from
their previous servicing locations and may limit refueling options due to the presence or
lack of underground fuel tanks at that gate. For this reason, all resources of a specific
type can not be considered interchangeable in the AGSS domain.

The generative model for this environment includes the nominal flight schedule, a model
of the errors in this schedule (i.e., late arrival times), and the airport’s resources (assuming all
planes will need the same set of services). An episode is a 24-hour time period including the
initial, nominal flight schedule. Another possible addition to the generative model are failure
rates for the servicing resources. Because the nominal flight schedule for the airport is fixed
ahead of time, generating an episode mostly concerns variations in arrival time (usually delays)
and equipment breakdowns. Each arriving flight spawns a task group to service that flight.

Figure 3.13 shows the objective task structure for a small episode with two gates, two fuel
trucks, and two baggage trucks. Gate 2 has an underground fuel tank, and thus enables local
fuel delivery without needed a fuel truck. Slightly unusual relationships hold between using a
gate and servicing the plane, because the gate must be held for the entire time of servicing (as
opposed to a strict sequencing like enables). The subjective information available to any agent
is the same, except for the arrival times of task groups (flights) in the future, which are only
tentative.

T
min

task with quality
accrual function min

subtask relationship

enables

method (executable task)

starts-before

agent

Service
Plane

Use
Gate

Fuel Baggage

NWA
451

G1 G2

F1 F2Local B1 B2

Service
Plane

Use
Gate

Fuel Baggage

NWA
118

G1 G2

F1 F2Local B1 B2

Gate
1

Gate
2

Fuel
1

Fuel
2

Bags
1

Bags
2

Gate
1

allows-finish

resource-constrains

resource

Figure 3.13. Objective task structure for a small airport resource management episode.

Notice the differences between this structure and the hospital structure. Resources are
much more important here, and connect much more of the substructures to one another.
Much of this comes out of the necessity to represent the effect of equipment travel times that

78

are not represented in the hospital case (the point is not that ‘equipment doesn’t travel in the
hospital’ but that the travel times of the patients can be standardized—an important classical
coordination technique). Travel times, however, cause every action taken by a resource (such
as a fuel truck) to be related to every other action in a complex way, changing the effects at
each potential successive action (I’ll talk about this again in Section 7.5 below).

This strongly connected structure thus impacts the potential coordination mechanisms
used. For example, in ARM, and in real airports, this scheduling is done in a centralized
manner for a fixed set of resources (although one might consider resources such as baggage
trucks as ‘agents’, in such a system these agents are slaves that only obey the commands of the
central coordinator—similar to the bulldozers in Phoenix[Cohen et al., 1989]).

Such a centralized scheduling process is obviously expensive and complex in terms of
computation. The Dis-ARM project [Neiman et al., 1994] looks to provide performance
improvements over a centralized system by using multiple schedulers. The subjective view of
the problem for each scheduler is considerably simplified by assigning each scheduler exclusive
control of certain resources (for example, each scheduler could get one airport concourse of
gates and a commensurate number of fuel and baggage trucks). Each scheduler tries to locally
schedule the services for planes arriving in its concourse. The problem at each agent then
becomes considerably simpler because it has been separated from the similar problems at other
agents’ concourses, and the agents can solve the problems in parallel as well. The downside is
that the totally separate solutions are potentially more wasteful of resources. To combat this,
the Dis-ARM system allows agents to lend resources to one another—note however that each
lending act will connect initially unrelated task groups through resource relationships and make
each agent’s scheduling that much harder.

Other solutions are also suggested by the task structure. For example, since the services
provided to each plane are already standardized, one could schedule the services at a constant
headway (or one keyed to the business pattern, i.e., closer headway during the morning and
evening rush times). Thus pre-scheduled and fixed slots would be established, and when a plane
arrives (or soon before) it would be assigned to the next available slot (and associated gate).
This technique removes the uncertainty in plane arrivals from the system (but is probably not
used by airports because they wish for gate assignments to be made as early as possible, both
for customers and for automated baggage handling). Another solution would be similar to the
Dis-ARM structure; basically the corporate division organizational form—rather than direct
negotiation, each scheduler (division) would apply for resources through a centralized ‘front
office’ (which in turn centralizes all the rapidly changing information about the resources). A
modification to this structure is a matrix organization where separate agents keep track of each
class of resources (i.e., a baggage truck agent, a fuel truck agent, etc.) and then other agents are
responsible for servicing the flights, drawing resources from the resource-class pools [Sycara et
al., 1991].

3.6.3.3 Internet Information Gathering

Another task environment mentioned briefly in the overview of this thesis was distributed
information gathering. The Internet, as well as several popular commercial services, grow
by leaps and bounds daily, providing rich and varied sources of information. Quickly and
efficiently retrieving this information can be viewed as a set of interrelated tasks in an uncertain

79

and dynamic environment. The same piece of data can be available via many different methods,
and at many different locations; at any point of time only some of those locations are acessable
through some subset of methods. It is extremely common nowadays for one to know precisely
where a certain answer can be found but for one to have to undertake a time-consuming
sequential search to find a currently available resource and access method. Within a single
query, multiple agents could search in multiple locations in parallel and coordinate their
actions when it was useful. For example, the results of work by one agent may suggest the need
for some of the existing agents to gather additional information, or it might suggest the need
for a new division of tasks among the agents [Oates et al., 1994].

Generative level information in this task environment includes the frequencies and types
of queries (are the agents beholden to individuals, or are they available to the network, which
would result in very different usage patterns). It also includes information about the dynamics
of the environment: how frequently do connections or links to physical information sources
change, how often are the physical sources available, how often does the information on those
sources change? How often are new physical sources being added?

resource-constrains

physical resource

T
min

task with quality
accrual function min

subtask relationship

method (executable task)agent

R
1

Mac
Query

Tidbits LibraryInfo
Mac

query specification

WAIS FTP

ftp.tidbits.com

mirror 1
tidbits.SRC

max

so
ur

ce
 sp

ec
ifi

ca
tio

n

Movie
Query

BillDB

WAIS HTTP

BillDB.SRC

TMC
CM

Figure 3.14. High-level, objective task structure for a two independent queries that resolve at
one point to a single machine.

Figure 3.14 shows part of an objective level description of an example episode. Here two
queries are being made—one about Macintosh information and one about movies. The Mac
query might encompass several general sources of Mac information—the TidBits electronic
newsletter, Info-Mac and other electronic file archives, Usenet newsgroups, and even standard
library article searches. This particular query might be constructed by the interaction of a human
user and a persistent Mac query intelligent agent. The task of searching each information source
can be broken down into the different possible access methods for that source (e.g., WAIS, FTP,
HTTP, a special-purpose agent that can use telnet to access a class of library databases, etc.).
Each access method may still imply multiple physical resources (for example TidBits back issues
can be found both at the mother site ftp.tidbits.com and at various mirrors of that site. Work
done retrieving from mirror sites is redundant in the TÆMS sense—but which sites are likely to

80

be operating at all? How fast will they be? Are they accepting connections?22 One can imagine
the enforcement of user performance criteria on the agents carrying out these tasks. One user
might want a (not necessarily complete) answer immediately, another might be willing to wait
for the agents to find the ‘best’ answer they can find. Queries might be continuous ‘profiles’
for information to be retrieved now and in the future as it becomes available.

Another point to note about Figure 3.14 is the presence of shared resources linking
otherwise unrelated queries. In this example the shared physical resource is Thinking Machines’
CM5 WAIS server,which stores many example WAIS databases. Other similar examples include
popular mirror and archive sites like uunet.uu.net and wuarchive.wustl.edu.

T
min

task with quality
accrual function min

subtask relationship

method (executable task)

enables

facilitates

agent
Review

Library

Info
Mac

Tidbits

WAIS FTP

ftp.tidbits.com

mirror 1
tidbits.SRC

max

Online Paper

News

Seller

Retrieve

Tidbits

Locate

FaxOnline

from
library
(human
agent!)

from
seller

from
magazine

($)

from
Uncover

($)
Uncover

pac.carl.orgxyzzy.com

Figure 3.15. Mid-level, objective task structure for a single query for a review of a Macintosh
product showing intra-query relationships.

Figure 3.15 shows more detail from a particular Macintosh query episode for a review of
some Mac software product. Such reviews can be found both in online forms and in what
were originally published paper forms (but which may now be online as well). A user may
perhaps view truly published product information as being of higher quality. Online product
information might be found in the review portion of the TidBits newsletter, or in collected
product information in the Info-Mac archives, or in exchanges about a product in Usenet
News. Finding paper reviews of a product can be reduced to locating a citation and then the
actual article itself. TidBits contains the table of contents of the popular Macintosh magazines;
some magazines are indexed by free periodical indices such as Uncover; sometimes the seller
of a product will both have information available on the net and citations of reviews of their
product. Once a citation is found, retrieval can be by hand or from online sources (but almost
all of these will cost money). Note that some parts of this structure facilitate others, e.g., having

22These are all generative level questions.

81

used Uncover to come up with a citation it is very easy to have the article faxed to you at a
price.

The task structure of this environment lends itself to a great deal of parallelism since a lot
of work can be done in parallel and the interrelationships are relatively few and fixed. On the
other hand, efficient planning for search according to a users preferences (e.g., quick response?
best answer?) make the coordination problem more one of intelligent task decomposition.

3.6.3.4 Pilot’s Associate

The global coherence problems we would like to address occur in many systems other
than the DVMT, such as the Pilot’s Associate (PA) system [Smith and Broadwell, 1987],
where situations occur that cause potentially complex and dynamically changing coordination
relationships to appear between goals that are spread over several agents. Each agent in the
Pilot’s Associate system has subtasks that other agents must fulfill, and receives tasks from other
agents that only it can fulfill.

For example, assume that we are in a tactical situation, so the tactical planner is in control
(see Figure 3.16). It has two ordered subtasks: turn on the active sensors (request to situation
assessment), and get a detailed route of the plane’s movements during the tactical maneuver
(request to the mission planner). Turning on active sensors causes a plane to become a
transmitter, and thus become easily detected (most of the time the plane uses passive sensors).
Since this is dangerous, the situation assessment agent will ask the pilot-vehicle interface (PVI)
to ask for pilot confirmation of the use of active sensors. The pilot, upon seeing the request,
asks the PVI to plot the escape route of the plane on the screen in case things go wrong. The
PVI passes this task to the mission planner.

Meanwhile, the tactical planner has asked the mission planner to produce the detailed
route for the tactical maneuver. Which task does the mission planner act on first? From a local
view, it may perhaps do the tactical planner request first because the tactical planner tasks are a
high priority. But from a global perspective, we see that unless the mission planner plans the
escape route, which is needed by the pilot in order to authorize turning on the active sensors,
which is needed for the tactical planner to do its job, the whole system performance goal of
handling the tactical situation is in jeopardy. Hence the mission planner should do the escape
route plan first.

Although I do not describe GPGP in detail until Chapter 5, let me briefly describe this
scenario in those terms. There will be an overall deadline on the ‘respond to tactical situation’
task, which will be inherited by the ‘plan tactical route’ subtask. The enables relation between
‘get pilot confirmation’ and ‘do it’ (pinging the active sensors) could trigger a GPGP mechanism
to place an earlier deadline on the ‘get pilot confirmation’ task when it is communicated to the
Pilot Vehicle Interface. The task ‘show escape route’, based on this, would also have an earlier
deadline, and thus ‘plan escape route’ would have an earlier deadline (earlier than ‘plan tactical
route’) as well. Thus the Mission Planner obtains the necessary information with which to
schedule the two tasks. If the time to do both tasks is more than the earlier deadline and less
than the later deadline, then the scheduler can only rationally choose to do ‘plan escape route’
first.

82

Plan
escape
route

Plan
tactical
route

Respond to
tactical

situation

Turn on
active

sensors

Show
escape
route

Do It!

min task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)type

Pilot Vehicle Interface

Mission Planner

Situation Assessment

Tactical Planner

Get pilot
confirmation

Pilot

Figure 3.16. Dynamic Situations in Pilot’s Associate. All tasks accrue quality with Min (AND).

3.7 Summary

This chapter discussed a characterization of the features and model of the processes
in computationally intensive task environments called TÆMS (Task Analysis, Environment
Modeling, and Simulation). No characterization currently exists that formally captures the
range of features, processes, and especially interrelationships that occur in computationally
intensive task environments. In the simplest terms, a TÆMS model of a task environment
specifies what actions are available to agents and how those actions relate to one another. This
framework is useful not only for the study of coordination (which will be the subject of the
next two chapters) and other related CDPS behaviors (for example, our brief discussion of
negotiation with respect to Dis-ARM), but also for the study of the planning and scheduling
of computation in realistic real-time or parallel task environments [Garvey et al., 1993,
Garvey and Lesser, 1993]. The contribution of TÆMS itself is really as a base from which
to work—a way to describe an environment carefully, as shown in the examples at the end of
the last section. It is also a way to specify the behavior of an agent when you are designing it’s
control mechanisms, as I will show with GPGP in Chapter 5. Many other things that can be
done with TÆMS including analysis and simulation, will be described in the following chapters.

The work described here is of course not without limitations. Some of these are currently

83

being addressed in follow-up work. TÆMS describes an environment from three different
viewpoints, but this dissertation concentrates mostly on the objective viewpoint. It does not
deal with the various representations of uncertainty that might be in an agent’s subjective
view—we are currently working on this aspect. The generative models in this dissertation
are constructed from a statistical viewpoint—an episode can be characterized by the values of
several random variables. While this is far better than using a set of single-instance examples, it
may not be appropriate for dynamic environments, where the task structure itself is changing
dramatically over time. More complex models of generation may be needed. For example,
generation might be modeled by a set of meta-agents.

Furthermore, especially when modeling human agents and organizations, we only address
what might be called “certain specified uncertainty” [Anderton, 1994]—bounded uncertainty
about known things. But in real human organizations, often external forces change the very
structure of the environment in essentially unpredictable ways. The very factors that influence
behavior, the measures of performance, etc., might change out from under the agent with
no prior warning (or bounding of the uncertainty surrounding these matters). We’ll discuss
this more in Chapter 2. Another problem is if any such general framework could achieve an
external validity that doesn’t require constant re-verification in a new domain. While this seems
possible for computational environments, it doesn’t seem possible for human systems.

The TÆMS representation of task environments is abstract, with the smallest units corre-
sponding to schedulable actions and their relationships (what that means will depend on the
environment being modeled—anything from an indivisible set of real-time tasks to an abstract
organizational unit action). The TÆMS representation is not intended as a schedule or plan
representation, although it provides much of the information that would go into such uses.
TÆMS has many dynamic features including:

� dynamic stochastic arrival of whole or partial task structures,

� dynamic changes to interrelated task durations and qualities caused by the actions of
other agents and stochastic environmental processes

� dynamic changes to the agents’ local views as time progresses and caused by local and
non-local actions

The concept of agency in TÆMS is based on simple notions of execution, communication,
and information gathering (collectively, actions). An agent is a locus of belief (state) and action.
By separating the notion of agency from the model of task environments, we did not have
to subscribe to particular agent architectures (which one would assume will be adapted to
the task environment at hand). TÆMS exists happily alongside blackboard systems, Shoham’s
agent oriented programs, or other agent architectures. Such a conception is unique among
computational approaches. We’ll talk about blackboard-style (DVMT) agents in the next
section, and you’ll see our use of an architecture similar to Shoham’s agent oriented programs
in Chapter 5 (GPGP).

The framework is general in that it is based on abstract features, applicable to many
domains. It is not a model of a specific domain, such as sensor interpretation or fire fighting.
We showed models of several different environments and episodes in this chapter; we’ll expand
on the simple distributed sensor network model in the next chapter.

84

A unique feature of the TÆMS framework is the direct representation of interrelationships
between tasks beyond resource and precedence constraints. Coordination relationships are
crucial to design and analysis of coordination mechanisms, as you will see in chapters 5
and 6. TÆMS allows the formal functional specification of arbitrary task interrelationships;
Section 3.4.3.1 described a useful basic subset.

Finally, this chapter demonstrated, as promised, that TÆMS models are built in three
layers—objective, subjective, and generative. This allows us to capture the single problem
instances that have appeared in many previous non-formal approaches to CDPS systems (i.e.
the DVMT, hospital scheduling, and other examples in the final section). We can also use
it to look at wider classes of problems with stochastically varying features from a statistical
perspective—and that is exactly the subject of the next chapter.

C H A P T E R 4

DESIGN AND ANALYSIS OF COORDINATION ALGORITHMS: A
TASK ENVIRONMENT MODEL FOR A SIMPLE DSN

ENVIRONMENT

Now I know a problem that physics won’t resolve
: : : I know a color that acid won’t dissolve
: : : a place that’s just too far I think for us to go

Now is it wise to have a hope so strong
for real-time answers to real-world wrongs?

— Game Theory, Distortion:“Nine Lives to Rigel Five”, 1984

In the previous three chapters I described the TÆMS framework and several example
models, including one of a simple Distributed Sensor Network (DSN) environment. This
chapter takes this model and uses it to analyze the DSN problem in some depth. Previous
approaches to analyzing organizations in distributed sensor networks have either not focused
on the effectiveness of the organization [Davis and Smith, 1983, Pavlin, 1983], or have only
analyzed organizational effectiveness in particular, single-instance examples [Durfee et al.,
1987]. Others work has focussed on analysis in general situations, but is extremely abstract
[Malone, 1987]. Sen has done an analysis similar in spirit to that presented here, but in a
different domain (meeting scheduling for two agents)[Sen and Durfee, 1994]. I will develop and
test mathematical expressions for the important TÆMS characteristics of objective episodes in the
DSN environment, and use these expressions to develop and analyze coordination algorithms
for agents in this environment. By the end of this chapter I will have developed expressions for
the primary performance criteria in this environment—termination time—for two different
coordination algorithms. I validate these mathematical models by using simulations.

A dynamic organization is one in which the responsibilities of agents can be reassigned
based on a developing view of the problem at hand. Agents that have a dynamic organization
have the option of meta-level communication—communicating about the current state of
problem solving as opposed to communicating about solving the problem itself. Due to the
uncertainties explicitly represented in the TÆMS task environment model, there may not be
a clear performance tradeoff between static and dynamic organizational structures in every
environment.

This chapter will serve as a concrete example of the impact of environmental differences
on coordination algorithms. Although I will discuss three different algorithms and implement
two of them, no one algorithm will be the ‘best’, even statistically, for all DSN environments.
If variance in an environment is large enough, it will behoove the agents to use meta-level
communication to build a dynamic organization that, as Stinchcombe puts it, expands toward
the earliest available information that resolves uncertainties in the current environment, allowing
the agents to then create an efficient organization for the situation.

86

4.1 Task Environment Simulation

In the next section, we will test the model we are developing against a simulation of DSN
problem solving. Each simulated DSN episode will take place on a grid where the concepts
of length and size correspond directly to physical distances. For example, Figure 4.1 illustrates
several simple organizations imposed on such a grid in our simulation.

In the simulation we assume that each vehicle is sensed at discrete integer locations (as in
the DVMT), randomly entering on one edge and leaving on any other edge. Between these
points the vehicle travels along a track moving either horizontally, vertically, or diagonally each
time unit using a simple DDA line-drawing algorithm (see Figure 4.6). In an 18 � 18 grid,
the (empirical) average length of a track is 14 units—the actual length of any one track will
range from 2 to 19 units and is not distributed normally. Given the organization (r, o, and A,
and the geometry), we can calculate what locations are seen by the sensors of each agent. This
information can then be used along with the locations traveled by each vehicle to determine
what part of each task group is initially available to each agent. In general, no agent will see
all the parts of a complete task group (track). Section 4.5 will detail what the structure of each
task group is for the DSN simulation.

r=13

o=8

A=4

r=5

o=4

A=196

r=11

o=4

A=4

Figure 4.1. Examples of DSN organizations on an 18 � 18 grid

Our TÆMS generative level model of this process was discussed back in Section 3.3.
The properties of the episodes in a DSN environment are summarized by the tuple D =<
A; �; r; o;T (l) > where A specifies the variable number of agents, � the expected number
of task groups, r and o specify the variable structural portion of the organization by the
range of each agent and the overlap between agents, and T (l) specifies a template for the
structure of each task group. A particular episode in this environment can be described by the
tuple D =< T1(l1); : : : ;Tn(ln) >, where n is a random variable generated from a Poisson
distribution with location parameter (central tendency) of �. The li are generated by the
process explained above.

This specification is applicable to other interesting environments. For example: each task
group may comprise several different types of subtasks; each agent may only respond to a
certain type of subtask (its ‘range’); multiple agents may respond to the same types (‘overlap’).
In general, the parameters of ‘range’ and ‘overlap’ can be multidimensional.

87

4.2 Expected Number of Sensor Subtasks

When a system of agents is confronted by a particular DSN problem-solving episode, each
agent will sense, or ‘see’ 1 a certain amount of low level data associated with the tracks of vehicles
that moved through the agent’s sensed area. In order to analyze the performance of a particular
organization, we will want to know (a priori) what proportion of each task group each agent
is likely to process. There will be some upper limit on this proportion (related to the agent’s
range r), and sometimes the agent will process less than this upper limit. Especially in static
organizational structures where tasks are not exchanged, the termination of the system as a
whole can be tied to the completion of all tasks at the most heavily loaded agent. Normally, we
would use the average part of a task group to be seen, but since the focus of our analysis is the
termination of problem solving, we need to examine the expected maximum portion of a task
group to be seen. This section will develop an equation for the expected maximum workload
at an agent by counting the expected number of low-level sensor subtasks (each individually
associated with a sensed vehicle location) that the maximally loaded agent will have.

The amount of a single task group seen by an agent (which is the same as the number
of sensor subtasks in the DSN example) can be viewed as a random variable S with a
probability density function and corresponding cumulative distribution function. In the DSN
environment, S is discrete, and its probability function (determined empirically2) is heavily
weighted toward r (the maximum). To simplify the analysis, instead of letting S correspond
to the number of subtasks in a single task group seen by an agent, let’s create a new random
variableS that we have equal 1 if the agent sees the maximum amount, and 0 otherwise. NowS
has a Bernoulli (coin-tossing) distribution with parameter p corresponding to the chance of an
agent seeing the maximum amount r of a task group.3 Let’s assume we know that N � n is the
number of task groups at the maximally loaded agent, and that on average a � A agents see a
single task group (we’ll remove these assumptions later). The number of times an agent sees the
maximum out of N task groups (N coin flips) then has a binomial distribution (bN;p(s)). We
need to know, given that a agents each flip N coins, what the distribution is of the maximum
number of ‘heads’ any agent sees—this is called the binomial max order statistic, ga;N;p(s):4

bN;p(s) =
�
N
s

�
ps(1� p)N�s [Pr [S = s]]

BN;p(s) =
Ps

x=0 bN;p(x) [Pr [S � s]]

ga;N;p(s) = BN;p(s)
a �BN;p(s� 1)a [Pr [Ŝ = s]]

The random variable S refers to any agent, and the new random variable Ŝ refers to the
maximally loaded agent. Its probability function g(s) has a much steeper shape and larger
expected value than the binomial b(s) (see Figure 4.2). In the DSN example we have p = 0:55

and the amount of a task group seen when an agent does not see the maximum amount averages
r=2. In effect, we are modeling the sensor reception process by the simplification that when

1As is common with the DVMT, we will use “sensed” and “seen” interchangeably in this chapter.
2I built a simulation and counted it in over 500 random episodes.
3It is entirely possible to complete the analysis using the empirical, discrete distribution function, but it adds

little to the effectiveness of the model and needlessly complicates the discussion.
4A more detailed derivation of this result is in our tech report.
5Empirically determined through simulation as previously mentioned.

88

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10

b10,0.5(s)

g2,10,0.5(s)

g5,10,0.5(s)

g10,10,0.5(s)

Pr
ob

ab
ili

ty

Value of ‘s’

Figure 4.2. A comparison of the probability distributions of the outcome of ‘heads’ in the act
of flipping a coin 10 times (the binomial b10;0:5(s)) compared to the outcome of having 2, 5,
or 10 agents flip 10 coins and taking the number of heads of the agent who flipped the most
heads (the max order statistics g2;10;0:5(s) through g10;10;0:5(s)).

the coin is heads we see the maximum r sensed data points, and when the coin is tails we see
only r=2. Now we can convert back from the easy to analyze random variable Ŝ to the variable
we are really interested in, which I will call Ŝ, by the equation Ŝ = (rŜ + (r=2)(N � Ŝ)).
The new random variable Ŝ models how many sensed data points are seen by the agent who
sees the most complete tracks.

Remember that the definition of expected value is the sum of the product of the probability
of a value and the value itself across all possible outcomes. In the case of Ŝ, the probability
of any particular value is given by the appropriate max order statistic g that some agent sees s
‘heads’, and the number of sensed data points is given by the function (rŜ + (r=2)(N � Ŝ))
(again, when there were s ‘heads’). Therefore, the expected heaviest load seen by any agent
when a agents seeN task groups with a probability p of seeing r and probability 1�p of seeing
r=2 is:

E[ŜjN; a] =
NX
s=0

ga;N;p(s)(rs +
r

2
(N � s)) (4.1)

To reiterate: out of N task groups the maximally loaded agent sees the maximum r some Ŝ
(a random variable) times, and the other (N � Ŝ) times it sees only r=2. Eq. 4.1 shows the
expected value of a new random variable Ŝ that indicates the number of sensor subtasks at the
maximally loaded agent when there are N task groups in an episode. N is itself a random
variable, we’ll look at its distribution in the next section.

89

Figure 4.3 shows the heaviest load actually observed and averaged over 1000 runs, plotted
against the expected value, for n tracks and all square DSN organizations [2 � r � 10; 0 � o �
r; 1 �

p
A � 10; 1 � N � 10] (R2 = 0:98)6. The colors of the points refer to the value of r;

lighter grey corresponds to larger values of r.

A
ct

ua
l M

ax

10

20

30

40

10 20 30 40
Estimated Max

Figure 4.3. Actual versus predicted heaviest load ŜN for various values of A, r, o, and N

4.2.1 Distribution of the Binomial Max Order Statistic

To expand on the formulae in Section 4.2, the amount of a single task group seen by
an agent can be viewed as a random variable S with probability density function f(s) and
corresponding cumulative distribution function F (s). Let a be the number of agents that
initially see part of a single task group. By elementary statistics, the density of the max order
statistic Smax = max (S1; S2; : : : ; Sa) is ga(s) = aF (s)a�1f(s). The expected heaviest
load then is

R r
0 sga(s)ds. In the DSN environment, S is discrete, and its probability function

(determined empirically) is heavily weighted toward r (the maximum). To simplify the analysis,
instead of letting S correspond to the number of subtasks in a single task group seen by an
agent, we again introduce a new random variable S equal 1 if the agent sees the maximum
amount, and 0 otherwise. Now S has a Bernoulli (coin-tossing) distribution with parameter
p corresponding to the chance of an agent seeing the maximum amount r of a task group. S
then corresponds to the number of times an agent sees the maximum r if the agent sees N task
groups (tracks). S has a binomial distribution with parameters p and N . Now if a agents see
N task groups each, what is the distribution of Ŝ = max (S1;S2; : : : ;Sa)? This is the max

6R2 is the squared correlation coefficient, a measure of goodness of fit. It may be interpreted as the proportion
of total variability in the observed data that is explained by the model.

90

order statistic for the binomial distribution, and because it is discrete, can be easily derived.
The probability function and cumulative distribution function for the binomial distribution
are:

bN;p(s) =
�
N
s

�
ps(1 � p)N�s [Pr [S = s]]

BN;p(s) =
Ps

x=0 bN;p(x) [Pr [S � s]]

If we assume each track is independent of the others, we can derive the cumulative distribution
function:

Pr [Ŝ � s] = Pr [max (S1;S2; : : : ;Sa) � s]

= Pr [S1 � s] Pr [S2 � s] � � �Pr [Sa � s]

= BN;p(s)
a

The probability function ga;N;p(s) = Pr [Ŝ = s] is then:

ga;N;p(s) = BN;p(s)
a �BN;p(s� 1)a

4.3 Expected Number of Task Groups

Given the maximum number of task groups seen by an agent (N), we can calculate the
expected heaviest agent load using Equation 4.1. But this begs the question of what is the
maximum number of task groups an individual agent will see, given the actual (n) or expected
number (�) that the entire system will see. The solution is similar—each agent either sees or
does not see each of the n task groups, another binomial process. LetNi be the number of task
groups sensed by agent i, with a binomial distribution of parameters n and q. If a is again the
number of agents that see a single task group and A the total number of agents, then q = a=A,
the probability that each agent will see a particular track (we’ll give an equation for a next). By
the same derivation as in the last section, the max order statistic N̂ has the probability function
gA;n;a=A(s), and expected value:

E[N̂ jn; a] =
nX

s=0

sgA;n;a=A(s) (4.2)

Figure 4.4 shows the actual mean value of the maximum number of tracks seen by an agent
over 1000 runs of the DSN simulation, versus the predicted value, for n tracks and square
DSN organizations [2 � r � 10; 1 �

p
A � 10; 1 � n � 10] without any overlap (R2 = 0:96)

4.4 Expected Number of Agents

The only remaining term we need to analyze before deriving an expression for system
performance is a, the expected number of agents that will see a single task group. In general,
a will depend on the total number of agents A and the organization (r and o). When there is
only one agent, it will see every task group (a = 1). When the agents overlap completely, every
agent sees every task group ([o = r] ! [a = A]). When the agents in a square environment

91

A
ct

ua
l M

ax
 N

um
be

r
of

 T
ra

ck
s

Se
en

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
Predicted Maximum Number of Tracks

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
ct

ua
l n

um
be

r
of

. a
ge

nt
s

se
ei

ng
 a

 t
ra

ck

Predicted number of agents to see a track

Figure 4.4. On the left, actual versus predicted maximum number of task groups (tracks) seen
by any one agent for various r, A, and n. On the right, actual versus predicted average number
of agents seeing a single task group (track) for various r, o, and A.

do not overlap, a is approximately
p
A. The relationship follows the ratio of the area solely

covered by an agent plus the area of the overlapping section, to the total area covered alone:

a = A
(r

2+o2

2r2
) (4.3)

Note that a is not a random variable, it is just derived directly from environmental parameters.
Figure 4.4 shows a regression of the actual average value of a over 1000 runs verses the predicted
value for all 630 DSN organizations [2 � r � 10; 0 � o � r; 1 �

p
A � 10] (R2 = 0:98).

4.5 Work Involved in a Task Structure

So far we have derived models for the number of low-level sensor subtasks seen by the most
heavily loaded agent (Ŝ), the number of task groups seen by that agent (N̂), and the average
number of agents to see a task group (a). Now we turn to the question of just how much
work an agent that sees S sensed data points and N task groups has to do in order to solve
the problem at hand. Our model of the performance of the system as a whole is based on the
structure of the tasks involved. We will use TÆMS to describe this structure.

Let me briefly restate the basics of TÆMS from the previous chapter. The objective level
describes the essential structure of a particular problem-solving situation or instance over time.
It focuses on how task interrelationships dynamically affect the quality and duration of each task.
In this chapter we will concentrate only on duration as a performance metric. An individual
task that has no subtasks is called an executable method M and is the smallest schedulable
chunk of work. The quality and duration of an agent’s performance on an individual task is a
function of the timing and choice of agent actions (‘local effects’), and possibly previous task

92

executions (‘non-local effects’). The basic purpose of the objective model is to formally specify
how the execution and timing of tasks affect quality and duration.

Elsewhere in this dissertation we consider the case of facilitation, a non-local effect where
the availability of a result from one task alters the quality and duration of another task, but
the non-communication of a result has no effect [Decker and Lesser, 1993a]. This chapter
considers a different relationship, precedence. If task A precedes task B, then the maximum
quality q(B; t) = 0 until A is completed and the result is available, when the maximum quality
will change to the initial maximum quality q(B; t) = q0(B).

4.5.1 Execution Model

For this chapter we use an extremely simple model of execution (as described earlier in
Section 3.5.3.1). Agents can perform three actions: method execution, communication, and
information gathering. The control component of an agent determines the next action an
agent will perform based on the agent’s current set of beliefs. A method execution action, of
methodM , that is begun at time twill conclude at time t+d(M; t). An information gathering
action has duration d0(I) and updates the agent’s set of beliefs with any new information in
the environment, for example, the arrival of data at the start of an episode, or communications
from other agents. A communication action has duration d0(C) and, after a communication
delay, makes information (such method execution results) available to other agents. The agent
on the receiving side must perform an information gathering action before the communication
can affect its local beliefs.

4.5.2 Simple Objective DSN Model

Recall from Chapter 3 that the summary of a DSN problem-solving environment was the
tuple D =< A; �; r; o;T >. A particular episode in this environment can be described by
the tuple D =< A; r; o;T1; : : : ;Tn > where n is a random variable drawn from an unknown
distribution with location parameter (central tendency) of �. Note that we so far make almost
no assumptions about this distribution; its characteristics will differ for different environments.
For example, in the description of our DSN simulation early in Section 4.1 we noted the
physical process by which vehicle tracks were generated and that the length of the tracks was
not normally distributed.

Each task group T i is associated with a track of length li and has the same basic objective
structure, based on the DVMT (repeated here from Chapter 3):

� li Vehicle Location Methods (VLM’s) that represent processing raw signal data at a single
location to a single vehicle location hypothesis.

� li � 1 Vehicle Tracking Methods (VTM’s) that represent short tracks connecting the
results of the VLM at time t with the results of the VLM at time t+ 1.

� 1 Vehicle Track Completion Method (VCM) that represents merging all the VTM’s
together into a complete vehicle track hypothesis.

Non-local enables effects exist between each method at one level and the appropriate method
at the next level as shown in Figure 3.2—two VLMs enable each VTM, and all VTM’S enable
the lone VCM.

93

VTM

VCM

VLM
VLM

VLM
VLM

T
min

VTM

VTM

T
minT

min

T
min

T
min

method (executable task)

task with quality
accrual function min

subtask relationship

enables relationship

Figure 4.5. Objective task structure associated with a single vehicle track.

If we assume that each VLM has initial duration d0(VLM) and each VTM has the initial
duration d0(VTM), then we can see from the task structure that for each task group the total
execution time taken by a single processor agent will be:

lid0(VLM) + (li � 1)d0(VTM) + d0(VCM) (4.4)

This task structure is a simplification of the real DVMT task structure. For example,
there is no sensor noise (which will cause facilitation relationships between tasks, and there is
no confusion caused by ‘ghost tracks’. Adding these features to the task structure can cause
interesting phenomena as was previously discussed in Section 3.5.4. That section explained
how to add these features to this basic task structure using TÆMS.

4.6 Model Summary

This section has described our basic model of the DSN environment, beginning with the
basic parameters D =< A; �; r; o;T >. A particular episode in this environment can be
indicated as D =< A; r; o;T1; : : : ;Tn >, where each of the n task groups has the structure
mentioned above. This section also developed expressions for Ŝ, the number of low-level
sensor subtasks (i.e., VLM’s) at the most heavily loaded agent, the number of task groups N̂ at
the most heavily loaded agent, and the average number of agents a that see a single task group.
Another way to look at these results is that we have derived the probability distributions of these
variables, i.e., if the system of agents as a whole sees n total task groups, then the distributions
of N̂ and Ŝ are:

Pr[N̂ = N jn] = gA;n; a
A
(N) (4.5)

Pr[Ŝ = sjN̂ = N] = ga;N;0:5(s) (4.6)

Ŝ = (rŜ+ (r=2)(N � Ŝ)) (4.7)

Finally Eq. 4.4 derived the duration, or amount of processing work, involved in a single task
group from its structure.

94

In the next section we will combine these results with simple local scheduling and
coordination algorithms appropriate for static and dynamic organizations. This will allow
us to describe the performance of a system of agents following one of these organizational
algorithms in a particular episode or environment.

4.7 Static vs. Dynamic Organizational Structures: Reorganizing to Balance System Load

Now we have the necessary background to analyze static and dynamic organizational
structures. We define a static structure as one that does not change during a problem-solving
episode. A dynamic structure will change during an episode—specifically, the agents may
redistribute their processing in the overlapping regions of their sensor ranges. We have equations
for the maximum expected number of subtasks at an agent given the number of task groups
seen Ŝ, the maximum expected number of task groups seen given the total number N̂ , and
the predicted number of agents sensing part of a task group a. The key to static structures is
to divide up the overlap area a priori (rather than to allow agents to do redundant work in the
overlap area [Durfee et al., 1987]). The key to dynamic organizational structures is to shift the
dividing line in the overlap area, or to transfer tasks, so that all the agents’ resources are used
efficiently.

We will repeat the assumptions we discussed at the start of Section 4.1 on page 86: the agents
are homogeneous (have the same capabilities with respect to receiving data, communicating, and
processing tasks), the agents are cooperative (interested in maximizing the system performance
over maximizing their individual performance), the data for each agent in an episode is available
simultaneously to each agent as specified by their initial organization, and there are only
structural (precedence) constraints within the subtasks of each task group. Note that each
agent only gets (“sees”) the data in its sensor region.

4.7.1 Analyzing Static Organizations

In a static organization, agents divide the overlapping areas of their ranges as evenly as
possible. The result is a new area of responsibility r0 = r � o

2 for each agent with no overlap
(see Figure 4.6).7 Given the task structure as described in Section 4.5 and shown in Figure 3.2,
and any raw data or communicated task results provided by information gathering actions, the
agent can at any time build a list of currently executable methods (under the set of precedence
constraints). Also, at any time an agent can build a list of methods that need to be executed, but
cannot be because their precedence constraints have not yet been met. The communication
action in this algorithm is a broadcast of the highest level results of all the task groups an agent
has worked on. In DVMT terms, we are joining the partial track that has been constructed
at one agent with the partial track constructed at a second agent, to produce a single, longer
track. Each agent follows the same control algorithm (remember, all the raw data is available
at the start) and terminates when all task groups are completed (either locally or by reception
of the result from another agent):

7The reason for overlap will be apparent in dynamic structures—multiple agents can work in an overlapping
area without paying any cost for communicating raw data between them. Overlap can also provide redundancy
in case of agent failure.

95

(Repeat
Do Information-Gathering-Action
(Repeat

Let E = [get set of currently executable methods]
(For method In E

Do Method-Execution-Action(method))
Until (null E))
Do Communication-Action(broadcast highest-level results)
Let W = [get set of methods still waiting on precedence constraints]

Until (null W))

1

2

3

4

5

6

7

8

9

5

10

20

15

5 10 2015

Figure 4.6. Example of a 3x3 organization, r = 11, o = 5, with 5 tracks. The thick dark grey
boxes outline the default static organization, where there is no overlap.

First, let us analyze this algorithm assuming that only one task group (vehicle track) is
present. In the environment D =< A; �; r; o;T >, if we let S0 represent the largest amount
of low-level data in one task group seen by any agent, and a the total number of agents that see
the task group (from the agents’ organization, a is defined in Equation 4.3), then the amount
of time it will take that agent to construct a complete solution is equal to the amount of time
it will take for the initial information gathering action (d0(I)) plus the amount of time to do
all the local work (S0d0(VLM) + (S0 � 1)d0(VTM)), communicate that work (d0(C)), get
the other agents’ results (d0(I)), plus the amount of time to combine results from the other
a � 1 agents ((a � 1)d0(VTM)), plus time to produce the final complete task group result
(d0(VCM)), plus communicate that result to everyone (d0(C)). For simplicity we will assume

96

A
[1

,3
]

A
[1

,2
]

A
[2

,2
]

A
[2

,1
]

A
[3

,1
]

S´ (VLM)

(S´-1) (VTM)

(a-1) (VTM)

Figure 4.7. Detail from the previous figure of the processing that takes place on the track
running from (1,17) to (16,1)

that d0(I) and d0(C) are constant and do not depend on the amount of data. Note also that
since this agent is the most heavily loaded, by definition all other agents will finish their work
and have communicated it by the time this agent finishes its local work.

For example, Figure 4.7 shows the meaning of this formula with respect to the single track
in Figure 4.6 that runs from point (1,17) to point (16,1). In this example, S0 = 5, the number
of sensed data points at agent [2,1]. Agent [2,1] will have to execute 5 VLM’s which will take
time 5d0(VLM). To join the vehicle locations into a local partial track will take S0�1 VTM’s,
in this case, 4. In this example, a = 5, the number of agents that see this track. Therefore the
work needed to connect the 5 partial tracks is in this case a� 1 = 4 more VTM’s.

In the general case, if the system sees n = � total task groups, then the expected amount of
low-level sensor data (size of the initial data set) at the maximally loaded agent can be derived
from the marginal expected value for Ŝ given the joint distribution of Ŝ (Eqns. 4.6, 4.7) and
N̂ (Eq. 4.5):

E[Ŝ] =
nX

N=0

NX
s=0

gA;n; a
A
(N)ga;N;p(s)(rs +

r

2
(N � s)) (4.8)

Similar to the single task group case, the total time until termination for an agent receiving an
initial data set of size Ŝ is the time to do local work, combine results from other agents, and
build the completed results, plus two communication and information gathering actions:

Ŝd0(VLM) + (Ŝ � N̂)d0(VTM) + (a � 1)N̂d0(VTM) + N̂d0(VCM) + 2d0(I) + 2d0(C) (4.9)

We can use Eq. 4.9 as a predictor by combining it with the probabilities for the values of Ŝ and
N̂ given in Eqns. 4.6, 4.7, and 4.5 (this is very similar to the treatment in Eq. 4.8).

We tested these predictions of Equation 4.9 versus the mean termination time of our DSN
simulation over 10 repetitions in each of 43 randomly chosen environments from the design
space [2 � r � 10; 0 � o � r; 1 �

p
A � 5; 1 � N � 10]8. The durations of all tasks were set at 1

8We generated a random environment (A,r,o,n) by uniformly choosing a integer value for each variable in the
stated range of values.

97

time unit, as were the duration of information gathering and communication actions; we will
demonstrate and discuss the effect of this assumption later in the paper. We used the simulation
validation statistic suggested by Kleijnen [Kleijnen, 1987] (where ŷ = the predicted output by
the analytical model and y = the output of the simulation):

z =
y � ŷ

(Var(y) + Var(ŷ))1=2
(4.10)

where Var(ŷ) is the predicted variance.9 The result z can then be tested for significance against
the standard normal tables. In each of the 43 cases, we were unable to reject the null hypothesis
that the actual mean termination equals the predicted mean termination at the � = 0:05 level.
For non-statisticians: this is a good thing. The null hypothesis is that our prediction is the
same as the actual value, we did not wish to reject it, and we did not. However, such a test has
problems since there are other possible reasons which might prevent us from rejecting the null
hypothesis. The best approach to avoiding this problem is to report not only the alpha level
of the test but also the test’s power. With any statistical hypothesis test there are four possible
outcomes: we are unable to reject the null hypothesis when it is in reality true , we are unable
to reject the null hypothesis when it is in reality false (called a Type II error), we reject the
null hypothesis when it is in reality false, and we reject the null hypothesis when it is in reality
true (called a Type I error). The � level is essentially the probability of a Type I error. The
power of a test is (1 � �), where � is essentially the probability of a Type II error (accepting
a false null hypothesis). Unfortunately, estimating the power of a test is often difficult, and
requires detailed knowledge of the distribution of the test statistic under the condition that the
alternative hypothesis is true (this is turn usually requires the computation of the power for
several likely alternative hypotheses). Future work will involve the computation of the power
for this statistic, or the development of a new test based on other possible statistics that have
better-understood power characteristics.

Figure 4.8 shows the mean of 10 repetitions in each environment versus the expected value
and its likelihood intervals. The 50% likelihood interval is included to give you some idea of
the shape of the underlying distribution; a system designer would of course use the 90% or
95% intervals.

The point of this section is that the analytical model describes the implementation fairly
well, and we could use the analytical model to design a good static organization for a given
environment, using standard heuristic optimization techniques such as simulated annealing.

4.7.2 Control Costs

The control algorithm presented above is simple and not necessarily optimal. By com-
municating only when there is no local work to be done, the heaviest-loaded agent gives up
the chance for other agents to do the high-level composition in a task group by incrementally
transmitting each result (or set of results on a single task group) as it is completed—a maximum
potential savings of (N̂ � 1)(a� 1)d0(VTM) + (N̂ � 1)d0(VCM). However, this needs to
be balanced with the cost of multiple communication actions, which is (N̂ � 1)d0(C). Thus

9The predicted variance of Equation 4.9 can be easily derived from the statistical identity Var(x) = E[x2]�
(E[x])2.

98

Run Number

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41

90% Likelihood Interval

50% Likelihood Interval

Expected Termination

Actual Mean Termination (10 repetitions)

Te
rm

in
at

io
n

T
im

e

Figure 4.8. Actual system termination versus analytic expected value and analytically deter-
mined 50% and 90% likelihood intervals. Runs arbitrarily ordered by expected termination
time.

the question of ‘when to communicate’ (when to incrementally transmit partial results) rests
directly on the cost of communication relative to (a�1)d0(VTM)+d0(VCM) (which depends
on both the basic method durations and the agents’ organizational structure). Thus, the more
agents there are that see a single track the more likely it is that intermediate communication
would be useful.

This simple control algorithm can be analyzed easily, unlike many other systems where
control costs are ignored. If we view the cost of control as the time spent by an agent when
not performing an action (executing a method, information gathering, communication), then
our algorithm runs in constant time between actions except for the two tests [get set of currently
executable methods] and [get set of methods still waiting]. Each of these in the worst case requires
a constant-time test of each element of the full task structure, which is of size O(�r). Thus we
see how the control costs, too, are related to organizational structure.

4.7.3 Analyzing Dynamic Organizations

In the dynamic organizational case, agents are not limited to the original organization and
initial distribution of data. Agents can re-organize by changing the initial static boundaries
(changing responsibilities in the overlapping areas), or by shipping raw data to other agents for
processing (load balancing). We will assume in this section that the agents do not communicate
about the current local state of problem solving directly (see Section 4.8 for thoughts on using
meta-level communication). A clearer distinction is that in the dynamic organization each
agent makes its initial decision (about changing boundaries or shipping raw data) without
access to non-local information. In the meta-level communication situation the agent would
have access to both its local information and a summary of the local state of other agents. In

99

either case the decision to dynamically change the organization is made only once, at the start
of an episode.

In the case of reorganized overlapping areas, agents may shift the initial static boundaries by
sending a (very short) message to overlapping agents, telling the other agents to do all the work
in the overlapping areas. The effect at the local agent is to change its effective range parameter
from its static value of r0 = r�o=2 to some value r00 where r�o=2 � r00 � r�o, changing the
first two terms of Equation 4.9, and adding a communication action to indicate the shift and
an extra information gathering action to receive the results. Section 4.7.4 discusses a particular
implementation of this idea that chooses the partition of the overlapping area that best reduces
expected differences between agent’s loads and averages competing desired partitions from
multiple agents.

In the second case, an agent communicates some proportion p of its initial data to a second
agent, who does the associated work and communicates the results back. Instead of altering
the effective range and overlap, this method directly reduces the first two terms of Equation 4.9
by the proportion p. The proportion p can be chosen dynamically in a way similar to that of
choosing where to partition the overlap between agents (Section 4.7.4).

Whether or not a dynamic reorganization is useful is a function of both the agent’s local
utility and also the load at the other agent. We will again be concentrating on the agent with
the heaviest load. Looking first at the local utility, to do local work under the initial static
organization with n task groups, the heaviest loaded agent will take time:

S 0d0(VLM) + (S0 � n)d0(VTM) (4.11)

When the static boundary is shifted before any processing is done, the agent will take time

d0(Cshort) + S00d0(VLM) + (S00 � n)d0(VTM) + d0(I) (4.12)

to do the same work, where Cshort is a very short communication action which is potentially
much cheaper than the result communications mentioned previously, and S00 is calculated
using r00. When balancing the load directly, local actions will take time

d0(Clong) + pS0d0(VLM) + p(S0 � n)d0(VTM) + d0(I) (4.13)

where d0(Clong) is potentially much more expensive than the communication actions men-
tioned earlier (since it involves sending a large amount of raw data). If the other agent had no
work to do, a simple comparison between these three equations would be a sufficient design
rule for deciding between static and either dynamic organization.

Of course, we cannot assume that the other agent is not busy. One solution is to assume
the other agent has the average amount of work to do. We can derive a priori estimates
for the average initial work at another agent from Equation 4.9 by replacing the probability
function of the max order statistic ga;N;p(s) with the simple binomial probability function
bN;p(s). Therefore without any meta-level communication, a system of agents could choose
intelligently between static, dynamic overlap reorganization (changing r), and dynamic load
balancing (changing p) given these constraints.

100

4.7.4 Dynamic Coordination Algorithm for Reorganization

This section describes a particular implementation of the general idea described earlier
of dynamically reorganizing the partitions between agents for the DSN simulation. This
implementation will keep each agent’s area of responsibility rectangular, and relaxes competing
constraints from other agents quickly and associatively (the order of message arrival does not
affect the eventual outcome). To do this, the message sent by an agent requests the movement
of the four corridors surrounding an agent. The northern corridor of Agent 1, for example, is
the northern agent organizational responsibility boundary shared by every agent in the same
row as Agent 1. As can be seen in Figure 4.9, a 3x3 organization has four corridors (between
rows 1 and 2, 2 and 3, and between columns 1 and 2, 2 and 3).

A1

A2

A3

A4

A5

A6

A7

A8

A9

5

10

20

15

5 10 2015

A1

A2

A3

A4

A5

A6

A7

A8

A9

5

10

20

15

5 10 2015

Figure 4.9. On the left is a 3x3 static organization, on the right is the dynamic reorganization
result after agents 3, 4, 5 and 7 attempt to reduce their areas of responsibility by one unit. In
this example the corridors running North to South have been moved closer by two units to
reduce the load on agents 4, 5, and 6 in the second column.

The coordination algorithm described here works with the local scheduling algorithm
described earlier in Section 4.7.1. This is consistent with our view of coordination as
a modulating behavior [Decker and Lesser, 1993a]. The only modification to the local
scheduler is that we prevent it from scheduling local method execution actions until our
initial communications are completed (the initial and reception phases, described below).

The coordination algorithm is then as follows. During the initial phase the local scheduler
schedules the initial information gathering action, and we proceed to the second phase, reception.
In the second phase we use the local information to decide what organizational design to use,
and the parameter values for the design we choose. To do this we calculate the estimated
duration of our (known) local work10, and then estimate that duration under the alternative

10The agent knows how much local work it has; in this domain it is computed via Eq. 4.11 given the amount
of low-level sensed data that has shown up at the agent.

101

organizations (dynamic reorganization or load-balancing). When a parameter needs to be
estimated, we do so to minimize the absolute expected difference between the amount of work
to be done locally and the amount of work done at the remote agent that is impacted the most
by the proposed change.

For example, when dynamically restructuring, if the overlap between agents is more than
2 units, we have a choice of reducing the area an agent is responsible for by more than 1 unit
(this is the organizational design parameter � in question). To decide on the proper reduction
(if any), each agent computes its known local work Ŵ (�) using Eq. 4.11 with the actual (not
estimated) S0 and N computed assuming the agent’s area is reduced by �. Then the agent finds
the value of � that minimizes the difference in its known local work Ŵ (r� �) and the average
work �W (r + �) at the other agent:

S(r; s;N) = (rs+
r

2
(N � s))

W (r; s;N) = S(r; s;N)d0(VLM) + (S(r; s;N)�N)d0(VTM)

E[Ŵ (r)] =
nX

N=0

NX
s=0

gA;n; a
A
(N)ga;N;p(s)W (r; s;N) (4.14)

E[�W (r)] =
nX

N=0

NX
s=0

bn; a
A
(N)bN;p(s)W (r; s;N) (4.15)

Equation 4.15 is just a restatement of Eqn. 4.14 (itself derived from Eqns. 4.5, 4.6, 4.7,
and 4.11 for the case of the average, not maximally loaded, agent (thus the use of b, the
binomial probability function rather than g, the max order statistic p.f.)).

If � = 0, then the agent will not restructure. If � 6= 0, then the agent sends a message to
all affected agents requesting a reduction of amount � in each corridor (north, east, south, and
west). The agent sets its current area of interest to include only the unique (non-overlapping)
portion of its area (if any), and enters the unique-processing phase. During this phase the regular
local scheduler described earlier controls method execution actions.

When no more methods unique to this agent can be executed, the coordination algorithm
checks the current time. If enough time has passed for the messages from other agents (if any)
to arrive (this depends on the communication delays in the system), the coordination algorithm
schedules an information-gathering action to retrieve the messages. Note that every agent may
reach this point at a different time; agents with a large amount of unique local work may take
some time, agents with no work at all will wait idle for the length of communication delay time
in the system.

At this point each agent will relax its borders according to the wishes of the other agents.
The relaxation algorithm we have chosen is fairly simple and straightforward, though several
similar choices are possible. The algorithm is symmetric with respect to the four corridors
surrounding the agent, so we will just discuss the relaxation of the northern corridor. There
will be a set of messages about that corridor, some wanting it moved up by some amount and
some wanting it moved down by some amount—we will consider these as positive and negative
votes of some magnitude. The relaxation algorithm sums the votes, and returns the sum unless
it is larger than the maximum vote or smaller than the minimum vote, in which case the max or

102

min is returned, respectively.11 At this point the agent enters the final normal processing phase,
and the local scheduler schedules all further actions as described earlier.

4.7.5 Analyzing the Dynamic Restructuring Algorithm

As we did in Section 4.7.1, we can develop an expression for the termination time of any
episode where the agents follow this algorithm. To do so, we start with the basic termination
time given all of the random variables. This equation is derived from Eqns. 4.14 and 4.15:

T (r; Ŝ; N̂ ; �s; �N) = max[W (r � �; Ŝ; N̂);W (r + �; �s; �N)] (4.16)

where � is computed as described in the last section using the given values of (r; Ŝ; N̂; �s; �N). To
turn this into a predictive formula, we then use the expressions for the probabilities of the terms
Ŝ; N̂ ; �s; and �N (from Eqns. 4.6, 4.7, and 4.5). For example, we can produce an expression for
the expected termination of the algorithm:

nX
N̂=0

N̂X
Ŝ=0

nX
�N=0

�NX
�s=0

gA;n; a
A
(N̂)ga;N̂;0:5(s)bn; aA (

�N)b �N;0:5(�s)T (r; Ŝ; N̂; �s; �N) (4.17)

We tested the predictions of Equation 4.17 versus the mean termination time of our
DSN simulation over 10 repetitions in each of 10 randomly chosen environments. The
durations of all tasks were set at 1 time unit, as were the duration of information gathering and
communication actions, with the exception of the 4 environments described in the next section.
Using the same validation statistic as before (Eq. 4.10) in each case we were unable to reject
the null hypothesis that the actual mean termination equals the predicted mean termination at
the � = 0:05 level.12

4.7.5.1 Increasing Task Durations

Figures 4.10 through 4.13 compare the termination of static and dynamic restructuring
organizations on identical episodes in four different environments. Ten different episodes
were generated for each environment. In order to see the benefits of dynamic restructuring
more clearly, we chose task durations for each environment similar to those in the DVMT:
d0(VLM) = 6;d0(VTM) = 2d0(VCM) = 2.13 Note that the dynamic organization often
does significantly better than the static organization, and rarely does much worse—remember
that is many particular episodes that the dynamically organized agents will decide to keep
the static organization, although they pay a constant overhead when they keep the static
organization (one extra communication action and one extra information gathering action,
given that the time for a message to reach all agents is no longer than the communication
action time).

11For example, if 2 agents vote for it to be moved up by one, and two vote for it to be moved up by 2, then the
corridor is moved up by only 2, not 6!

12The same caveats that we discussed in Section 4.7.1 still apply here.
13The idea being that the VLM methods correspond to lowest three DVMT KSIs as a group, and the other

methods correspond to single DVMT KSIs, and that a KSI has twice the duration of a communication action.

103

E

E

E

E E

E

E

E

E

E

G

G

G

G

G

G

G

G

G

G

0

50

100

150

200

250

T
er

m
in

at
io

n
T

im
e

Dynamic termination time
Static termination timeG

E

Figure 4.10. Paired-response comparison of the termination of static and dynamic systems the
environment A = 9; r = 9; o = 9; n = 7] (ten episodes). Task durations are set to simulate
the DVMT (see text).

E
E

E
E E

E E
E

E

E

G

G

G

G G G

G

G

G

G

0

20

40

60

80

100

120

140

T
er

m
in

at
io

n
T

im
e

Dynamic termination time
Static termination timeG

E

Figure 4.11. Paired-response comparison of the termination of static and dynamic systems the
environment A = 16; r = 8; o = 5; n = 4] (ten episodes). Task durations are set to simulate
the DVMT (see text).

104

E

E

E

E

E
E

E

E
E

E

G

G

G

G

G

G

G

G
G

G

0

50

100

150

200

250

300

T
er

m
in

at
io

n
T

im
e

Dynamic termination time
Static termination timeG

E

Figure 4.12. Paired-response comparison of the termination of static and dynamic systems the
environment A = 4; r = 9; o = 3; n = 5] (ten episodes). Task durations are set to simulate
the DVMT (see text).

E

E

E
E

E

E

E E

E

E

G

G

G
G

G

G

G

G

G

G

0

50

100

150

200

250

300

350

T
er

m
in

at
io

n
T

im
e

Dynamic termination time
Static termination timeG

E

Figure 4.13. Paired-response comparison of the termination of static and dynamic systems the
environment A = 9; r = 10; o = 6; n = 7] (ten episodes). Task durations are set to simulate
the DVMT (see text).

105

4.8 Using Meta-Level Communication

For some environments D =< A; �; r; o;T > one of the three organizational choices
(static, reorganized, load balanced) may be clearly better in the long run, but for most
environments the choice is not so clear given the variance in system performance. The
choice that optimizes performance over the long run is often not optimal in any particular
episode. Taking the essential equations for local work in Section 4.7.3, we can compute
likelihood intervals on the predicted performance of an organization under each of the three
coordination regimes by combining the local likelihood interval on the expected load of the
heaviest loaded agent, and the likelihood interval on the average agent load. These results,
for the 90% likelihood interval, are shown in Figures 4.14 through 4.19. Again we have
assumed that all execution, communication, and information gathering action durations have
the same value (making communication relatively expensive). The first figures, Figures 4.14
through 4.16, highlight how the relationship between performance under a static organization
and a dynamically load balanced organization changes as the number of agents increases. As
expected, load balancing becomes more desirable as the number of agents increases (in relation
to the average number of tracks): when there are many agents, the average agent load becomes
very low, which offsets the cost of transferring tasks. In this figure the performance difference
between static and overlap reorganization remains nearly constant relative to the number of
agents.

Figures 4.17 through 4.19 point out how dynamically reorganizing the overlap area
increases the performance over static organization as the amount of overlap increases. This
result is consistent with Durfee’s results [Durfee et al., 1987]. For this graph we assumed
that the agents would shrink their entire area of responsibility (as opposed to minimizing the
difference in maximum versus average work as described in Section 4.7.4) to try to maximize
the visual difference on the graph. This graph shows the need for dynamically calculating the
reorganized algorithm shrinkage parameter (�) especially at high levels of overlap (note how
the dynamically reorganized organization is predicted to do worse at high levels of overlap
(o = 8; 9; 10) in the n = 20 portion). The expected performance difference between the static
organization and load balancing remains relatively constant across changing values of o. In
both figures we have let d0(C) = d0(Cshort) = d0(Clong); increasing the differences in these
values will move the corresponding curves directly up or down.

The next series of figures demonstrate the effect of the ratio of computation duration to
communication duration. This and subsequent figures assume that the dynamic restructuring
shrinkage parameter � is set to minimize the difference between maximum and average local
work as described in Section 4.7.4. Figure 4.20 shows how the expected value and 90%
likelihood interval on system termination changes as the duration of a method execution action
changes from equal to (1x) a communication action to 10 times (10x) that of a communication
action. The task structure remains than of the DSN example described in Section 4.5. In
Figure 4.20 we see a clear separation emerge between static and dynamic termination. We did
not experiment with changing the communications delay between agents (which is fixed here
at 1 time unit) because all data for an episode arrives at once. In continuous environments
delay will be more important (see Section 6.1.5 and [Mirchandaney et al., 1989])

These figures assume that the number of task groups n is known beforehand. The reason
for this is to highlight the variance implicit in the organization, and minimize the influence of
the external environment. Figure 4.21 shows how much extra variance is added when only the

106

H H H

H H H H H

H

P

P P P

P P P P P

K

K

K

K K K

K K

K

K

K K K

K K K K K

n

n

n

n n n n n

n

o

o o o

o o o o o

4 9 16 25 36 49 64 81 100
0

10

20

30

40

50

60

70

80

90

100

T
er

m
in

at
io

n
T

im
e

Number of Agents [r=10, o=3, n=5]

Static

Load Balanced

Reorganized

Q R

L L

[]

Figure 4.14. 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 5.

107

H

H

H H

H

H

H H H

P P

P P P P

P P P

K

K

K K

K
K

K K

K

K

K

K K K K
K K K

n

n

n n

n

n

n n n

o o

o o o o

o o o

4 9 16 25 36 49 64 81 100
0

20

40

60

80

100

120

140

160

T
er

m
in

at
io

n
T

im
e

Number of Agents [r=10, o=3, n=10]

Static

Load Balanced

Reorganized

Q R

L L

[]

Figure 4.15. 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 10.

108

H

H

H

H H

H

H H H

P

P

P

P P P

P P

P

K

K

K

K
K

K K
K K

K

K

K

K
K K

K K
K

n

n

n

n n
n

n n n
o

o
o

o o o
o o

o

4 9 16 25 36 49 64 81 100
0

50

100

150

200

250

300

T
er

m
in

at
io

n
T

im
e

Number of Agents [r=10, o=3, n=20]

Static

Load Balanced

Reorganized

Q R

L L

[]

Figure 4.16. 90% likelihood intervals on the expected termination of a system under three
coordination regimes, different numbers of agents, and n = 20.

109

H

H

H

H

H

H

H

H

H

H

H

P P

P

P

P P

P

P

P P

P

K

K

K

K K K K K K K K

K
K

K
K

K
K

K
K

K
K

K

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

T
er

m
in

at
io

n
T

im
e

Overlap [A=9, r=10, n=5]

Static

Reorganized

Q R

L L

Figure 4.17. 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 5.

110

H

H

H

H

H

H

H

H

H

H

H

P
P

P

P

P
P

P

P

P
P

P

K

K

K

K
K K K K K K K

K

K

K

K

K

K

K

K

K
K K

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

T
er

m
in

at
io

n
T

im
e

Overlap [A=9, r=10, n=10]

Static

Reorganized

Q R

L L

Figure 4.18. 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 10.

111

H

H

H

H

H

H

H

H

H

H

H

P

P

P

P

P

P

P

P

P

P

P

K

K

K K K K K K K K K

K

K

K

K

K

K

K K K K K

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

T
er

m
in

at
io

n
T

im
e

Overlap [A=9, r=10, n=20]

Static

Reorganized

Q R

L L

Figure 4.19. 90% likelihood intervals on the expected termination of a system under two
control regimes, varying the amount of overlap, with n = 20.

112

K

K

K

K

K

K

K

K

K

K

K
K

K
K

K
K

K
K

K
K

X

X

X

X

X

X

X

X

X

X

K

K

K

K

K

K

K

K

K

K

K
K

K
K

K
K

K
K

K
K

X
X

X
X

X
X

X
X

X
X

1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
0

100

200

300

400

500

600

700
E

st
im

at
ed

 T
er

m
in

at
io

n

Cost of execution vs. communication

X Static Organization

X Dynamic Restructuring

Figure 4.20. Effect of decreasing communication costs on expected termination under a
static organization and dynamic restructuring (expected value and 90% likelihood interval,
A = 25; r = 9; o = 9; n = 7).

expected value of n, which is �, is known. We assume that the number of task groups n (in the
DSN example, vehicle tracks) that occur during a particular episode has a Poisson distribution
with an expected value of �. The discrete probability function for the Poisson distribution,
given in any statistics book, is then:

p�(y) = �y

y! e
�y [Pr [n = y]]

We can use this probability in conjunction with Eqns. 4.8, 4.11, and 4.15 to calculate the
expected value, 50%, and 95% likelihood intervals on termination in the static or dynamic
organizations.14 Note in Figure 4.21 both the large increase in variance when n is random
(between the top bar and the third bar in the figure), and more importantly the small decrease
in variance in the dynamic restructuring organization (between the first and the second bars).
Note also that the mean termination time for the dynamic organization is slightly less than that
for the static organization.

These figures bring us to the final point of this chapter: often system performance can
be improved significantly by dynamic reorganization, but it will rarely always be improved.
On average the dynamic algorithm does better, especially when computation is more expensive
than communication, and assuming that there is some overlapping sensor area with which
to trade off computation. Meta-level communication between agents about their local loads
should, with a small communication cost, pinpoint the true costs and benefits of the various
organizational structures, allowing an informed organizational decision to be made. Instead of
an agent making a decision about restructuring or load balancing by assuming the average load,

14Again, we are providing the 50% interval just to allow the reader to imagine the shape of the underlying
distribution better.

113

Mean

50% Likelihood Interval

95% Likelihood Interval

Estimated Termination Time

35 85 135 185

Dynamic, n known

Static, n known

Dynamic, n Poisson

Static, n Poisson

Var = 520

Var = 608

Var = 1450

Var = 1780

Figure 4.21. Demonstration of both the large increase in performance variance when the
number of task groups n is a random variable, and the small decrease in variance with dynamic
restructuring coordination [A = 9; r = 9; o = 9]. Where n is known, n = 7. Where n is a
random variable, the expected value � = 7.

the agent will have the actual load for the neighboring agents. As we said in the introduction,
the proper organization is often one that exploits information that resolves uncertainties about
the current environment as it becomes available to the agents, allowing the agents to then create
the most efficient organization for the situation.

4.9 Summary

What have I shown in this chapter? I have shown that TÆMS can be used to build models
of task environments that can be analyzed mathematically, and in conjunction with simple
algorithms for coordinated behavior. In this chapter I showed how variations in termination
time could be explained and predicted by environmental variation and the agent’s coordination
algorithm, a much more satisfying answer than the weaker ‘no one algorithm was always the
best’ given in earlier work [Durfee et al., 1987].

This chapter also demonstrated a methodology for the analysis and design of coordination
and scheduling mechanisms, based on MAD. The first step was to build a model of the
environment of interest, using TÆMS, in Sections 4.1 through 4.6. At this point the analysis of
the endogenous features (such as Ŝ and N̂) of individual episodes, given generative parameters,
also took place.

The astute reader will notice that in fact detailed TÆMS structures come in to play for only
part of the analysis done here. It is important to point out that even when TÆMS does not
give specific tools (like a task structure) for modeling, it still provides a structured method by
which modeling can proceed. Thus even though TÆMS does not yet provide us with canned

114

representations for generative models, it does provide us with, for example, the output of the
generative model (some task structure or set of task structures). In this way TÆMS helped us
greatly to focus on exactly what should go into the generative model and what was extraneous15.

TÆMS assumes only a simple view of agents as loci of belief (state) and action. The
mathematical analysis in this chapter proceeded with a formal specification of what actions
an agent will take based on its current beliefs, using the TÆMS-provided meta-structure for
the agent’s state-transition function (control, information gathering, communication, and
method execution). This chapter looked at two combined control-and-coordination algorithms
for agent action (the static algorithm in Section 4.7.1, the one-shot dynamic algorithm in
Section 4.7.4 and the meta-level control algorithm in Section 4.7.3).

This chapter then showed the use of the methodology to develop expressions for the
expected value of, and likelihood intervals on, the time of termination of a set of agents in any
arbitrary simple DSN environment that has a static organizational structure and coordination
algorithm. For example, the total time until termination for an agent receiving an initial data
set of size Ŝ is the time to do local work, combine results from other agents, and build the
completed results, plus two communication and information gathering actions:

Ŝd0(VLM) + (Ŝ � N̂)d0(VTM) + (a� 1)N̂d0(VTM) + N̂d0(VCM) + 2d0(I) + 2d0(C) (4.18)

Eq. 4.9 can be used as a predictor by combining it with the probabilities for the values of Ŝ
and N̂ . I verified this model using the simulation component of TÆMS.

Using this model as a starting point, I extended it to analyze a dynamic, one-shot
reorganization algorithm (and have shown when the extra overhead is worthwhile versus
the static algorithm). In each case I can predict the effects of adding more agents (Figures
4.14–4.16), changing the relative cost of communication and computation (Figure 4.20), and
changing how the agents are organized (in this case, by changing the range and overlap of
their capabilities, Figures 4.17–fig:von20). These results were achieved by direct mathematical
analysis of the model and verified through simulation in TÆMS. This represents a significant
step forward in work on modeling DAI systems.

I specialize MAD by generative model of environmental variance (such as the number of
tracks or the load at the most heavily loaded agent). I also demonstrated the importance of
environmental variance with respect to agent load balancing and meta-level communication in
Section 4.7.5 (I’ll return to this question in Section 6.6).

The TÆMS framework for describing complex task environments is intentionally designed
to bring together experimental work on complex environments and formal work on the
principled construction of agents that act rationally and predictably based on their beliefs,
desires, intentions, and goals. I have shown this by applying formal methods to a DSN
task with coordination opportunities that are much more complex than single-instance game
matrices. The simulation component, which requires the implementation of the ideas, not
just abstract analysis, rounds out the picture. At the very least, I hope this approach will allow
ideas to be more carefully expressed and thus more approachable by the AI community. I
will continue this demonstration in the next chapter through the development and the use of
commitments.

In this chapter, stylized information gathering actions are used to represent actions such as
‘running external sensors’. The inclusion of explicit information gathering actions, is unique

15See also the discussion in Section 3.6.1.

115

and useful for building models at the ‘appropriate’ level relative to the question being asked.
They are a powerful abstraction mechanism that can replace complex reasoning processes (e.g.,
planning) with simpler time/computation tradeoffs for the purpose of modeling. Often a large,
complex system will have many components, not all of which will be under study, or designed.
Information gathering actions are used to represent the gross behaviors of these components and
anticipate system interactions (or explore possible interactions through perturbation) before
and during their design.

Currently there are no characterizations for non-formal coordination algorithms, or for
formal techniques in complex environments. This chapter described such a characterization,
as will the next.

In the next two chapters, I will move from the simple coordination mechanisms used in
these chapters to a family of coordination algorithms constructed from an expandable set of
simpler coordination mechanisms. Because these algorithms are more complex and dynamic, I
will also move from static, closed-form analyses to simulation-based analyses (but these will use
well-characterized environment specifications and many properly generated test episodes—not
a few, hand-picked examples).

116

C H A P T E R 5

GENERALIZED PARTIAL GLOBAL PLANNING

That is, the relations among what we call our ‘actions’, ‘knowledge’, ‘beliefs’, ‘goals’,
and ‘interests’ consist of continuous interactions among various structures, mechanisms,
traces, impulses, and tendencies that are not necessarily (‘naturally’ or otherwise) consis-
tent, coordinated, or synchronized and are therefore always more or less inconsistent,
out-of-phase, discordant, and conflictual.

— Barbara Hernstein Smith, Contingencies of Value: Alternative Perspectives for
Critical Theory, 1988

Many researchers have shown that there is no single best organization or coordination
mechanism for all environments. This and the following chapters discuss the design and
implementation of an extendable family of coordination mechanisms, called Generalized Partial
Global Planning (GPGP), that form a basic set of coordination mechanisms for teams of
cooperative computational agents. The important features of this approach include a set of
modular coordination components called “mechanisms” (any subset or all of which can be
used in response to a particular task environment); a general specification of these mechanisms
involving the detection and response to certain abstract coordination relationships in the
incoming task structure that are not tied to a particular domain; and a separation of the
coordination mechanisms from an agent’s local scheduler that allows each to better do the job
for which it was designed. Each component or mechanism can be added as required in reaction
to the environment in which the agents find themselves a part. An individual algorithm in
the family is defined by a particular set of active mechanisms and their associated parameters.
In Chapter 6 I will also discuss the interactions between these mechanisms and how to decide
when each mechanism should be used, drawing data from simulation experiments of multiple
agent teams working in abstract task environments.

The GPGP approach specifies three basic areas of the agent’s coordination behavior: how
and when to communicate and construct non-local views of the current problem solving
situation; how and when to exchange the partial results of problem solving; how and when
to make and break commitments to other agents about what results will be available and
when. The GPGP approach of recognizing and reacting to the characteristics of certain
coordination relationships is shared with Von Martial’s work on the favor relationship [v.
Martial, 1992]. The use of commitments in the GPGP family of algorithms is based on the ideas
of many other researchers [Cohen and Levesque, 1990, Shoham, 1991, Castelfranchi, 1993,
Jennings, 1993]. Each agent also has a heuristic local scheduler that decides what actions
the agent should take and when, based on its current view of the problem solving situation
(including the commitments it has made), and a utility function. The coordination mechanisms
supply non-local views of problem solving to the local scheduler, including what non-local

118

results will be available locally, and when they will be available. The local scheduler creates
and monitors the execution of schedules that attempt to maximize group quality through both
local action and the use of non-local actions (committed to by other agents).

One way to think about this work, as I discussed in the overview (Chapter 1), is that the
GPGP approach views coordination as modulating local control, not supplanting it—a two level
process that makes a clear distinction between coordination behavior and local scheduling. This
process occurs via a set of coordination mechanisms that post constraints to the local scheduler
about the importance of certain tasks and appropriate times for their initiation and completion.
By concentrating on the creation of local scheduling constraints, we avoid the sequentiality of
scheduling in the original PGP algorithm [Durfee and Lesser, 1991] that occurs when there
are multiple plans. By having separate modules for coordination and local scheduling, we
can also take advantage of advances in real-time scheduling algorithms to produce cooperative
distributed problem solving systems that respond to real-time deadlines. We can also take
advantage of local schedulers that have a great deal of domain scheduling knowledge already
encoded within them. Finally, our approach allows consideration of termination issues that
were glossed over in the PGP work (where termination was handled by an external oracle). I
discuss how to decide when each mechanism should be used and how the mechanisms interact,
drawing on simple models of generic task structures and data from simulation experiments
where multiple agent teams work in abstract task environments, in the next chapter (Chapter 6).

The way that we specify the family of algorithms in a general, domain-independent way
(as responses to certain environmental situations and interactions with a local scheduler) is
very important. It leads to the eventual construction of libraries of reusable coordination
components that can be chosen (customized) with respect to certain attributes of the target
application.

As an example of how different coordination mechanisms can dramatically effect per-
formance in identical environments, consider Crowston’s observation of restaurant service at
the TGI Fridays chain [Crowston, 1994]. The task structure and process at any two TGI
Fridays restaurants are essentially identical (it is a sit-down restaurant). Crowston discusses two
different Fridays locations of equal size. However, the wait time to be seated during periods of
heavy use (i.e. the lunch and dinner rush) at the newer of the two locations is reduced to an
average of 15 minutes from an hour. The difference between the restaurants is not the structure
of their tasks, but the coordination mechanisms. In the old location, enablement relationships
between tasks—the table must be bussed before customers can be seated, the food must be
cooked and assembled before it can be served—are coordinated by polling on the consumer side
of the relationship (the host scans for free tables, the waitstaff checks at the kitchen for a table’s
food order to be up). In the newer, faster restaurant the consumer of an enables relationship
is notified (a computer screen at the host’s station shows free tables and is updated remotely
by the cleaning staff as soon as a table is bussed; waitstaff is paged by the kitchen when an
order is complete, etc.). Changing the coordination mechanisms has dramatically improved
performance during peak times for this organization.

The first section in this chapter will describe the details of the original PGP algorithm
that were not covered in Chapter 2, and discuss how we will extend it. The next section will
deal in a general way with decisions faced by agents that are coordinating their behavior over a
coordination relationship such as facilitates. Section 5.2 will introduce the Generalized Partial
Global Planning (GPGP) approach. Sections 5.4 through 5.6 will describe our assumptions

119

about the agents’ architecture. Briefly, we assume each agent has a local scheduler which
schedules local actions in an attempt to maximize some utility measure defined on a TÆMS task
structure. We also assume that the local scheduler at each agent understands two special types
of constraints, called local and non-local commitments, that we will describe in this chapter.
We also assume that each agent has a GPGP coordination module and a set of coordination
mechanisms. We will describe how the coordination module and the local scheduler interact.
Finally, Section 5.7 describes the interface between the local scheduler and the coordination
module in more detail.

5.1 Partial Global Planning

Partial global planning [Durfee and Lesser, 1991] was developed as a distributed control
technique to insure coherent network problem solving behavior. It is a flexible approach to
coordination that does not assume any particular distribution of subproblems, expertise, or
other resources, but instead lets nodes coordinate in response to the current situation. Each
node can represent and reason about the actions and interactions of groups of nodes and how
they affect local activities. These representations are called partial global plans (PGPs) because
they specify how different parts of the network plan to achieve more global goals. Each node can
maintain its own set of PGPs that it may use independently and asynchronously to coordinate
its activities.

A PGP contains an objective, a plan-activity-map, a solution-construction-graph and a
status[Durfee and Lesser, 1991]:

� The objective contains information about why the PGP exists, including its eventual
goal (the larger solution being formed) and its importance (a priority rating or reasons
for pursuing it).

� The plan-activity-map represents what the nodes are doing, including the major plan
steps the nodes are concurrently taking, their costs, and expected results.

� The solution-construction-graph contains information about how the nodes should
interact, including specifications about what partial results to exchange and when to
exchange them.

� The status contains bookkeeping information for the PGP, including pointers to relevant
information received from other nodes and when that information was received.

A PGP is a general structure for representing coordinated activity in terms of goals, actions,
interactions and relationships.

When in operation, a node’s PGPlanner scans its current network model (a node’s
representation of the goals, actions and plans of other nodes in the system) to identify when
several nodes are working on goals that are pieces of some larger network goal (partial global
goal). By combining information from its own plans and those of other nodes, a PGPlanner
builds PGPs to achieve the partial global goals. A PGPlanner forms a plan-activity-map from
the separate plans by interleaving the plans’ major steps using the predictions about when
those steps will take place. Thus, the plan-activity-map represents concurrent node activities.
To improve coordination, a PGPlanner reorders the activities in the plan-activity-map using
expectations or predictions about their costs, results, and utilities. Rather than examining all

120

possible orderings, a PGPlanner uses a hill-climbing procedure to cheaply find a better (though
not always optimal) ordering. From the reordered plan-activity-map, a PGPlanner modifies
the local plans to pursue their major plan steps in a more coordinated fashion. A PGPlanner
also builds a solution-construction-graph that represents the interactions between nodes. By
examining the plan-activity-map, a PGPlanner identifies when and where partial results should
be exchanged in order for the nodes to integrate them into a complete solution, and this
information is represented in the solution-construction-graph.

Why does partial global planning work well in the DVMT? It is because:

� It avoids redundant work among nodes by noticing interactions among the different
local plans. Specifically, it notices when two node plans have identical intermediate
goals, i.e., when they are generating interpretations of the same region in time and space.
This occurs in the DVMT because, in the interest of reliability, nodes have overlapping
sensors.

� It schedules the generation of partial results so that they are transmitted to other nodes
and assist them at the correct time. To do this it uses the estimates of the times that
activities will take and the inferred relation that if node A estimates that it will take less
time than node B to complete an intermediate goal, and the goals are spatially near, that
node A can provide facilitative information to node B.

� It allocates excess tasks from overloaded nodes to idle nodes. Node plans provide the
information needed to determine if a node is overburdened or underutilized. A node
is underutilized if it is either idle or participates in only low-rated PGPs. A node is
overburdened if its estimated completion time of a subgoal of goal G is much later than
the completion time of all the other subgoals of G [Durfee and Lesser, 1989].

� It assumes that a goal is more likely to be correct if it is compatible with goals at other
nodes. In the DVMT task, a goal represented a processing task to ascertain whether a
vehicle was moving in a region r at time t. This goal could, in fact, be wrong—based
on noise or errorful sensor data that was the basis for the preliminary task analysis that
generated the goal. Nodes choose local plans to work on based on the highly rated PGPs
they have received. Thus, if the intermediate goals of a node become part of a PGP, then
they are worked on before other intermediate goals in other local plans the node may
have (even though the node may have rated those local plans higher in its local view).

� It is terminated externally when it first reaches the correct solution, rather than through
some internal termination criteria.

The partial global planning framework lets nodes converge on common PGPs in a stable
environment (where plans do not change because of new data, failed actions, or unexpected
effects of their actions). When network, data, and problem-solving characteristics change and
communication channels have delay and limited capacity, nodes can locally respond to new
situations, still cooperating but with potentially less effectiveness because they have somewhat
inconsistent PGPs [Durfee and Lesser, 1988a]. The PGP framework does not deal with
conflicts in physical resources.

The original PGP algorithm orders intermediate ‘goals’ according to their cost as computed
from the cross-product of a vector of seven computable factors (described below) and global
cooperation parameters that give a weight to the corresponding term in the calculation. In

121

our approach, this information has been captured symbolically by the task structure. The
PGP ‘goals’ were communicated at a fixed level of detail, and corresponded directly to tasks or
activities. We could re-implement most of the original PGP algorithm by using a hill-climbing
local scheduler, and assigning a priority according to the original PGP evaluation function—
however, we are instead using a more sophisticated local scheduler that can understand more
complex constraints such as delays and deadlines. The Durfee PGP hill climbing scheduler
worked by computing a ‘cost’ for each activity/goal in the plan, and trying to order the plan
so that the least expensive activities were earlier. There were seven factors that went into
computing the cost for each plan activity. The relationship of each of the seven factors used in
the original PGP evaluation function to our new representations is as follows [Note that these
terms are the terms used in Durfee’s thesis, and differ considerably from the usage of these
terms in work on distributed operating systems]:

PGP Redundancy: Was defined by Durfee as the number of nodes that can perform this
goal/activity/task. Thus, a plan activity with a high ‘redundancy’ score would be moved
later in the plan. A GPGP local scheduler can use the equality and subtask relationships
in the TÆMS task structure to determine redundancy.

PGP Reliability: Was defined by Durfee as the number of nodes that cannot perform this goal.
This is the inverse of Durfee’s definition of PGP redundancy.

PGP Duration: Was defined by Durfee as the duration of the goal/activity/task. Obviously a
GPGP local scheduler can obtain this measure from a TÆMS task structure as well.

PGP Predictiveness: Durfee defined this as follows. Any goal with a duration of x could
provide predictive information for a goal of duration y if x < y. The predictiveness
measure was then the minimum activity distance (minimum number of sensed times)
between the two goals. Obviously this definition is only useful for the DVMT. GPGP
generalizes this concept to the facilitates relationship or similar relationships and considers
it to be a domain-dependent relationship.

PGP Locally-predicted: Was defined by Durfee as the minimum activity distance (minimum
number of sensed times) between a goal and any goal to be executed before it. The effect
of this measure was to keep a node from jumping around between times in constructing
a track; extending an existing partial solution was preferred. A GPGP local scheduler
has available the subtask-oriented, hierarchical construction of the task structure. GPGP
doesn’t require absolute stability in the local schedule as long as the commitments made
to other agents are met.

Independence: Was defined by Durfee as how many goals occurred before a given goal in the
initial local node plan. This measure was intended to keep the PGPlanner from straying
too far from the original local node plan ordering—goals that were originally late in
the ordering would tend to stay late in the PGP ordering. The independence measure
for each goal is constant, because it depends only on the initial local node plan, not on
the position of the goal in the re-ordered plan. Goals later in the initial ordering have
higher independence measures. Because the PGP algorithm used a swapping procedure
to create a new ordering from the old, the higher independence measure made later goals
harder to swap. A GPGP local scheduler receives local ordering preferences, and so it
knows what local orderings were necessary, which may be negotiated, and which are only

122

preferences. Because the local scheduler is not supplanted by a separate PGPlanning
scheduler, this relationship is not directly needed.

Diversity: Durfee defined the diversity value of a goal as 0 if it did not derive redundant infor-
mation, and also 0 if all goals following it derived redundant information. Otherwise, the
diversity of a goal was measured by the minimum activity distance between the goal and
the later non-redundant goals. The effect was to plan to do non-redundant work before
redundant work. The GPGP coordination mechanisms detect redundancy through
coordination relationships instead, so this DVMT-specific measure is not needed.

5.1.1 Issues in Extending the PGP Mechanisms

5.1.1.1 Heterogeneous Agents

How can the PGP mechanisms be extended to handle agents that have different local
problem solving criteria? This can arise in several ways:

� Some agents in the system are humans with local (personal) decision criteria that cannot
be adequately or fully modeled.

� Some agents in the system have different expertise, and hence different local decision
criteria (cooperative design problems [Lander and Lesser, 1989], pilot’s associate-style
problems [Smith and Broadwell, 1987]). The PA scenario in Section 3.6.3.4 is a classic
example of heterogeneous agents with shared global goals and differing local expertise.

The PGP mechanism assumes a shared local and global decision evaluation function (so
that all agents, given the same information and enough time, will arrive at the same decisions).
Conflict between agents comes about because some agents lack data or have out-of-date
data. Agents do not have to exchange or negotiate about decision criteria. While this well-
documented assumption simplified the PGP mechanism, a homogeneous agent assumption
(where the local decision criteria are shared) is not always appropriate. The PGP mechanism
also assumes that the agents will pursue one goal at a time — the goals are ordered, and if
an agent has excess capacity it can fill it with tasks from lower-rated goals. Planning for the
simultaneous achievement of multiple goals is not supported.

The modularity of the PGP mechanism (which separates the local agent’s incremental plan-
ner [Durfee and Lesser, 1988b] from the PGPlanner) comes close to permitting heterogeneous
local decision criteria. The only problem arises when the PGPlanner reorders the node plan for
another agent. The PGP plan evaluation function that was used to develop a global schedule
contains terms to avoid upsetting the order of another agent’s plan (independence measured
the distance of the current ordering from the original node plan ordering, locally-predicted
measured the distance of the current ordering from regular time order). In some domains a
portion of this ordering may be fixed. We will suggest marking scheduling commitments as
hard, negotiable, and soft. This allows the local scheduler to rule out certain impossible orderings
(hard constraints), and to avoid those that may cause replanning at the target node (negotiable
constraints). More importantly, we advocate a separation of coordination mechanisms and
local scheduling mechanisms, so that nodes do not work out complete schedules for other
nodes, but rather pass only scheduling constraints.

123

5.1.1.2 Dynamic Agents

How can the mechanisms be extended to handle agents that have a great deal of latitude
in the methods that they use to solve problems? Each method may have a different effect
on the characteristics of the solution, such as completion time or certainty. These agents can
appear in human systems and systems where agents use approximate processing or anytime
algorithm techniques [Decker et al., 1990, Boddy and Dean, 1989]. In the PA scenario in
Section 3.6.3.4, the mission planner might solve its dilemma by using different algorithms to
respond to each plan request. A fast but inaccurate algorithm may suffice to give the pilot an
idea of a corridor of escape, while a more complex and precise algorithm can be given the bulk
of the computational resources with which to plan the near-term tactical maneuver.

Because only one method existed for accomplishing a goal (and no set of different criteria
existed for determining what would be considered an acceptable solution), the PGP mechanism
could equivalently exchange goals and the plans to accomplish those goals, at a single level of
detail. The node plans that were exchanged indicated the goal of an agent to produce a track
with certain characteristics (classes, sensed times, and regions) and a plan consisting of the
ordering of the sensed times at which the agent would work (called i-goals), expected i-goal
durations, and a mapping of the i-goal start and end times with respect to node problem solving
time.

Two extensions need to be made. First, communicating tasks at a single level of detail is in-
appropriate and potentially wasteful in more complex domains[Knoblock, 1991]; certainly the
detection of the interactions of two tasks will not always be simple [Robinson and Fickas, 1990,
v. Martial, 1992, Durfee and Montgomery, 1991]. Secondly, many different methods may exist
for a task, each with its own effects on duration, precision, and other task characteristics. This
makes the existing PGP node plan structure change rapidly when problem solving methods
are changing dynamically (as an agent reacts to the problem being solved). The node plan
structure can be modified to hold ranges as well as a best current estimate for a value, but it
is also likely that agents will have to reason and perhaps negotiate about predictability versus
reliability issues as well [Durfee and Lesser, 1988a]. The node plan structure could also be
expanded with contingency plans for “routine expectation failures” [Dean, 1987] to allow for
predictability in the face of a changing environment. Agents can also make commitments to
certain task characteristics, and add explicit slack to schedules[Decker and Lesser, 1993a].

5.1.1.3 Real-time Agents

What happens when time becomes an integral part of local and shared goals? Dynamic
agents will be able to modify both task durations (perhaps trading them off for other task
characteristics) and the task deadlines themselves[Decker et al., 1992, Garvey and Lesser,
1993]. In the PA scenario in Section 3.6.3.4, the mission planner’s dilemma arises from the
fact that it is under real-time constraints — if there were no impending deadlines for the pilot
and tactical planner, the mission planner would have little reason to prefer one allocation of its
computational resources over another.

While the PGP mechanism estimated the times for tasks or goals to be completed in order
to spot idle processing resources, it did not handle deadlines. I-goals had expected durations;
node-plans anchored (mapped) the completion of the various i-goals to a plan activity map.

124

Experiments were conducted with the local incremental planner that did indicate the ability to
plan to meet deadlines in a single agent [Lesser et al., 1988, Decker et al., 1990].

In extending the architecture to so-called “real-time” problem-solving, agents may have
goals with hard deadlines, which add constraints to the construction of a plan activity map.
Furthermore, the addition of hard deadlines or other domain constraints changes the nature of
the interaction between a node’s local problem solving mechanism and the PGP mechanism —
some of the local ordering will remain local preference but some may be due to hard constraints,
as discussed in Section 5.1.1.1 above. The existing hill-climbing algorithm for scheduling may
no longer be appropriate, and is one reason why we now advocate the separation of coordination
and local scheduling. Our initial experiments with a real-time local scheduler[Decker and
Lesser, 1993a] show that a large part of distributed real-time performance emerges from
sophisticated local real-time scheduling capabilities[Garvey and Lesser, 1993].

Often in real time situations planning is reactive, where the current situation mostly
controls an agent’s actions (where the “current situation” may include both local and global
information), rather than reflective, where a sequence of actions is planned out in some detail
before execution. This is because the agent must respond quickly, but more importantly, the
agent may be too uncertain of the outcomes of its actions and of the changing world state to
plan too far into the future. However, an intelligent agent will make use of periodic tasks,
which occur in a predictable fashion, and known non-periodic tasks, to build a opportunistic
planning framework that can keep an agent from painting itself into a corner with purely
reactive planning techniques, or from exhaustively planning uncertain future details with
reflective planning techniques[Decker et al., 1992, Garvey and Lesser, 1993].

5.2 Generalizing the Partial Global Planning Mechanisms

The observation that no single organization or coordination algorithm is ‘the best’ across
environments, problem-solving instances, or even particular situations is a common one in
the study of both human organizational theory (especially contingency theory) [Lawrence
and Lorsch, 1967, Galbraith, 1977, Stinchcombe, 1990] and cooperative distributed problem
solving [Fox, 1981, Durfee et al., 1987, Durfee and Montgomery, 1991, Decker and Lesser,
1993b]. Key features of task environments demonstrated in both these threads of work that lead
to different coordination mechanisms include those related to the structure of the environment
(the particular kinds and patterns of interrelationships or dependencies that occur between
tasks) and environmental uncertainty (both in the a priori structure of any problem-solving
episode and in the outcome’s of an agent’s actions; for example, the presence of both uncertainty
and concomitant high variance in a task structure). This makes it important for a general
approach to coordination (i.e., one that will be used in many domains) to be appropriately
parameterized so that the overhead activities associated with the algorithm, in terms of both
communication and computation, can be varied depending upon the characteristics of the
application environment.

So far we have made two important statements: that there is ample evidence that no single
coordination algorithm is ‘the best’ across different environments, and that we are going to
describe a family of coordination algorithms. That we need a family of algorithms follows from
the first statement; we will now briefly discuss how that family is organized. At the most abstract
level, each of the five mechanisms we are about to describe are parameterized independently

125

(the first two have three possible settings and the last three can be in or out) for a total of 72
combinations. Many of these combinations do not show significantly different performance
in randomly generated episodes, as will be discussed in the experiments (Section 6), although
they may allow for fine-tuning in specific applications. More mechanisms can (and have) been
added to expand the family, but the family can also be enlarged by making each mechanism
more situation-specific. For example, mechanisms can have their parameters set by a mapping
from dynamic meta-level measurements such as an agent’s load or the amount of real-time
pressure. Mechanisms can be ‘in’ or ‘out’ for individual classes of task groups, or tasks, or even
specific coordination relationships, that re-occur in particular environments. The cross product
of these dynamic environmental cues provides a large but easily enumerated space of potential
coordination responses that are amenable to the adaptation of the coordination mechanisms
over time by standard machine learning techniques.1 In the experimental section of dissertation
(Chapter 6) we will only consider the coarsest parameterization of the mechanisms. The reader
should keep in mind when reading about the various coordination techniques that we have
explicitly stated that they will not be useful in every situation. Instead, our purpose is to
carefully describe the mechanisms and their interactions so that a decision about their inclusion
in an application can be made analytically or experimentally (we will present an example in
Section 6).

5.2.1 Uncertainty

Less uncertainty in the environment means less uncertainty in the existence and extent of
the task interdependencies, and less uncertainty in local scheduling—therefore the agents need
less complex coordination behaviors (communication, negotiation, partial plans, etc) [Lesser,
1991]. For example, one can have cooperation without communication [Genesereth et al.,
1986] if certain facts are known about the task structure by all agents. In this chapter and the
next, agents will not have a priori information about the structure of an episode, but they will
be able to get information about a subset of the structure after the start of problem solving—no
single agent working alone will be able to construct a view of the entire problem (task structure)
facing the group. This lack of information (another form of environmental uncertainty) can
cause the local scheduler to make sub-optimal decisions. Some of this uncertainty will arise
from disparities in the objective (real) task structure and the subjective (agent-believed) task
structure. For example, an agent may not know the true duration of a method and if the
execution variance is high may not even have a good estimate. In this chapter and the next we
will be looking at environments that do not have this characteristic (of large variance between
objective characteristics and subjective estimates of those characteristics). Instead we will focus
on a second source of structural uncertainty—each agent has only a partial subjective view of
the current episode.

5.2.2 Task Interrelationships

Task interrelationships include the relationships of tasks to the performance criteria by
which we will evaluate a system, to the control decision structures of the agents which make

1Each mechanism may be key for some environment—remember, no set of mechanisms will be the best for
all environments.

126

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

agent

T
min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Objective Task Group

T
min

T1
max

A1

Agent A initial subjective view Agent B initial subjective view

T
min

T3
max

T1
max

T2
min

T4
max

B4

B1

B3

Figure 5.1. Agent A and B’s subjective views (bottom) of a typical objective task group (top)

up a system, and to the performance of other tasks. We will represent, analyze, and simulate
the effects of task interrelationships using the TÆMS. The TÆMS objective subtask relationship
indicates the relationship of tasks to system performance criteria; the subjective mapping
indicates the initial beliefs available to an agent’s control decision structures; various non-local
effects such as enables and facilitates indicate how the execution of one task affects the duration
or quality of another task. When a relationship extends between parts of a task structure that
are subjectively believed by different agents, we call it a coordination relationship. The basic idea
behind Generalized Partial Global Planning (GPGP) is to detect and respond appropriately to
these coordination relationships. A key point is that coordination relationships are abstractly
defined in a domain-independent way, so we can catalogue coordination strategies and link
them to potential features of a task environment. Figure 5.1 shows an objective task group and
agent A’s subjective view of that task group. This notation was formally defined in Chapter 3.

5.3 Generalized Partial Global Planning: Conceptual Overview

This section will provide a quick overview of the GPGP approach. Figure 5.2 shows
a simple two-agent example that we will use. Each agent has as part of its architecture a
belief database and local scheduler as described back in Chapter 3. The local scheduler uses
the information in the belief database to schedule method execution actions for the agent
in an attempt to maximize its performance. We add to this a coordination module that
is in charge of communication actions, information gathering actions, and in making and
breaking commitments to complete tasks in the task structure. The coordination module
consists of several coordination mechanisms, each of which notices certain features in the task
structures in the belief database, and responds by taking certain communication or information
gathering actions, or by proposing new commitments. The coordination mechanisms rest in a
shared coordination module substrate that keeps track of local commitments and commitments

127

received from other agents, and that chooses from among multiple schedules if the local
scheduler returns multiple schedules.

Agent Y

Coordination
Module

Local
Scheduler

Local
Scheduler

Coordination
Module

Agent XBelief
Database

Belief
Database

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

B
7
45

C
5
35

E
5
40

A
8
20

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

D
5
40

F
8

30

T
max

T1
min

T4
max

T2
max

T3
min

T5
max

B
7
45

C
5
35

D
5
40

E
5

40

F
8

30

A
8
20 Q-effect: 0.5, D-effect: 0.5

Deadline: 25

B
7
45

E
5
40

A
8
20

Finish = 8
Quality = 20
Violations = Cmt 1, no alternative

Finish = 12
Quality = 45
Violations = none

Commitment 1: Deadline 7, Quality 45

Non-Local Commitment 2: Deadline 6, Quality 40

Finish = 7
Quality = 45
Violations = none

B
7
45

Scheduling
Constraints

Schedules and
alternatives

Non-Local Commitment 1: Deadline 8, Quality 45

Commitment 2: Deadline 5, Quality 40

Results,
Non-local views,
Commitments

Objective
Task Group

Subjective
Task Group

Objective task or method
in the environment

Subjective representation of
another agent's task
(non-local view)

T
min

local task with
quality accrual function min

subtask relationship

enables relationship

local method (an executable task)

facilitates relationship

name
duration
quality

Y

Y Y

YX X

D
5
40

F
8
30

Finish = 16
Quality = 45
Violations = none

Idle 3

Schedules and
alternativesScheduling

Constraints

E
5
40

D
5
40

Figure 5.2. An Overview of Generalized Partial Global Planning

Here is a short example intended only to give the reader a feel for the overall approach.
The details will be covered in the body of this chapter. In Figure 5.2, both agents have executed
an initial information gathering action, and have their initial views of the task structure
(everything in the agents’ belief database except for the shaded tasks (Tasks 2, 5, D and E), and
the relationships touching the shaded tasks). One of the coordination mechanisms (Mech. 1,
update non-local views) performs an information gathering action to determine which tasks
may be related to tasks at other agents (“detect coordination relationships”). These tasks are then
exchanged between the agents, resulting in the belief databases shown in the figure (including
the shaded tasks). Other mechanisms react to the task structure. One mechanism (Mech. 5,
handle soft predecessors) notices that Task 2 at Agent Y facilitates Task 5 at Agent X. In order
that Agent X might schedule to take advantage of this, Agent Y’s mechanism makes a local
intermediate deadline commitment to complete its Task 2 by time 7 with minimum quality 45
(you and I may infer that Y intends to execute Method B, but that local information is not a part
of the commitment). A commitment is made in two stages: first it is made locally to see if it is
possible as far as the agent’s local scheduler is concerned, and then it is made non-locally and
communicated to the other agents that are involved. Note that the deadline on the non-local
version of this commitment is later (time 8) to take into account the communication delay

128

(here, 1 time unit). Similarly, Agent X has a mechanism (Mech. 3, handle simple redundancy)
that notices that either agents X or Y could do Task 4. Agent X does eventually commit to this
task (the process is a bit more complicated as will be explained later) and communicates this
commitment to Agent Y.

In both cases the agents’ local schedulers use the information about the task structure they
have in their belief database, and the local and non-local commitments, to construct schedules.
The local scheduler may return multiple schedules for several reasons we explain later. Each
schedule is evaluated along the dimensions of the performance criteria (such as total final quality
and termination time) and for what (if any) local commitments are violated. If a commitment
is violated, the local scheduler may suggest an alternative (for instance, relaxing a quality or
intermediate deadline constraint). The coordination module chooses a schedule from this set,
and handles the retraction of any violated commitments. The rest of this chapter will describe
the agents, local scheduler, coordination module, and coordination mechanisms in more detail.

5.4 The Agent Architecture

As we have mentioned several times in this dissertation, the TÆMS framework makes very
few assumptions about the architecture of agents (agents are loci of belief and action). Agents
have some control mechanism that decides on actions given the agent’s current beliefs. There
are three classes of actions: method execution, communication, and information gathering.
Method execution actions cause quality to accrue in a task group (as indicated by the task
structure). Communication actions are used to send the results of method executions (which
in turn may trigger the effects of various task interrelationships) or meta-level information.
Information gathering actions add newly arriving task structures, or new communications, to
an agent’s set of beliefs.

Formally, we write Bt
A(x) to mean agent A subjectively believes x at time t. We will

shorten this to B(x) when writing about any agent’s beliefs or when the agent and/or time
is clear by context (from Shoham[Shoham, 1991]). An agent’s subjective beliefs about the
current episode B(E) includes the agent’s beliefs about various task groups (e.g., B(Ti 2 E)),
and an agent’s beliefs about each task group includes beliefs about the tasks in that task group
(e.g., B(Ta;Mb 2 Ti)) and the relationships between these tasks (e.g., B(enables(Ta;Mb))).

The GPGP family of coordination algorithms makes stronger assumptions about the
agent architecture. We briefly described this architecture in Figure 5.2. Most importantly, it
assumes the presence of a local scheduling mechanism (to be described in the next section)
that can decide what method execution actions should take place and when. It assumes
that agents do not intentionally lie and that they believe what they are told (i.e. if agent
A1 tells agent A2 at time t1 with communication delay � that BA1(enables(Ta;Mb)), then
Bt2
A2(enables(Ta;Mb)) where t2 � t1 + � is the earliest time after the communication arrives

that agentA2 performs a new communication information gathering action to read the message
from A1). However, because agents can believe and communicate only subjective information,
they may unwittingly transmit information that is inconsistent with an objective view (this can
cause, among other things, the phenomena of distraction). Finally, the GPGP family approach
requires domain-dependent code to detect or predict the presence of coordination relationships
in the local task structure [Decker et al., 1991]. In this dissertation we have referred to that
domain-dependent code as the information gathering action detect-coordination-relationships;
we will describe this action more in Section 5.6.2.

129

5.5 The Local Scheduler

Each GPGP agent contains a local scheduler that takes as input the current, subjectively
believed task structure and produces a schedule of what methods to execute and when. Using
the information in the subjective structure about the potential duration, potential quality,
and relationships of the methods, it chooses and orders executable methods in an attempt
to maximize a pre-defined utility measure for each task group T . In this chapter and the
next, we use Garvey’s Design-To-Time local scheduler, where the utility function is the sum
of the task group qualities. The local scheduler attempts to maximize this utility function
U(E) =

P
T 2EQ(T ;D(T)), where Q(T; t) denotes the quality of T at time t as defined in

[Decker and Lesser, 1993d].2

Beside the subjective task structure, the local scheduler should accept a set of commitmentsC
from the coordination component. These commitments are extra constraints on the schedules
that are produced by the local scheduler. For example, if method 1 is executable by agent
A and method 2 is executable by agent B, and the methods are redundant, then agent A’s
coordination mechanism may commit agent A to do method 1 both locally and socially
(commitments are directed to particular agents in the sense of the work of Shoham and
Castelfranchi [Castelfranchi, 1993, Shoham, 1991]) by communicating this commitment to
B (so that agentB’s coordination mechanism records agentA’s commitment, see the description
of non-local commitments NLC below). The implementation in this dissertation will use
two types of commitments: C(Do(T; q)) is a commitment to ‘do’ (achieve quality for) T and
is satisfied at the time t when Q(T; t) � q; the second type C(DL(T; q; tdl)) is a ‘deadline’
commitment to do T by time tdl and is satisfied at the time t when [Q(T; t) � q]^ [t � tdl].3

A schedule S produced by a local scheduler will consist of a set of methods and start times:
S = fhM1; t1i; hM2; t2i; : : : ; hMn; tnig. The schedule may include idle time, and the local
scheduler may produce more than one schedule upon each invocation in the situation where
not all commitments can be met. The different schedules represent different ways of partially
satisfying the set of commitments (see [Garvey et al., 1994], the next section, and Section 5.7).
The function Violated(S) returns the set of commitments that are believed to be violated
by the schedule. For violated deadline commitments C(DL(T; q; tdl)) 2 Violated(S) the
function Alt(C;S) returns an alternative commitment C(DL(T; q; t�dl)) where t�dl = min t
such that Q(T; t) � q if such a t exists, or NIL otherwise. For a violated Do commitment an
alternative may contain a lower minimum quality, or no alternative may be possible.

The final piece of information that is used by the local scheduler is the set of non-local
commitments made by other agentsNLC. This information can be used by the local scheduler
to coordinate actions between agents. For example the local scheduler could have the property
that, if method M1 is executable by agent A and is the only method that enables method M2

at agent B (and agent B knows this BB(enables(M1;M2))), and BA(C(DL(M1; q; t1))) 2
BB(NLC), then for every schedule S produced by agent B, hM2; ti 2 S) t � t1.
The function Uest(E; S;NLC) returns the estimated utility at the end of the episode if
the agent follows schedule S and all non-local commitments in NLC are kept. Thus we
may define the local scheduler as a function LS(E;C;NLC) returning a set of schedules

2Note that quality does not accrue after a task group’s deadline.
3Other commitments, such as to the earliest start time of a task, may also prove useful.

130

S = fS1; S2; : : : ; Smg. More information about this interface between the local scheduler
and the coordination component may be found in Section 5.7 and [Garvey et al., 1994].

This is an extremely general definition of the local scheduler, and is the minimal one
necessary for the GPGP coordination module. Stronger definitions than this will be needed for
more predictable performance. Ideally, the optimal local scheduler would find both the schedule
with maximum utility ŜU and the schedule with maximum utility that violates no commitments
Ŝ�V . In practice, however, a heuristic local scheduler will produce a set of schedules where the
schedule of highest utilitySU is not necessarily optimal: U(E; SU ;NLC) � U(E; ŜU ;NLC).

5.6 The Coordination Mechanisms

The role of the coordination mechanisms is to provide constraints to the local scheduler (by
modifying portions of the subjective task structure of the episodeE or by making commitments
in C) that allow the local scheduler to construct objectively better schedules. The modules
fulfill this role by (variously) communicating private portions of its task structures to other
agents, communicating results to fulfill non-local commitments, and making commitments
to respond to coordination relationships between portions of the task structure controllable by
different agents or within portions controllable by multiple agents.4

The five mechanisms we will describe in this dissertation form a basic set that provides
similar functionality to the original partial global planning algorithm as explained in [Decker
and Lesser, 1992]. Mechanism 1 exchanges useful private views of task structures; Mechanism
2 communicates results; Mechanism 3 handles redundant methods; Mechanisms 4 and 5
handle hard and soft coordination relationships. More mechanisms can be added, such as one
to update utilities across agents as discussed in the next section, or to balance the load better
between agents. The mechanisms are independent in the sense that they can be used in any
combination. If inconsistent constraints are introduced, the local scheduler would return at
least one violated constraint in all its schedules, which would be dealt with as discussed in the
next section. Since the local scheduler is boundedly rational and satisfices instead of optimizing,
it may do this even if constraints are not inconsistent (i.e. it does not search exhaustively).

5.6.1 The Substrate Mechanisms

All the specific coordination mechanisms rest on a common substrate that handles infor-
mation gathering actions (new task group arrivals and receiving communications), invoking
the local scheduler and choosing a schedule to execute (including dealing with violated
commitments), and deciding when to terminate. Information gathering is done at the start of
problem solving, whenever the agent is otherwise idle (but not ready to terminate), and when
communications are expected from other agents. Communications are expected in response
to certain events (such as after the arrival of a new task group) or as indicated in the set of
non-local commitments NLC. This is the minimal general information gathering policy.5

4We say a subtree of a task structure is controllable by an agent if that agent has at least one executable method
in that subtree.

5The minimal policy would examine each element of NLC at the appointed time and if the local schedule
had changed so that the reception of the information would no longer have any effect, the associated information
gathering action could be skipped.

131

Termination of a task group occurs for an agent when the agent is idle on that task group, has
no expected communications, and no outstanding commitments.

Choosing a schedule is more complicated. From the set of schedules S returned by the local
scheduler, two particular schedules are identified: the schedule with the highest utility SU and
the best committed schedule SC . If they are the same, then that schedule is chosen. Otherwise,
we examine the sum of the changes in utility for each commitment. Each commitment, when
created, is assigned the estimated utility Uest for the task group of which it is a part. This utility
may be updated over time (when other agents depend on the commitment, for example). We
then choose the schedule with the largest positive change in utility. This allows us to abandon
commitments if doing so will result in higher overall utility. The coordination substrate does
not use the local scheduler’s utility estimate Uest directly on the entire schedule because it
is based only on a local view, and the coordination mechanism may have received non-local
information that places a higher utility on a commitment than it has locally. This method of
choosing a schedule from a set is the one used by the GPGP approach, other solutions are also
possible.

For example, at time t agent A may make a commitment C1 on task T 2 T1 2 E that
results in a schedule S1. C1 initially acquires the estimated utility of the task group of which
it is a part, U(C1) Uest(fT1g; S1; BA(NLC)). Let U(C1) = 50. After communicating
this commitment to agent B (making it part of BB(NLC), agent B uses the commitment
to improve Uest(fT1g; S2; BB(NLC)) to 100. A coordination mechanism can detect this
discrepancy and communicate the utility increase back to agent A, so that when agent A
considers discarding the commitment, the coordination substrate recognizes the non-local
utility of the commitment is greater than the local utility.6

If both schedules have the same impact, the one that is more negotiable is chosen. Every
commitment has a negotiability index (high, medium, or low) that indicates (heuristically) the
difficulty in rescheduling if the commitment is broken. This index is set by the individual
coordination mechanisms. For example, hard coordination relationships like enables that
cannot be ignored will trigger commitments with low negotiability.

If the schedules are still equivalent, the shorter one is chosen, and if they are the same length,
one is chosen at random.7 After a schedule S is chosen, if Violated(S) is not empty, then each
commitment C 2 Violated(S) is replaced with its alternativeC CnC [Alt(C;S). If the
commitment was made to other agents, the other agents are also informed of the change in the
commitment. While this could potentially cause cascading changes in the schedules of multiple
agents, it generally does not for three reasons: first, as we mentioned in the previous paragraph
less important commitments are broken first; secondly, the resiliancy of the local schedulers to
solve problems in multiple ways tends to damp out these fluctuations; and third, agents are
time cognizant resource-bounded reasoners that interleave execution and scheduling (i.e., the
agents cannot spend all day arguing over scheduling details and still meet their deadlines). We
have observed this useful phenomenon before [Decker and Lesser, 1993a] and plan to analyze
it in future work.

6While it is clear that without this policy the system of agents will perform non-optimally, it is not clear how
often the situation occurs or what the performance hit is. Future work will have to examine the costs and benefits
of this policy; for this reason we do not include this mechanism among the five examined in this dissertation.

7It would be possible to allow the local scheduler to choose, as well.

132

5.6.2 Mechanism 1: Updating Non-Local Viewpoints

Remember that each agent has only a partial, subjective view of the current episode.
Agents can, therefore, communicate the private portions of their subjective task structures to
develop better, non-local, views of the current episode. They could even communicate all of
their private structural information, in an attempt to develop a global subjective view. What
non-local information to communicate and when has been an important area of study in both
DAI (for example, the ten years of work on the DVMT and Carver’s follow-on work called
DRESUN [Carver et al., 1991]) and distributed operating systems (for example, [Stankovic,
1985, Mirchandaney et al., 1989]).

The GPGP mechanism described here can communicate no private information (‘none’
policy, no non-local view), or all of it (‘all’ policy, global view), or take an intermediate approach
(‘some’ policy, partial view): an agent communicates to other agents only the private structures
that are related by some coordination relationship to a structure known by the other agents.
The process of detecting coordination relationships between private and shared parts of a
task structure is in general very domain specific, so in the experiments presented later in the
dissertation we model this process by a new information gathering action, detect-coordination-
relationships, that takes some fixed amount of the agent’s time. This action is chosen when a new
task group arrives (which adds new information to the agent’s private task structures). Updates
can occur at different levels of detail in the task structure; this selective communication is similar
to hierarchical communication discussed by von Martial and Montgomery [v. Martial, 1992,
Durfee and Montgomery, 1990].

The set P of privately believed tasks or methods at an agent A (tasks believed at arrival
time by A only) is then fx j task(x) ^ 8a 2 A n A; :BA(BAr(x)

a (x))g, where A is the
set of all agents and Ar(x) is the arrival time of x. Given this definition, the action detect-
coordination-relationships returns the set of private coordination relationships PCR = fr j
T1 2 P ^ T2 62 P ^ [r(T1; T2) _ r(T2; T1)]g between private and mutually believed tasks.
The action does not return what the task T2 is, just that a relationship exists between T1 and
some otherwise unknown task T2. For example, in the DVMT, we have used the physical
organization of agents to detect that Agent A’s task T1 in an overlapping sensor area is in fact
related to some unknown task T2 at agent B (i.e. BA(BB(T2))) [Decker and Lesser, 1992,
Decker et al., 1991]. The non-local view coordination mechanism then communicates these
coordination relationships, the private tasks, and their context: if r(T1; T2) 2 PCR and
T1 2 P then r and T1 will be communicated by agentA to the set of agents fa j BA(Ba(T2))g.

For example, Figure 5.3 shows the local subjective beliefs of agents A and B after the
communication from one another due to this mechanism. The agents’ initial local view was
shown previously in Figure 5.1. In this example, T3 and T4 are two elements in Agent B’s
private set of tasks P, facilitates(T4; T1; �d; �q) 2 PCR (the facilitation relates a private task
to a mutually believed task), and enables(T4; T3) is completely local to Agent B (it relates two
private tasks). At the start of this section we mentioned that coordination relationships exist
between portions of the task structure controllable by different agents (i.e., in PCR) and
within portions controllable by multiple agents. We’ll denote the complete set of coordination
relationships as CR; this includes all the elements of PCR and all the relationships between
non-private tasks. Some relationships are entirely local—between private tasks—and are only of
concern to the local scheduler. The purpose of this coordination mechanism is the exchange of
information that expands the set of coordination relationships CR. Without this mechanism

133

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

agent
T

min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Objective Task Group

T
min

T1
max

T2
min

T4
maxA1 B1

Agent A's view after communication from B

T
min

T3
max

T1
max

T2
min

T4
max

B4

A1 B1

B3

Agent B's view after communication from A

Figure 5.3. Agents A and B’s local views after receiving non-local viewpoint communications
via mechanism 1. The previous figure shows the agents’ initial states.

in place, CR will consist of only non-private relationships, and none that are in PCR. Since
the primary focus of the coordination mechanisms is the creation of social commitments in
response to coordination relationships (elements of CR), this mechanism can have significant
indirect benefits. In environments where jPCRj tends to be small, very expensive to compute,
or not useful for making commitments (see the later sections), this mechanism can be omitted,
or used selectively in a situation-dependent manner.

5.6.3 Mechanism 2: Communicating Results

The result communication coordination mechanism has three possible policies: commu-
nicate only the results necessary to satisfy commitments to other agents (the minimal policy);
communicate this information plus the final results associated with a task group (‘TG’ policy),
and communicate all results (‘all’ policy).8 Extra result communications are broadcast to all
agents, the minimal commitment-satisfying communications are sent only to those agents to
whom the commitment was made (i.e., communicate the result of T to the set of agents
fA 2 A j B(BA(C(T))g.

5.6.4 Mechanism 3: Handling Simple Redundancy

Potential redundancy in the efforts of multiple agents can occur in several places in a task
structure. Any task that uses a ‘max’ quality accumulation function (one possible semantics
for an ‘OR’ node) indicates that, in the absence of other relationships, only one subtask needs
to be done. When such subtasks are complex and involve many agents, the coordination of
these agents to avoid redundant processing can also be complex; we will not address the general
redundancy avoidance problem in this dissertation (see instead [Lesser, 1991]). In the original

8Communicating all results is necessary if there are no commitments but there are enabling relationships
between tasks at different agents.

134

PGP algorithm and domain (distributed sensor interpretation), the primary form of potential
redundancy was simple method redundancy—the same result could be derived from the data
from any of a number of sensors. The coordination mechanism described here is meant to
address this simpler form of potential redundancy.

The idea behind the simple redundancy coordination mechanism is that when more
than one agent wants to execute a redundant method, one agent is randomly chosen to
execute it and send the results to the other interested agents. This is a generalization of the
‘static’ organization algorithm discussed by Decker and Lesser [Decker and Lesser, 1993b]—it
does not try to load balance, and uses one communication action (because in the general
case the agents do not know beforehand, without communication, that certain methods are
redundant9). The mechanism considers the set of potential redundanciesRCR = fr 2 CR j
[r = subtask(T;M;min)] ^ [8M 2M;method(M)]g. Then for all methods in the current
schedule S at time t, if the method is potentially redundant then commit to it and send the
commitment to Others(M) (non-local agents who also have a method inM):

[hM; tM i 2 S] ^
[subtask(T;M;min) 2 RCR] ^

[M 2M]) [C(Do(M;Qest(M;D(M); S))) 2 C] ^
[comm(M;Others(M); t) 2 I]

See for example the top of figure 5.4—both agents commit to Do their methods for T1.

After the commitment is made, the agent must refrain from executing the method in
question if possible until any non-local commitments that were made simultaneously can arrive
(the communication delay time �). This mechanism then watches for multiple commitments in
the redundant set (subtask(T;M;min) 2 RCR, M1 2M, M2 2M, C(Do(M1; q)) 2 C ,
and BB(C(Do(M2; q))) 2 NLC)10 and if they appear, a unique agent is chosen randomly
(but identically by all agents) from those with the best commitments to keep its commitment.
All the other agents can retract their commitments. For example the bottom of figure 5.4
shows the situation after Agent B has retracted its commitment to Do B1. If all agents follow
the same algorithm, and communication channels are assumed to be reliable, then no second
message (retraction) actually needs to be sent (because they all choose the same agent to do the
redundant method). In the implementation described later, identical random choices are made
by giving each method a unique random identifier, and then all agents choose the method with
the ‘smallest’ identifier for execution.

Initially, all Do commitments initiated by the redundant coordination mechanism are
marked highly negotiable. When a redundant commitment is discovered, the negotiability of
the remaining commitment is lowered to medium to indicate the commitment is somewhat
more important (i.e. less negotiable).

9The detection of redundant methods is domain-dependent, as discussed earlier. Since we are talking here
about simple, direct redundancy (i.e. doing the exact same method at more than one agent) this detection is very
straight-forward.

10Read “M1 and M2 are redundant, and I am doing M1 and I know that B has committed to me to do M2”.

135

T
min

T1
max

T2
min

T4
max

facilitates(T4,T1,0.5,0.5)
A1
5

100

B1
5

100

T
min

T3
max

T1
max

T2
min

T4
max

facilitates(T4,T1,0.5,0.5)

B4
4
50

A1
5

100

B1
5

100

B3
5

100

Agent A's view after communication from B Agent B's view after communication from A

duration

quality

B3

Schedules:

B4

A1

t=5

B1

t=2 t=13

Commitments made from A to B:

Do(A1,100) [Mech #3]
Commitments made from B to A:

DL(T4,50,5) [Mech #5]

Do(B1,100) [Mech #3]

T
min

T1
max

T2
min

T4
max

A1
5

100

B1
5

100

T
min

T3
max

T1
max

T2
min

T4
max

B4
4
50

A1
5

100

B1
5

100

B3
5

100

Agent A's view after recieveing B's commitments Agent B's view after receiving A's commitments

duration

quality

B3

Schedules:

B4

A1

t=5t=2 t=10

Commitments made from A to B:

Do(A1,150) [Mech #3]
Commitments made from B to A:

DL(T4,50,5) [Mech #5]

Figure 5.4. A continuation of the previous figure. At top: agents A and B propose certain
commitments to one another via mechanisms 3 and 5. At bottom: after receiving the initial
commitments, mechanism 3 removes agent B’s redundant commitment.

136

5.6.5 Mechanism 4: Handling Hard Coordination Relationships

Hard coordination relationships include relationships like enables(M1;M2) that indicate
thatM1 must be executed beforeM2 in order to obtain quality forM2. Like redundant methods,
hard coordination relationships can be culled from the set CR. The hard coordination
mechanism further distinguishes the direction of the relationship—the current implementation
only creates commitments on the predecessors of the enables relationship. We’ll letHPCR �
CR indicate the set of potential hard predecessor coordination relationships. The hard
coordination mechanism then looks for situations where the current schedule S at time t will
produce quality for a predecessor inHPCR, and commits to its execution by a certain deadline
both locally and socially:

[Qest(T;D(T); S) > 0] ^
[enables(T;M) 2 HPCR]) [C(DL(T;Qest(T;D(T); S); tearly)) 2 C] ^

[comm(C;Others(M); t) 2 I]

The next question is, by what time (tearly above) do we commit to providing the answer?
One solution, usable with any local scheduler that fits our general description in Section 5.5,
is to use the min t such that Qest(T;D(T); S) > 0. In our implementation, the local
scheduler provides a query facility that allows us to propose a commitment to satisfy as ‘early’
as possible (thus allowing the agent on the other end of the relationship more slack). We take
advantage of this ability in the hard coordination mechanism by adding the new commitment
C(DL(T;Qest(T;D(T); S); "early")) to the local commitments C , and invoking the local
scheduler LS(E;C;NLC) to produce a new set of schedules S. If the preferred, highest
utility schedule SU 2 S has no violations (highly likely since the local scheduler can simply
return the same schedule if no better one can be found), we replace the current schedule with
it and use the new schedule, with a potentially earlier finish time for T , to provide a value for
tearly. The new completed commitment is entered locally (with low negotiability) and sent to
the subset of interested other agents.

If redundant commitments are made to the same task, the earliest commitment made by
any agent is kept. If more than one commitment is for the same time, then we choose the
agent committing to the highest quality. Any remaining ties are randomly broken by the same
method as described in the previous section.

Currently, the hard coordination mechanism is a proactive mechanism, providing infor-
mation that might be used by other agents to them, while not putting the individual agent to
any extra effort. Other future coordination mechanisms might be added to the family that are
reactive and request from other agents that certain tasks be done by certain times; this is quite
different behavior that would need to be analyzed separately.

5.6.6 Mechanism 5: Handling Soft Coordination Relationships

Soft coordination relationships are handled analogously to hard coordination relationships
except that they start out with high negotiability. In the current implementation the predecessor
of a facilitates relationship is the only one that triggers commitments across agents, although
hinders relationships are present. The positive relationship facilitates(M1;M2; �d; �q) indi-
cates that executingM1 beforeM2 decreases the duration ofM2 by a ‘power’ factor related to �d

137

and increases the maximum quality possible by a ‘power’ factor related to �q (see [Decker and
Lesser, 1993d] for the details). A more situation-specific version of this coordination mechanism
might ignore relationships with very low ‘power’. The relationship hinders(M1;M2; �d; �q) is
negative and indicates an increase in the duration of M2 and a decrease in maximum possible
quality. A coordination mechanism could be designed for hinders (and similar negative
relationships) and added to the family. To be proactive like the existing mechanisms, a hinders
mechanism would work from the successors of the relationship, try to schedule them late,
and commit to an earliest start time on the successor. Figure 5.4 shows Agent B making a
D commitment to do method B4, which in turn allows Agent A to take advantage of the
facilitates(T4; T1; 0:5; 0:5) relationship, causing method A1 to take only half the time and
produce 1.5 times the quality.

5.7 Interfacing the Coordination Mechanism with the Local Scheduler

In our work on real-time AI problem solving prior to this dissertation we have found that
the interface between the decision-maker and the real-time scheduler needs to be complex and
bidirectional. We have argued that this interface can usefully be modeled as a negotiation
process [Garvey et al., 1994]. In previous work on real-time scheduling, the interface between
the scheduler and the application has been very simple. It is usually assumed that the application
passes tasks on to the scheduler for scheduling and does not react when the scheduler is unable to
schedule some tasks before their deadlines or only able to provide low quality solutions. A more
complex interface is proposed in [Stankovic et al., 1989] that allows the application to ask what-if
questions of the scheduler and modulate the behavior of the scheduler, however these ideas have
not been implemented to date. In our work on a complex, real-time, multi-agent problem-solver
we have found that a more bidirectional, negotiation-based interface is useful. Such an interface
should be useful in both multi-agent and complex, single-agent problem-solving environments
where there are many ways to solve a problem and also multiple criteria with which to judge
the potential solutions. I will briefly discuss the interface between higher-level decision-making
and lower-level scheduling and acting, described as a negotiation process between the scheduler
and the decision-maker. I will discuss why each part of the interface is useful, whether it can
be implemented efficiently in a scheduler, and the effects of omitting that part.

As an example of what we mean by such an interface, consider a situation where multiple
agents are working on a problem. Agent A has a method (Method A1) that enables the
execution of an important method at another agent B. At this point the decision-maker at
Agent A realizes that it should try to get the scheduler to schedule Method A1. It can do this by
associating a do commitment with Method A1, meaning that it requests that the scheduler try to
build schedules that execute Method A1. Agent A’s scheduler returns a schedule that completes
executing Method A1 at time 7. The decision-maker at Agent A tells other decision-makers
that it can commit to giving them the result of Method A1 at time 8 (allowing time for
communication to occur). At the second agent B, the decision-maker receives this message and
passes it along to the scheduler, which reports back that time 8 is too late—the result is needed
by time 6. Agent A’s decision maker is informed of this feedback, and Agent A again invokes
its scheduler, now with a deadline commitment to complete Method A1 by time 5 (to allow
time for communication). Agent A’s scheduler returns a schedule that commits to completing
Method A1 by time 5 and Agent A communicates this information to the other agent, which

138

is now able to complete its method by the deadline. Meeting the tighter schedule might
be possible only by making other tradeoffs—lowering the local quality produced or violating
some other commitment. In this example, the decision-maker and scheduler at each agent are
semi-autonomous subsystems, communicating bidirectionally and sometimes requiring more
than one step to arrive at a satisfactory solution.

Given that significant communication in both directions is required in our layered
approach, an obvious question is why have separate subsystems. There are many reasons
why a distinct separation should exist between such a scheduler and decision-maker, including
at least modularity, efficiency and reusability. Modularity suggests that separate functionality
should be kept in separate modules with clearly defined interfaces. In general it is difficult for all
current problem solving criteria to be encapsulated into an evaluation function and transmitted
to the scheduler, because deciding what to do is a evolving computational process. From the
scheduler’s perspective, transmitting all potentially useful information about a schedule is also
difficult and inefficient. Another reason why a separation should exist is that the subsystems
work at different levels of abstraction. One of the roles of the decision maker is to constrain the
search done by the scheduler, for example, by using commitments to tell the scheduler what
parts of the task structure to focus on. While it is possible for the scheduler to use all available
information to make such decisions itself, for efficiency reasons it is useful to have the decision
maker constrain the search space for the scheduler. Another reason for separating scheduling
and decision-making is that scheduling is a more generic activity and it should be possible to
reuse schedulers in multiple applications. It is undesirable to reproduce a scheduler each time
a new problem area is investigated.

I will discuss the scheduler/decision maker interface using examples from two different
points-of-view: multi-agent environments such as those that have been addressed in this
dissertation, and hard real-time environments that might be addressed in the future. The two
points-of-view are not necessarily inconsistent with one another.

Multi-agent scenarios.

In the multiagent scenarios I discussed in Section 5.5, each method is executable by exactly
one agent, however several agents may have identical methods for achieving quality for the
same task. The goal of the coordinated decision-makers is to work together to produce the
highest possible quality for as many task groups as possible, i.e., each attempts to maximize
the global utility measure U(E) =

P
T 2EQ(T ;D(T)). This is not straightforward, because

each agent sees only some part of the total task structure, and it may be the case that no agent
sees the entire structure. Thus a decision maker cannot simply ask the scheduler to optimize
this global criteria. One kind of information that agents can communicate to one another
is information about the task structures that they see (i.e., GPGP mechanism 1: updating
non-local viewpoints). The decision-makers are responsible for coordinating their activity so
as to avoid redundant method execution and allow relationships that extend across agents to
be exploited or avoided as appropriate using the other GPGP coordination mechanisms. The
role of the scheduler is to schedule execution of local methods according to criteria provided
by the decision-maker.

Real-time scenarios.

In the real-time scenarios that we are working with, task groups arrive continuously, and
require the use of multiple reusable physical resources (motorized tables, robot arms) and

139

consumable resources. There are often not enough resources to complete all task groups,
but the decision-maker still attempts to maximize its total utility. Each task group may
have a different maximum payoff I(T), and the decision-maker tries to maximize U(E) =P

T 2E I(T)Q(T ;D(T)). Here the criteria are known but the best mix of problems to solve
is not. The role of the scheduler here is to endorse the execution of time-critical control codes
on multiple hardware platforms, using shared, private, and consumable resources. Some task
groups, representing periodic, maintenance, or operating system activities, will be constantly
present and their execution will be absolutely guaranteed.

5.7.1 Scheduler Inputs

The decision-maker proposes to the scheduler that a solution to each newly arriving task
group be added to the schedule of methods to be executed. A basic request to the scheduler
(its input) consists of four things: the task structures to be scheduled, a set of commitments, a
set of non-local commitments, and a runtime indication.

T
min

T
max

T
min

T
max

T
max

T
min

T
max

B
7
45

C
5

35

D
5

40

E
3

20

F
8

30

A
8
20

Deadline Commitment:
Q=45,T="Early"

Nonlocal Commitment:
 Q=40, T=6

Q-effect: 0.5, D-effect: 0.5

Deadline: 25

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

name
duration
quality

Figure 5.5. An example of a complete input specification to the scheduler.

The task structures to be scheduled ES , should include some indication of what aspects
of those structures have changed since the scheduler was last invoked. If we write Bt

A(X) to
indicate what agent A believes at time t about X , then the scheduler at agent A at time t has
access to Bt

A(E), and Bt
A(E) nBt�1

A (E).
The set of commitments C are constraints that the invoker would like the scheduler to try

to satisfy. We have defined three types of commitments:

� C(Do(T; q)) is a commitment to ‘do’ (achieve quality for) T and is satisfied at the time
t when Q(T; t) � q. A ‘don’t’ commitment is also possible.

� C(DL(T; q; tdl)) is a ‘deadline’ commitment to do T by time tdl and is satisfied at
the time t when [Q(T; t) � q] ^ [t � tdl]. A C(Do(T; q)) is really shorthand for
C(DL(T; q;D(T))).

140

� C(EST(T; q; test)) is a ‘earliest start time’ commitment11 to not begin work on T before
time test and is satisfied at the time test iff 8t � test; Q(T; t) � q.

The importance of local commitments such as these are as soft constraints on the possible
solutions. Any scheduler that can schedule real-time method executions can already deal with
hard constraints such as deadlines and earliest start times. Hard commitments can be used to
provide guarantees [Cheng et al., 1988] by requiring commitments to be satisfied in all valid
schedules.

Soft commitments are needed to handle the coordination of multiple agents where there
is more than one way to solve a task or where there are soft coordination relationships such as
facilitates. They are also useful in real-time systems, as shown by Spring’s use of endorsements
[Cheng et al., 1988] to indicate commitments that may only be violated when more important
tasks arrive. When invoking the scheduler in a query mode, the decision-maker may also
supply the symbolic values ‘early’ for a deadline commitment and ‘late’ for an earliest start time
commitment, which indicates to the scheduler that it should attempt to satisfy the commitment
as early or late as possible.

If a scheduler does not provide the ability to specify soft commitments, it is possible in
some situations for the decision-maker to achieve the same results by repeated execution of
scheduler queries using hard commitments (even changing the task structure, if need be). We
believe it will always be more efficient to add the ability to interpret soft constraints to the
scheduler than to play guessing games by invoking the scheduler multiple times.

The set of non-local commitments NLC are commitments that the scheduler can assume
will be satisfied. These are of the form of the commitments mentioned above and tell the
scheduler to expect to receive the indicated results at the indicated time. In general, the
scheduler would not concern itself with the reliability of this information, which is would be
determined by the decision-maker. A sophisticated scheduler might concern itself with the
reliability of these non-local commitments, but most schedulers assume this information is
reliable.

In multi-agent problems, non-local commitments can be used to communicate work
that will be done by other agents. This component is necessary for achieving coordinated
behavior in complex domains. These non-local commitments might be created at run time
by the decision-makers, or they might be derived from pre-defined ‘social laws’ [Shoham and
Tennenholtz, 1992] that all agents agree to, or are constructed to, satisfy. The most important
component of an agent’s particular organizational role is the set of non-local commitments it
forces the agent to adhere to. Another effect of NLCs in multi-agent problems is the triggering
of non-local effects (coordination relationships); each non-local deadline commitment, for
example, implies an earliest start time on the ‘affected’ end of any relationships. For hard
relationships like enables this implies a hard earliest start time; for soft relationships it actually
expands the search space (since each affected task can be started either before or after the earliest
start time with different results).

In real-time problems as well, non-local commitments are important. In our example
domain not all of the hardware is under the control of the real-time operating system scheduler,

11In fact this is more general than a standard earliest start time constraint, in that it allows some nonzero
amount of work to be done on T as long as quality does not go above the threshold. Standard earliest start times
can be modeled with a q value of 0.

141

in particular the robot arms run on separate hardware with a separate specialized execution
controller. The only way for the RT scheduler to function is to allow the robot hardware to
make non-local commitments (in this case, worse-case execution time guarantees) about certain
physical activities that are not directly under the control of the real-time scheduler.

Another way to look at non-local commitments is that they give the decision-maker a way
to only partially flesh out a task structure and to direct a scheduler’s search, potentially making
it more efficient. NLCs on elements of MAX (OR) nodes provide initial lower bound ‘best’
estimates, while NLCs on MIN (AND) elements provide upper bounds. Both types can be
used to prune search in time-constrained situations—NLC’s below MAX (OR) nodes could
prune all their siblings from local consideration; NLCs below MIN (AND) nodes can only
locally prune below the node with the NLC. For example, if the task ‘get food for the party’
consists of the subtasks ‘buy prepared food’ OR ‘make food from leftovers’, then if another
agent commits to ‘buy prepared food’ I can prune this entire substructure from my schedule.
On the other hand, if ‘get food for the party’ consists of the subtasks ‘buy ingredients’ AND
‘make food from ingredients’, then a non-local commitment to ‘buy ingredients’ prunes that
subtask (and any below it) only; I still need to schedule to ‘make food from ingredients’.

Another potential use for non-local commitments is to allow the decision-maker to direct
the search of the scheduler. The decision-maker can use non-local commitments to ask
questions such as, assuming quality is achieved in this part of the task structure, how could we
take advantage of that in other parts of the task structure. This could be useful in situations
where the cost of the information gathering associated with expanding a task structure is
potentially large. It could also be used in situations where the scheduler has successfully
produced a schedule to satisfy one part of a task structure and the decision-maker now wants
to focus the schedulers attention on another part that can begin execution when the previously
scheduled work is completed. In time-constrained situations such non-local commitments
can reduce search for the scheduler by allowing it to prune committed portions of the task
structure.

Various mechanisms for controlling the runtime of the scheduler can include: a hard
deadline by which the scheduler should complete; a satisficing value for a schedule (the
scheduler completes when a schedule of at least this value is found); or a decision-theoretic
tradeoff function that indicates the added value of spending time finding better schedules versus
executing the first element of the current schedule[Russell and Wefald, 1991]. In non-real-time
scenarios, this might not be particularly important as long as the runtime of the scheduler is
small compared to the grain size of application tasks. In real-time scenarios it is crucial to at
least be able to predict the worst-case performance of the scheduler.

5.7.2 Scheduler Output

The output from the scheduler after an invocation should include at least one valid schedule,
a list of satisfied commitments, a list of violated commitments with alternatives, an indication
of tasks that should be scheduled but are not, and an indication of the value of each returned
schedule with respect to some fixed set of criteria.

A set of valid schedules S is returned that do a satisfactory job of satisfying the problem
given to the scheduler. An individual schedule S 2 S consists of at least a set of methods
and start times: S = fhM1; t1i; hM2; t2i; : : : ; hMn; tnig. This output is of course necessary,

142

and forms the initial proposal in the negotiation process. The remaining items provide an
explanation of this proposal.

The next three items returned (satisfied commitments, violated commitments with alter-
natives, and multi-criteria schedule values) are not necessary for the scheduler to provide,
because they can all be derived mathematically from the schedule itself and the set of
non-local commitments. However, for practical implementations, the scheduler often has this
information at hand, or can collect it during schedule generation, and it would be expensive to
recompute.

The set of input commitments that are satisfied in a schedule Satis�ed(S) is returned
(8S 2 S;Satis�ed(S) � C). If the scheduler supports symbolic local commitments like ‘early’
deadline commitments and ‘late’ earliest start time, then it must also supply an indication of
when the commitment is expected to be satisfied in the schedule SatTime(C;S). For example,
if C1 = DL(T; q; ‘early’) and C1 2 Satis�ed(S) then SatTime(C;S) = min t � D(T) s.t.
Qest(T; t; S) � q.

The set of input commitments that are violated in a schedule Violated(S) is returned. For
each violated commitment, a proposed modification to the commitment that the scheduler is
able to satisfy (Alt(C;S)) is also returned. For earliest start time and deadline commitments
this involves a proposed new time and/or minimum quality. For do/don’t commitments this
involves a recommended retraction or a reduced minimum quality value. For example, for
a violated deadline commitment C(DL(T; q; tdl)) 2 Violated(S) the function Alt(C;S)
returns an alternative commitment C(DL(T; q; t�dl)) where t�dl = min t such that Q(T; t) � q
if such a t exists, or NIL otherwise.

The knowledge that certain commitments are satisfied or violated is absolutely necessary
to the decision-maker that uses commitments, regardless of the domain.

An indication of the “value” of the schedules that were returned according to several objective
criteria. Some of the objective functions that can be measured include the total quality for
all scheduled task groups,12 the number of task groups that do/do not complete before their
deadline, the amount of slack time available in the schedule to allow easy scheduling of new
tasks and/or allow time for tasks to take longer than expected to run, and the number (or
weighted value) of the commitments that are not satisfied in the schedule (our decision criteria
was described in Section 5.6.1).

Complex real problems invariably involve multiple evaluation criteria that must be balanced
with one another; we view this balancing as the role of the decision-maker, and the scheduler
attempts to maximize the current criteria, often returning multiple schedules (e.g., one that
best satisfies each of the current criteria.) While the ability to evaluate a schedule with respect
to certain criteria could be implemented outside of the scheduler, the ability to attempt to
optimize certain criteria can only be placed in the scheduler.

In our multi-agent system, for example, Agent A’s decision-maker might make a commit-
ment to Do(M1; q), and tell other agents. As time passes, Agent A will need to make a decision
about whether to abandon the commitment—perhaps the scheduler finds a ‘better’ schedule
that bypasses the execution of M1. The scheduler cannot make this decision because it can
only evaluate the schedule via local criteria. If another agent B uses the result of M1 to produce
a very high quality solution that A could not produce alone, B’s decision-maker can notify A’s

12This could be a weighted sum if task group importance varies, or some more complex function if desired.

143

decision-maker about the updated utility of the commitment. The decision-maker is now in
a much better position to decide whether to abandon the local commitment to M1 than the
scheduler is, and the process did not involve the agent’s exchanging all of their knowledge and
all of their current schedules.

A real-time example of changing criteria can occur when time pressure is not constant.
Under normal processing, the scheduler may process all task groups, attempting to produce
maximal quality. However, when feedback from the scheduler indicates that it is unable
to successfully schedule all task groups, the decision-maker may switch to a ‘time-pressured’
mode where the scheduler is directed to only produce minimum quality for every task. Such
‘mode-changing’ behavior can be directed by a decision-maker only by using feedback from
the scheduler. Other work has shown such mode-changing behaviors as pre-compiled into the
scheduler for efficiency purposes[Hayes-Roth et al., 1988].

A minimal list of tasks in the task structure that the schedule is not providing quality for
but would need to have quality to allow their task group to achieve non-zero quality. Such tasks
can result from the scheduler not having any local methods to generate quality for the tasks
(either because the task structure is distributed across agents and those tasks have methods at
some other agent(s), or because the agent has not yet done the information gathering necessary
to determine what methods are available for the task.) Such tasks can also result from the
scheduler not being able to schedule the execution of all methods known to it because of
deadlines or other constraints.

0 2 4 6 8 10 12 14 16 18 20

A: Q=20, D=8

B: Q=45, D=7 F: Q=45, D=4

B: Q=45, D=7 D: Q=40, D=5 F: Q=45, D=4
Final Quality: 40
Total Duration: 16

Commitment satisfied:
at time 7

Commitment satisfied:
at time 7

Final Quality: 40
Total Duration: 11

Final Quality: 20
Total Duration: 8

Commitment violated:
No alternative

Figure 5.6. An example of the output of the scheduler for the example problem given above.

A summary of the output of the scheduler for the example problem given above is shown
in Figure 5.6. In this example three schedules are returned. The bottom one is the schedule
generated by the minimum duration generator and produces a fast, low quality result, violating
the given deadline commitment because no quality is ever generated for the committed task.
The middle schedule is generated by the highest quality generator and produces the highest
possible quality in the fastest possible time, satisfying the deadline commitment at time 7.
The top schedule is generated by the minimum nonlocal reliance generator and produces the
highest quality possible completely locally, not relying on the given nonlocal commitment,
also satisfying the deadline commitment at time 7. Which of these schedules is chosen by the
decision-maker depends on the current evaluation criteria. If the fastest possible, acceptable

144

result is desired, perhaps because of a large workload of other tasks, then the bottom schedule
is chosen. If the best possible result in the minimum possible time is desired, the the middle
schedule is chosen. If the best possible result that does not rely on other agents is desired
(possibly because of other work that those agents need to do or a concern about the other
agent’s reliability) then the top schedule is chosen.

5.7.3 Interfacing the Coordination Mechanism with the Local Scheduler: Discussion

We will first return to the main reasons for a bidirectional interface separating scheduling
from decision making—reusability, modularity, and efficiency.

Of the various reasons for developing a complex bidirectional interface, the reusability
argument is the most clear. A scheduling component that attempts to find optimal method
execution times for arbitrary task structures and evaluation criteria is useful in many domains,
regardless of whether they have real-time or distributed problem solving components. A
more important related question is whether the extra capabilities required by this interface
can be provided cheaply by an otherwise efficient, reusable scheduler. Examining the input
characteristics, we find that the input task structures are not much more than the specification
of the problem to be solved, and that handling these constraints would not be an additional
burden to a standalone scheduler. Commitments, amounting to preferred (soft) deadlines and
earliest start times are also part of standard real-time scheduling specifications. So too are the
mechanisms for controlling the runtime of the scheduler, for any scheduler that can schedule
real-time tasks with deadlines. The only potentially unique feature is the input of non-local
commitments. If non-local commitments are always taken at face value (no lies) then they can
be used for making more efficient searches, as discussed earlier.

Examining the reusable scheduler’s output characteristics for efficient implementation, we
find the first two—the schedules themselves and which commitments are satisfied when—to
be non-controversial parts of almost any real-time scheduler. So too is the list of violated
commitments, but perhaps not the generated alternatives. Generating alternatives to violated
commitments on executable methods is trivial—just look in the generated schedule and return
the actual execution if found, or suggest retraction of the commitment otherwise. Generating
alternatives for high-level task commitments may be somewhat more complex, depending on
the internal structure of the scheduler and what information is efficiently available. As we
mentioned earlier, this output characteristic was assigned to the scheduler because it is usually
more efficient to compute there, but it can be (inefficiently) computed by the decision maker
from the schedule and non-local commitments themselves if necessary. The same thing is
true of schedule evaluations under multiple criteria—it is our experience that the scheduler
can more efficiently calculate these evaluations that the decision maker. The scheduler usually
has already computed these evaluations as part of its search process. The most unique and
potentially expensive output characteristic is the production of a task list for which the scheduler
desires quality but cannot produce. This behavior enables several sophisticated responses in
multi-agent systems, such as contracting behavior on the part of the decision maker on behalf of
the scheduler, but is not part of the standard definition of scheduling problems and undoubtedly
causes extra overhead. We plan to analyze how this behavior can be efficiently provided and
under what circumstances it is useful in future work.

The other two reasons for a complex bidirectional interface, efficiency and modularity, are
closely tied. Efficiency is primarily the ability to search on, or attempt to optimize, specific

145

criteria effectively. Defining a carefully delimited scheduling problem, and even limited search
criteria, allows for the construction of a efficient scheduler. In fact, multiple schedulers might
be constructed, each optimized to search (perhaps in parallel) under a different criteria (best
quality, least violated commitments, earliest finish time). This leads directly to the modularity
argument—that in general it is difficult to encapsulate all problem solving criteria into a single
evaluation function, and deciding on the correct criteria is an evolving computational process
(to be handled by a separate decision maker, we argue).

5.8 Summary

This chapter discussed my third contribution: the development of the Generalized Partial
Global Planning family of coordination mechanisms. The GPGP algorithm family specifies
three basic areas of the agent’s coordination behavior: how and when to communicate and
construct non-local views of the current problem solving situation (answered by Mechanism
1, update non-local views); how and when to exchange the partial results of problem solving
(answered by Mechanism 2, communicating results); how and when to make and break
commitments to other agents about what results will be available and when (Mechanisms 3,
4, and 5, handling simple redundancy and hard and soft relationships). Each agent also has
a heuristic local scheduler that decides what the agent should do next, based on its current
view of the problem solving situation (including the commitments it has made), and a utility
function. The coordination mechanism supplies non-local views of problem solving to the
local scheduler, including what non-local results will be available locally, and when they will be
available. The local scheduler creates (and monitors the execution of) schedules that attempt to
maximize group quality through both local action and the use of non-local actions (committed
to by other agents).

GPGP attempts to extend PGP in several ways. First, it permits more agent heterogeneity
and, when possible, more scheduling autonomy. Agents are still considered to be cooperative
(working with a shared global utility criteria), but GPGP permits agents to have different local
views (letting the scheduler work with partially global plans (really schedules). In the original
PGP algorithm agents generally communicate complete schedules (at a single a priori fixed level
of abstraction), whereas GPGP agents only communicate scheduling commitments to particular
actions (at any dynamically decided level of abstraction). Agents can be heterogeneous in their
capabilities as well—some agents can be faster at certain tasks or have unique capabilities
(methods). However, GPGP is a family of coordination mechanisms and does not address
problems of heterogeneous systems such as created shared languages for communication. GPGP
is useful in cooperative distributed problem solving (CDPS) situations, but the current set of
mechanisms would be vulnerable to lying in a non-cooperative multi-agent situation.

Secondly, GPGP extends PGP to dynamic environments and problem solving architectures
where planning (scheduling) at a single level of detail is not practical. This extension includes
communicating meta-level information at varying levels of detail and reacting appropriately to
situations where there is more than one way to accomplish a high level task.

The third GPGP extension is to real-time problem solving, with the addition of hard
deadlines and more flexible temporal commitments. However, the algorithm is only ‘real-time’
in the same sense as the underlying local scheduler (developed by Garvey [Garvey and Lesser,
1994]), and not in the strong sense of guaranteed computation like the Spring scheduler

146

[Stankovic et al., 1989] (how these all can work together is a future research direction, see also
the discussion in Section 5.7).

Because GPGP is a cooperative, team-oriented mechanism, it assumes that no agent has a
consistently better view of problem solving (either because of the problem-solving algorithm
or by some imposition of the environment). Our approach views the coordination mechanism
as modulating local control, not supplanting it—a two-level process that makes clear the
distinction between coordination behavior and local scheduling, and different from past and
present Durfee work. It is also different from Corkill’s work (which also had distinct local
control [Corkill and Lesser, 1983]) in that it is dynamic in nature. This separation also allows
GPGP to take advantage of recent advances in the planning and scheduling of computations.

GPGP mechanisms are reactions to the presence and quantitative features of coordination
relationships. Coordination relationships, as they arise from the general task environment
model, have domain-independent definitions. These relationships have quantitative properties
such as how likely they are to appear, how difficult they are to detect, and how significant their
effect is. A coordination algorithm defined in terms of detecting the existence and properties
of CRs, and producing scheduling constraints, is more general than one written for a specific
application such as the DVMT. Both domain-independence and modularity will allow for
researchers and application designers to share ideas more easily.

GPGP is a family of algorithms—each of the five mechanisms described here are param-
eterized independently (the first two have three possible settings and the last three can be in
or out) for a total of 72 combinations. For example, one specific family member that we will
use experimentally in the next chapter is named the “balanced” algorithm. The “balanced”
algorithm has Mechanisms 3, 4, and 5 ‘on’, updates ‘some’ non-local views (Mechanism 1),
and communicates commitments and finished task groups (Mechanism 2). Many of these
combinations do not show significantly different performance in randomly generated episodes,
as will be discussed in the next chapter, although they will allow for fine-tuning in specific
applications. More mechanisms can (and have) been added to expand the family, but the
family can also be enlarged by making each mechanism more situation-specific. For example,
mechanisms can have their parameters set by a mapping from dynamic meta-level measurements
such as an agent’s load or the amount of real-time pressure. Mechanisms can be ‘in’ or ‘out’
for individual classes of task groups, or tasks, or even specific coordination relationships, that
re-occur in particular environments. The cross product of these dynamic environmental
cues provides a large but easily enumerated space of potential coordination responses that are
amenable to the adaptation of the coordination mechanisms over time by standard machine
learning techniques or case-based reasoning approaches. Such extensions fall under the heading
of Future Work (Chapter 7). In the experimental section of dissertation (Chapter 6) we will
only consider the coarsest parameterization of the mechanisms.

In the next chapter we will evaluate and show the performance of these mechanisms, using
several sets of experiments that deal with performance of the GPGP mechanisms in different
environments, using a real implementation (running in Common Lisp on multiple platforms,
and being used by more than one person). The implementation uses as submodules a real
implementation of Garvey’s Design-To-Time real-time scheduler [Garvey and Lesser, 1994].

C H A P T E R 6

EXPERIMENTS IN GENERALIZED PARTIAL GLOBAL PLANNING

“You doubt what I wrote? Let me show you.” We now understand that what the
Professor is asking us to watch is related to the figure [in his scientific paper]. We thus
realize where this figure comes from. It has been extracted from the instruments of this
room, cleaned, redrawn, and displayed. We also realize, however, that the images
that were the last layer in the text, are the end result of a long process in the laboratory
that we are now starting to observe.

We are no longer asked to believe the text we read in ‘Nature’; we are now asked to
believe our own eyes : : :Do we see more or less than before? We can see more, since we
have before our eyes not only the image but what the image is made of. On the other
hand we see less because now each of the elements that makes up the final graph could
be modified so as to produce a different visual outcome. : : :The Professor, for instance,
is swearing at the gut saying it is a ‘bad gut’.

A guinea pig is placed on a table, under surgical floodlights, then anaesthetised,
crucified, and sliced open. : : :Suddenly, we are much further from the paper world
of the article. We are now in a puddle of blood and viscera, slightly nauseated by the
extraction of the ileum from this little furry creature. In the last chapter, we admired
the rhetorical abilities of the Professor as an author. Now, we realize that many other
abilities are required in order to write a convincing paper later on. The guinea pig
alone would not have been able to tell us anything : : : it was not mobilisable into a
text and would not help to convince us. Only a part of its gut, tied up in the glass
chamber and hooked up to a physiograph, can be mobilised in the text and add to our
conviction. Thus, the Professor’s art of convincing his readers must extend beyond the
paper to preparing the ileum, to calibrating the peaks, to tuning the physiograph.

— Bruno Latour, Science in Action

These experiments involve a complete implementation of GPGP and a separately developed
real-time local scheduler [Garvey and Lesser, 1993, Garvey et al., 1994]. We will show
how to decide when a particular mechanism (and thus GPGP) is useful, how some family
members perform relative to a centralized algorithm,and what the space of possible coordination
algorithms looks like for the five mechanisms currently defined. We analyze the performance of
this family of algorithms through simulation in conjunction with the heuristic real-time local
scheduler and randomly generated abstract task environments.

In these environments, the agents attempt to maximize the system-wide total utility (a
quantity called ‘quality’, described later) by executing sequences of interrelated ‘methods’. The
agents do not initially have a complete view of the problem solving situation, and the execution
of a method at one agent can either positively or negatively affect the execution of other methods

148

at other agents. We will show examples of the effect of the environment on the performance
of a GPGP family member, and show an environment where family member A is better than
B, and a different environment where B is better than A. We will return to the demonstration
of meta-level information being more useful when there is a large amount of variance between
episodes in an environment.

In this final section we will discuss experiments we have conducted with our implementation
of these ideas:
� How should we decide when the addition of a particular mechanism is warranted?

� What is the performance of a system using all the mechanisms compared to a system
that only broadcasts results? Compared to a system with a centralized scheduler?

� What is the performance space of the GPGP family, as delineated by the five existing
mechanisms?

As we have stated several times in this dissertation, we do not believe that any of
the mechanisms that collectively form the GPGP family of coordination algorithms are
indispensable. What we can do is evaluate the mechanisms on the terms of their costs
and benefits to cooperative problem solving both analytically and experimentally. This analysis
and experimentation takes place with respect to a very general task environment that does
not correspond to a particular domain. Doing this produces general results, but weaker than
would be possible to derive in a single fixed domain because the performance variance between
problem episodes will be far greater than the performance variance of the different algorithms
within a single episode. Still, this allows us to determine broad characteristics of the algorithm
family that can be used to reduce the search for a particular set of mechanism parameters
for a particular domain (with or without machine learning techniques). We will also discuss
statistical techniques (e.g. paired-response) to deal with the large between-episode variances
that occur when using randomly-generated problems.

The first section of this chapter describes a set of experiments using a very simple
simulation and task structure that looks only at the effect of the facilitates relationship on
agent performance—in particular, the effect of the power of the relationship and the likelihood
of its existence. The rest of the chapter is devoted to an exploration of the performance of the
GPGP family of coordination mechanisms as described in the previous chapter.

6.1 Initial Experiments: The Effect of Facilitation Power and Likelihood

The simulation used in this first chapter section is driven by the environment, task, and
agent characteristics we discussed in Chapter 3; the tasks represent abstract computations
and their structure was a simple one-level-deep AND hierarchy. Experiments using the full
TÆMS framework will be discussed in the rest of the chapter, beginning in Section 6.2. In the
experiments below, there were two abstract task groups. One group of tasks had a mean time
between subtask arrivals of 40% less than the other. Each task arrives uniformly randomly
at an agent. Facilitation relationships are generated between tasks with a base probability
that decreases linearly with the difference between task arrivals1. For example, if there are

1The reader should not be worried about ‘linear’ vs. ‘exponential’ here. An experiment not reported here
showed that in an environment where the probability of a facilitates relationship drops off exponentially instead
of linearly, the system response characteristics are similar to a linear environment with the same number of detected
relationships.

149

642 tasks generated, and a base probability of 0.5, interrelated tasks are grouped into clusters
approximately distributed as in the histogram in Figure 6.1. If A facilitates B and C, and C
facilitates D, that cluster is of size 4. This gives an indication of the webs of commitment
that may potentially exist. The total number of ways to distribute k tasks to n agents is nk .
The number of ways to distribute k tasks to i agents where each agent gets at least 1 task
(surjections) is i!S(k; i), where S(k; i) are the Stirling numbers of the second kind. So the
expected number of n total agents that are involved in a k-cluster is:

nX
i=1

i

�
n
i

�
i!S(k; i)

nk

Cluster Size

N
u

m
b

er
 o

f
C

lu
st

er
s

160

140

 40

 20

 0
1 2 3

Figure 6.1. Histogram of sizes of task clusters for Prfac = 0:5, N = 642.

Each agent uses an early-version “design-to-time” (DTT) real-time local scheduler based
on the concept of approximate processing[Decker et al., 1990, Garvey and Lesser, 1993]. The
DTT scheduler will choose a method for a task based on the amount of time available for that
task and the other tasks currently on the agenda. The DTT scheduler may change the method
being used during execution at a task monitoring point; in the experiments described here 50%
of the work done before changing methods is lost. The DTT scheduler is boundedly rational for
deadline constraints, and was modified to be boundedly rational for delay constraints (delaying
the start of a task until the result of another task is received). Each class of tasks had 5 methods
of varying quality and duration; each task execution was monitored by the DTT scheduler
three times. The actual duration and quality values for each method for each task are randomly
generated from normal distributions with means equal to the estimated values and variances as
specified for the method/task combination. The shared global utility function by which agents
are judged is the total quality of their individual task solutions. The design-to-time scheduling

150

algorithm used by each agent ensures that under normal circumstances (a required utilization
(system load) of less than 3) less than 2% of the tasks ever miss a deadline. This is a property
of the existence of low cost/low quality approximations.

Observations in the experiments that follow are made from average responses over 5
statistically generated runs of 1000 simulated world time units. The number of tasks that
are actually generated depends on their arrival rate, which was varied. We also varied the a
priori likelihood (Prfac) of a facilitates relationship between two tasks of the same class and
the significance of the effect it has on the time of the facilitated tasks (called the power of the
CR and measured by the percent reduction in time facilitated).

Each run consists of two sets of 4 agents. Each of the two agent-sets receives exactly the
same set of tasks at exactly the same times—one agent-set uses the original DTT scheduling
algorithm and no communication, the other agent-set uses the DTT scheduling algorithm
modified to be boundedly rational with respect to delay constraints and to always detect and
communicate coordination relationships. Each of the four agents in each agent-set receives
precisely the same set of tasks as its counterpart in the other agent-set. The coordinating agents
calculate delays as described in Figure 6.2. If a commitment fails, the coordinating agents
simply break the failed commitment.

The primary performance metric in the experiments presented here is the percentage
increase in quality between each pair of agents that received the same task set (a paired
response), and then averaged across the agent pairs. This metric is indicated in the figures
by APQI (average percent quality increase). The other variable that was manipulated was the
mean time between arrivals of the tasks; we can then compare relative increases in quality based
on the average utilization required by that set of tasks. When the average required utilization is
greater than 1, it means that it is impossible to complete all tasks without approximating some
of them.

There are three characterizations of this simulated environment that make it different from
the actual environment of a system such as the DVMT:

� In interpretation environments like the DVMT, not all tasks need to be done, but in this
simulation, in this section, they do. The rest of the chapter will discuss a more complex
simulation where not all work needs to be done.

� This simulation assumes that approximating a result has only a local effect on quality, as
opposed to reducing the quality of a whole group of related tasks.

� This simulation does not contain a model of the relationship between the fact that a
task does or doesn’t need to be done, and the fact that a facilitates relationship does or
doesn’t exist.

On the other hand, our measurements are against a design-to-time real-time scheduling
algorithm that likewise does not take these factors into account. The addition of these extra
characteristics to the task structure requires the addition of new coordination relationships
(especially subtask). The second part of this chapter (starting at Section 6.2) will discuss
GPGP using the full TÆMS task structure framework.

6.1.1 Calculating Delays

How do we compute how long to delay a task B that is facilitated by a task A? For example
(see Figure 6.2), if

151

� utility is a function of result quality only (as opposed to a function of both quality and
missed deadlines)

� the local scheduler does not assure the minimal quality of a task result

� facilitates affects only the durations of tasks directly

then agents must attempt to produce their highest quality solutions. Suppose there are several
different tasks Bi such that A facilitates each Bi. If we estimate the latest start time for each
task B in order to produce a highest quality solution, and estimate the finish time for task A,
then all tasks B with latest start times after the estimated finish of A (B2 and B3 in the figure)
should be delayed to the minimum latest start time of those tasks (B2 in Figure 6.2; times
must be calculated taking communication time into account if it is substantial). If the local
scheduler were boundedly rational with respect to quality constraints, then the estimate of the
latest start time of B could be modified by (made later by) the estimated effect of the facilitates
relationship for the maximally assured minimal quality of the result of task A.

B1

A

B3

B2

Task Deadline

Task A Estimated Finish Time (max quality)

Task Latest Start Time (max quality)
Minimum Latest Start Time

Extra Time (slack)

Delay

Figure 6.2. Calculating Delays

6.1.2 A Simple Model of the Utility of Detecting Facilitates

When should an agent test for a facilitation relationship? An agent can potentially test for
the presence of the facilitates relationship between any new local task and the tasks it knows
about from other agents. The costs per task here include the processing cost of testing for
the relationship between two tasks and the cost of communication to get more information
if the test result is too uncertain (Cdetect). Note that the test itself is domain specific, even
though the facilitates relationship is general. If the relationship is present, the benefits include

152

some increased utility (reduction in time, increase in quality of the facilitated task) (Bfac).
The benefits will accrue fully only if the scheduling constraints implied by the new detected
relationship can be incorporated, and only if the facilitating task is accomplished.2 Costs are
also incurred when the relationship is present, including the direct costs of communicating the
result, adding the scheduling constraints, and updating the models of each others’ tasks, and the
indirect costs of delaying some tasks (Cfac). Using the a priori likelihood Prfac of a facilitates

relationship from the environmental model, we can build an expression for the form of the
expected utility of the relationship, Prfac �(Bfac � Cfac) � Cdetect. In many environments,
such as the DVMT, this expression will be relatively static, with Cdetect relatively constant and
with Bfac and Cfac depending on many environmental factors, including the task at hand, the
current system utilization, etc. (see the experiments in Section 6.1.3). If Cdetect is not relatively
constant, then it is beneficial to consider separately the decision to detect a relationship and
the decision to communicate about it.

6.1.3 When to Detect and Communicate Facilitates

The first suite of experiments (Figures 6.3 and 6.4) involves the effect of the two quantitative
properties of facilitates, likelihood (Prfac) and duration power (�d). Our hypothesis is that
the simple expected utility model given in Section 6.1.2 can be instantiated as a decision rule
for each agent as to whether or not that agent should detect, communicate, and react to the
facilitates relationship. The alternative is that the simple linear relationship is in fact not
linear, or is drowned out by secondary characteristics such as the cluster size of the facilitates

relationship (i.e. the length of a chain of facilitates relationships) or scheduler errors which
cause the benefits of the facilitation relationship (Bfac) to become non-linear with respect to
the power of the relationship.

To test this hypothesis, we first gathered raw data from 90 paired-response simulations of 4
agents that never detect, communicate, or react to the facilitates CR, and 4 agents that always
detect, communicate, and react—5 simulations at each of 6 different duration powers and 3
different likelihoods (Figure 6.3). Each data point in the figure is the average of 20 computed
percent quality increases (5 experiments of 4 paired agents each). All 90 experiments were
simulated with the same frequency of task arrival (an average required utilization of 1.5—too
high to allow all tasks to be completed at maximum quality without communication, but not
so high as to saturate the DTT scheduler). Direct communication costs and detection costs
were fixed at 0. Examining Figure 6.3, we find that below a power of 10%, in this example,
exploiting the facilitates relationship costs more in indirect costs than it is worth. The indirect
costs arise primarily from agent’s delaying tasks and rearranging their schedules unnecessarily.

In Section 6.1.2 we postulated the form of the expected utility of detecting, communicating,
and reacting to the CR as Prfac �(Bfac � Cfac) � Cdetect. To instantiate this model for
this experiment, we let Cdetect = 0, make the benefits proportional to the duration power
(Bfac = ��d) and the costs constant (since the arrival rate was held constant) (Cfac = c).
Applying linear regression we achieve a fit that explains 98% of the observed variance R2

(� = 1:013, c = 17:03, both parameters are significant at the � = 0:01 level). Thus this

2For some relationships, there is also a chance the benefit will accrue serendipitously without the detection
of the relationship. When possible, tasks can be structured to take advantage of this fact, which may reduce
coordination costs considerably.

153

-10

0

10

20

30

40

50

60

70

0 20 40 60 80 100

0.25

0.5

1

POWER

A
ve

ra
ge

 P
er

ce
nt

ag
e

Q
ua

lit
y

I n
cr

ea
se

Likelihood

Figure 6.3. The effect of the power of the facilitates relationship on relative quality at different
likelihoods

formula could be used as a decision rule by each agent to decide if it is worthwhile to detect,
communicate, and react to the coordination relationship. This is another example of how
different mechanisms are appropriate for different environments.

Figure 6.4 is a depiction of the surface defined by the three curves in Figure 6.3, via cubic
interpolation. It succinctly shows how the positive effect of duration power grows with the
likelihood. Note the flattening at the high end of the power and likelihood scales, caused by a
ceiling effect since in this region all tasks are being accomplished at maximum quality (and so
one cannot do any better).

6.1.4 Facilitating Real-time Performance

The second suite of experiments (Figure 6.5) shows that the average relative increase in
quality in the results of communicating agents versus non-communicating agents grows with
the required utilization of the system (load). The harder the task set is, the more important
detecting the facilitates CR is, even at low power. The left side of Figure 6.5 shows duration
power versus the relative quality increase for several required utilizations (system loads)3. The
right side of Figure 6.5 shows the effect of required utilization on relative quality for duration

3Two data points on the utilization = 6 line, (power = 75, APQI = 555) and (power = 100, APQI = 1010),
were left out for clarity.

154

0
20

40
60

80
100

Power
0.4

0.6

0.8

1

Likelihood

0
20

40

60

APQI

0
20

40
60

80
100

Power
0.4

0.6

0.8

1

Likeli

0
20

40

0

Figure 6.4. The effect of the power of the facilitates relationship on relative quality at different
likelihoods

powers of 25% and 50%. The a priori likelihood of the presence of the CR was fixed at 0.5
for Figure 6.5. We would expect both the benefits and costs to change when the required
utilization changes; the question is how much. The data from these experiments is not enough
to disprove that the increase in quality grows linearly.

-50

0

50

100

150

200

250

300

0 20 40 60 80 100

0.75

1.5

3

6

Required U
tilization

POWER

A
ve

ra
ge

 P
er

ce
nt

ag
e

Q
ua

lit
y

In
cr

ea
se

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

50

25

Pow
er

Required System Utilization

A
ve

ra
ge

 P
er

ce
nt

ag
e

Q
ua

lit
y

In
cr

ea
se

Figure 6.5. The effect of power and required utilization (system loads) on relative quality

These figures show the increase in quality, but just as important is the decrease in missed
deadlines (not shown here), which is similar. At high loads (high required utilization) the

155

non-coordinated agent set reaches an asymptotic quality performance (which is less than
maximum quality across loads; see Figure 6.6), and an unbounded number of missed deadlines.
This figure depicts the absolute quality response of a single agent system over approximately
250 runs. The response has three major components: up to around a utilization of 1, absolute
quality grows quickly as the number of tasks increases—each task is usually done at maximum
quality; from around 1 to around 5, the DTT scheduler begins to trade off low quality, fast
approximations for maximum quality, slow methods to avoid missing deadlines; above 5, every
task is scheduled with the fastest method (resulting in asymptotic quality performance) and
missed deadlines grow without bound.

•

• •

•
•

•
••

• •
•

•
•
• •

• •• • •

•

•

•

•
• ••

• •

•
•

•
•

• • • •• • •

•

•

•

• •• •
• •

•
•

• •
• •

• ••• •

•

•

•
•

• ••
• •• •

•
•

•
• • • • • •

•

•

•

• •• • • • •

•
• • • •

• • • • •

•

•

• • •
• •

••

•
• ••

• •

•
•

• • •

•

•

•

• • •

•

•
• • •

•• ••
••

• ••

•

•

• •

• •
• • •

•

• •
•

•
•• •

• • •

•

•

•

•
•

• •• •

• • •

• •• •
• • • •

•

•

•
•• • •

•
•

•
• •

• •
•• • • ••

•

•

• • • ••
• •

•
• •

• •
• • •

• ••

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A
bs

ol
ut

e
Q

ua
lit

y

Required System Utilization

Figure 6.6. Effect of system load on the absolute quality for a one agent system

The effect of detecting, communicating about, and reacting to the facilitates CR is to
move this curve upward. Even though the indirect costs of delaying tasks due to exploiting
facilitation may increase under heavy loads, the average relative quality increase remains at 0
(rather than becoming negative) because the communicating agents can do no worse than the
non-communicating agents, who are continuously executing tasks with the fastest, minimal
quality method. The indirect costs can show up in more missed deadlines before the non-
communicating schedulers become saturated near a utilization of 5. Figure 6.7 shows that while
the relative performance of the coordinating agents grew in Figure 6.5, the absolute performance
actually levels-off (note that the ‘max-quality’ line represents all tasks being completed at
maximum quality, which is an impossible ideal to ever achieve for a required utilization greater
than one).

156

10

30

50

70

0 1 3 5

achieved quality

max quality

A
bs

ol
ut

e
Q

ua
lit

y

Required System Utilization

Figure 6.7. Effect of system load on the absolute quality

6.1.5 Delay

We ran a final suite of experiments to validate the effect of the delay time on performance.
Assume again that task A facilitates tasks Bi as shown in Figure 6.8. The possible amounts by
which to delay a task are bounded below (number 1 in Figure 6.8) by task A’s estimated finish
time for some quality, and bounded above (number 3 in Figure 6.8) by the minimum latest
start time of all tasks B that can be started after A finishes calculated to include the predicted
effect of receiving the maximum quality result of task A. For example, since the result of task
A will reduce the amount of time required for tasks Bi, each task’s latest start time would
increase (move to the right) in Figure 6.2. Our choice, to delay to the minimum latest start
time computed as if the result of A will not be received, is somewhere in between (number 2
in Figure 6.8).

We would like to show how this choice has the highest expected utility for the agent
pair. Given an environment where power �d = 50%, likelihood Prfac = 0.5, and a mean time
between arrivals of 2.5, we achieve the following average percentage quality increases shown in
Table 6.1.

157

B1

A

B3

B2

Task Deadline

Task A Estimated Finish Time (max quality)

Task Latest Start Time (max quality)

Extra Time (slack)

Delay

Task Latest Start Time (if facilitative result is recieved)

1 32

Figure 6.8. Other ways of calculating delays.

Table 6.1. Average percent quality increase for various commitment delay values.

Shortest Delay (1) Normal Delay (2) Longest Delay (3)
APQI 19.1 26.4 22.9

When an agent commits to finishing task A early, it does so with a soft deadline—the task
is scheduled to finish at the soft deadline time but monitoring will not switch to a faster, lower
quality method unless the hard deadline is threatened. To commit to a hard deadline in order
to take advantage of a facilitates relationship would be a complex decision, as the agent would
have to weigh the cost of a potential local loss of quality with the potential gain in quality
(through reduced duration) at the remote node. In general, shortening the delay hurts quality
because often the facilitating task A does not quite finish on time (it does not have a hard
deadline) and so the facilitated task begins without A’s result. Lengthening the delay can also
hurt quality because sometimes task A does not complete with the required quality (remember,
the current scheduler is not boundedly-rational with respect to minimum needed quality), and
so the quality of any delayed task B suffers. Delay time is similar to the slack time that was
investigated in Durfee and Lesser’s predictability vs. responsiveness experiments[Durfee and
Lesser, 1988a].

This result gives some indication of one important design decision to be made in an
agent’s local scheduler—how long to delay execution of a facilitated method when there is
no explicit commitment from the facilitating agent. GPGP mechanism 5, which coordinates
soft predecessor relationships, solves this problem by communicating an explicit commitment.
We will now move from these initial limited experiments to experiments with the full GPGP
implementation.

158

6.2 GPGP Simulation: Issues

Our model of an abstract task environment, used in the rest of this chapter, has ten
parameters; Table 6.2 lists them and the values used in the experiments described in the next
two sections. These were discussed in some detail in Section 3.6.2. Figure 6.12 shows two
small task groups generated with the parameters from Table 6.6, which are similar.

Table 6.2. Environmental Parameters used to generate the random episodes

Parameter Values (facilitation exps.) Values (clustering exps.)
Mean Branching factor (Poisson) 1 1
Mean Depth (Poisson) 3 3
Mean Duration (exponential) 10 (1 10 100)
Redundant Method QAF Max Max
Number of task groups 2 (1 5 10)
Task QAF distribution (20%/80% min/max) (50%/50% min/max)

(100%/0% min/max)
Hard CR distribution (10%/90% enables/none) (0%/100% enables/none)

(50%/50% enables/none)
Soft CR distribution (80%/10%/10% facilitates/hinders/none) (0%/10%/90% facilitates/hinders/none)

(50%/10%/40% facilitates/hinders/none)
Chance of overlaps (binomial) 10% (0% 50% 100%)
Facilitation Strength .1 .5 .9 .5

The primary sources of overhead associated with the coordination mechanisms include
action executions (communication and information gathering), calls to the local scheduler,
and any algorithmic overhead associated with the mechanism itself. Table 6.3 summarizes the
total amount of overhead from each source for each coordination mechanism setting and the
coordination substrate. L represents the length of processing (time before termination), and d
is a general density measure of coordination relationships. We believe that all of these amounts
can be derived from the environmental parameters in Table 6.2, they can also be measured
experimentally. Interactions between the presence of coordination mechanisms and these
quantities include: the number of methods or tasks inE, which depends on the non-local view
mechanism; the number of coordination relationships jCRj or the subsets RCR (redundant
coordination relationships), HPCR (hard predecessor coordination relationships), SPCR
(soft predecessor coordination relationships), which depends on the number of tasks and
methods as well; and the number of commitments jCj, which depends on each of the three
mechanisms that makes commitments.

6.3 General Performance Issues

Another question is how the performance of a fully configured system compares with
optimal performance. While we have no optimal parallel scheduler with which to compare
ourselves, we do have a single agent optimal scheduler and a centralized, heuristic parallel
scheduler that takes the single-agent optimal schedule as its starting point.

We examined the general performance of the most complex (all mechanisms in place) and
least complex (all mechanisms off) members of the GPGP family in comparison to each other,

159

Table 6.3. Overhead associated with individual mechanisms at each parameter setting

Mechanism setting Communications Information Gathering Scheduler Other Overhead
substrate 0 E+idle L O(LC)
nlv none 0 0 0 0

some O(dP) Edetect-CRs 0 O(T 2 E)
all O(P) Edetect-CRs 0 O(T 2 E)

comm min O(C) 0 0 O(C)
TG O(C +E) 0 0 O(C +E)
all O(M 2 E) 0 0 O(M 2 E)

redundant on O(RCR) 0 0 O(RCR � S +CR)
hard on O(HPCR) 0 O(HPCR) O(HPCR � S +CR)
soft on O(SPCR) 0 O(SPCR) O(SPCR � S +CR)

and in comparison to a centralized scheduler reference implementation (as an upper bound).
We looked at performance measures such as the total final quality achieved by the system,
the amount of work done, the number of deadlines missed, and the termination time. The
centralized schedule reference system is not an appropriate solution to the general coordination
problem, even for cooperative groups of agents, for several reasons:

� The centralized scheduling agent becomes a possible single point of failure that can cause
the entire system to fail (unlike the decentralized GPGP system).

� The centralized scheduling agent requires a complete, global view of the episode—a view
that we mentioned earlier is not always easy to achieve. We do not account for any costs
in building such a global view in the reference implementation (viewing it as an upper
bound on performance). We do not allow dynamic changes in the episodic task structure
(which might require rescheduling).

� The centralized reference scheduler uses an optimal single-agent schedule as a starting
point. The problem of scheduling actions in even fairly simple task structures is NP-
complete, and the optimal scheduler’s performance grows exponentially worse with the
number of methods to be scheduled. Since the centralized reference scheduler has a
global view and schedules all actions at all agents, the size of the centralized problem
always grows faster than the size of the scheduling problems at GPGP agents with only
partial views and heuristic schedulers.

We conducted 300 paired response experiments, using the three algorithms. “Balanced”
refers to all mechanisms being on, with partial non-local views and communication of
committed results and completed task groups. “Simple” refers to all mechanisms being off,
with no non-local view and broadcast communication of all results. “Parallel” refers to the
centralized reference scheduler that uses a heuristic parallelization of an optimal single agent
schedule using a complete global view. The experiments were based on the same environmental
parameters as the facilitation experiments (Table 6.2). There are several important things to
note about this class of environments:

160

� The size of the episodes was kept artificially small so that the centralized reference
scheduler could find an optimal schedule in a reasonable amount of run time.

� The experiments had very low (10%)numbers of enables relationships and a low (20%)
number of MIN quality accrual functions because they penalize the simple algorithm—
we demonstrate this in Section 6.8. High numbers of enables constraints tend to hurt
the uncoordinated agents because they have no mechanism for handling precedence
except ‘wait until enabled’. If there is also a low overlap percentage, the uncoordinated
agents, who do not exchange non-local views, will not be able to apply even this simple
rule because they will not even know of the existence of the enabling method.

� Deadline pressure was also kept low (it also makes the simple algorithm perform badly).

In our experiments, the centralized parallel scheduler outperformed our distributed, GPGP
agents 57% of the time (36% no difference, 7% distributed was better) using the total final
quality as the only criterion. The GPGP agents produced 85% of the quality that the centralized
parallel scheduler did, on average. These results need to be understood in the proper context—
the centralized scheduler takes much more processing time that the distributed scheduler and
can not be scaled up to larger numbers of methods or task groups. The centralized scheduler
also starts with a global view of the entire episode. Table 6.4 shows the results for all four
measured criteria by summarizing within-block (paired-response) comparisons. 4 For total
final quality and number of deadlines missed, “better” simply refers to an episode where the
algorithm in question had a greater total final quality or missed fewer deadlines, respectively.
With respect to method execution time (a measure of system load) and termination time,
“better” refers to the fact that one algorithm produced both a higher quality and missed fewer
deadlines than the other algorithm, or if the two algorithms were the same, then the better
algorithm had a lower total method execution time (lower load) or terminated sooner.5

We also looked at performance without any of the mechanisms; on the same 300 episodes
the GPGP agents produced on average 1.14 times the final quality of the uncoordinated agents.
Coordinated agents (“balanced”) execute far fewer methods because of their ability to avoid
redundancy. The redundant execution of methods proves a much more hindering element to
the uncoordinated agents when acting under severe time pressure [Decker, 1994b]. Table 6.5
summarizes the results.

6.4 Taking Advantage of a Coordination Relationship: When to Add a New Mechanism

A practical question to ask is simply whether the addition of a particular mechanism will
benefit performance for the system of agents. Here we give an example with respect to the
soft coordination mechanism, which will make commitments to facilitation relationships. We
ran 234 randomly generated episodes (generated with the environmental parameters shown in
Table 6.2) with four agents both with and without the soft coordination mechanism. Because
the variance between these randomly generated episodes is so great, we took advantage of the

4Communication can not be measured fairly because the centralized parallel scheduler had instantaneous
communication to all agents and instantaneous access to all results.

5Termination within two time units was considered “the same” because the “balanced” algorithm has a fixed
2-unit startup cost. The average task duration is 10 time units.

161

Table 6.4. Performance comparison: Centralized Parallel Scheduler vs. Balanced GPGP
Coordination and Decentralized DTT Scheduler

Parallel better Balanced Better Same Significant?
Total Final Quality 57% 7% 36% yes

Method Execution Time 80% 7% 13% yes
Deadlines Missed 1% 1% 98% no

Termination Time 67% 15% 18% yes

Table 6.5. Performance comparison: Simple GPGP Coordination vs. Balanced GPGP
Coordination

Simple better Balanced Better Same Significant?
Total Final Quality 8% 21% 71% yes

Method Execution Time 12% 72% 16% yes
Deadlines Missed 0% 4% 96% yes

Termination Time 9% 58% 33% yes

paired response nature of the data to run a non-parametric Wilcoxon matched-pairs signed-
ranks test [Daniel, 1978]. This test is easy to compute and makes very few assumptions—
primarily that the variables are interval-valued and comparable within each block of paired
responses. For each of the 234 blocks we calculated the difference in the total final quality
achieved by each group of agents and excluded the blocks where there was no difference, leaving
102 blocks. We then replace the differences with the ranks of their absolute values, and then
replace the signs on the ranks. Finally we sum the positive and negative ranks separately. A
standardized Z score is then calculated. A small value of Z means that there was not much
consistent variation, while a large value is unlikely to occur unless one treatment consistently
outperformed the other. In our experiment, the null hypothesis is that the system with the
soft coordination mechanism did the same as the one without it, and our alternative is that
the system with the soft coordination mechanism did better (in terms of total final quality).
The result here was Z = �6:9, which is highly significant, and allows us to reject the null
hypothesis that the mechanism did not have an effect.

6.5 Different Family Members for Different Environments

In this section I will show a particular example of how different family members do better
and worse in different environments. I will concentrate on two distinct family members—the
‘modular agent’ archetype (all CR modules on, non-local views, communicate commitments
and completed task groups), and the ‘simple agent’ (no CR modules on, no non-local views,
broadcast all completed methods). The environmental parameter we will vary (derived from
the screening data collected in Section 6.8) is QAF-min, the percentage of tasks that have min as

162

their quality accumulation function (‘AND’ semantics). Our hypothesis was that the modular
agents would do better than the simple agents as QAF-min increased (as more tasks needed to
be done). We ran 250 paired-response experiments at 5 levels of QAF-min (0, 0.25, 0.5, 0.75,
1.0) with enables-probability varying also at the same 5 levels, no time pressure, overlaps of 0.5,
5 task groups, and 4 agents per run. The performance (in terms of total final quality) of the two
coordination styles was significantly different by the Wilcoxon matched-pairs signed-ranks test
(199 different pairs, Z = �3:27, p � 0:0005). More interestingly, we can see the difference
in performance widening with the value of QAF-min. Figure 6.9 shows the probability of one
coordination style or the other doing better (calculated simply from the frequencies) plotted
verses the value of QAF-min. This allows you to see graphically the difference in the styles
as QAF-min changes. Figure 6.10 shows the same information as probability partitions for
each of the three possible outcomes as QAF-min changes, determined by (exploratory) logistic
regression. The hash marks on the right edge of each box show the base partition values
computed from all the data while ignoring the value of QAF-min.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Modular Agen
t

Simple Agent

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Qaf-Min

Pr
ob

ab
ili

ty
 o

f d
oi

ng
 b

et
te

r

Figure 6.9. Plot of the probability of the modular or simple coordination styles doing better
than the other (total final quality) verses the probability of task quality accumulation being
MIN (AND-semantics)

163

0

0.25

0.5

0.75

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Qaf-Min

Worse

Same

Better

P
ro

ba
bi

lit
y

P
ar

ti
ti

on
 (

Si
m

pl
e

A
ge

n
t)

0

0.25

0.5

0.75

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Qaf-Min

P
ro

ba
bi

lit
y

P
ar

ti
ti

on
 (

M
od

ul
ar

 A
ge

n
t)

Better

Same

Worse

Figure 6.10. Probability partitions for one style doing the same, better, or worse than the other
given the value of QAF-min.

6.6 Meta-level Communication: Return to Load Balancing through Dynamic Reorganiza-
tion

Another question we have examined is the effect of task structure variance on the
performance of load balancing algorithms. This work is a logical follow-on to the analysis of
static, dynamic, and negotiated reorganization detailed in the last chapter. A static organization
divides the load up a priori—in the case below, by randomly assigning redundant tasks to agents.
A one-shot dynamic reorganization, like that analyzed in Chapter 4, assigns redundant tasks on
the basis of the expected load on other agents. A meta-level communication (MLC) reorganization
assigns redundant tasks on the basis of actual information about the particular problem-solving
episode at hand. Because it requires extra communication, the MLC reorganization is more
expensive, but the extra information pays off as the variance in static agent loads grows.6

A MLC coordination mechanism (mechanism 6) can be implemented in GPGP. Many
such implementations are possible; the one that we chose works by altering the way redundant
commitments are handled. When a commitment is sent to another agent, it is modified to
include the current load of the agent making the commitment (to be precise, the amount of work
for the agent in the current schedule). Whenever a decision about redundant commitments
need to be made at another agent (in mechanisms 3, 4, and 5—simple redundancy, hard, and
soft successor relationship handling) the load of the agents with the redundant commitments
are taken into account at the point where ties would have been broken randomly. The agent
with the lowest load keeps the commitment instead. If the loads are equal, the tie is broken
randomly as before.

The effect of this mechanism on the general GPGP environments when agents use the
default Design-To-Time scheduler is minimal. The heuristics used by the DTT scheduler are
focused at providing the highest possible total final quality for the agent without violating
deadlines—this is not the same as terminating quickly, and the scheduler has no heuristics to

6See also Mirchandaney’s [Mirchandaney et al., 1989] paper on the effects of delays on load balancing in
simple distributed systems.

164

prefer earlier termination times (nor, frankly, should it have them). In a randomly-generated
task environment, where the methods are assigned to agents randomly (and therefore, somewhat
evenly) there is rarely any significant change in termination time.

However, if you recall one of our results from Chapter 4, you will remember that MLC
coordination is most useful in environments with high variance in the task structures presented
to agents. We can look at our experiments in this light, by calculating an endogenous input
variable for each run that represents the amount of variance in redundant tasks (the ones that
would potentially be eligible for a load-balancing mechanism decision). Figure 6.11 shows how
the probability of terminating more quickly with the MLC load balancing algorithm grows as
the standard deviation in the total durations of redundant tasks at each agent grows.

Pr
ob

ab
ili

ty
 T

er
m

in
at

io
n

is
 B

et
te

r
w

/
Lo

ad
 B

al
an

ci
ng

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Initial STD of Redundant Tasks

Expected probability

Actual probability

Figure 6.11. Probability that MLC load balancing will terminate more quickly than static load
balancing, fitted using a loglinear model from actual TÆMS simulation data.

6.7 Computational Organizational Design

Another application for the use of TÆMS as a modeling tool for asking and answering
questions about organizational design, as was discussed in Chapter 3. In this final section we
replicate a classic computational organization design study done by Burton and Obel ([Burton
and Obel, 1984]) using GPGP agents.

165

6.7.1 Burton and Obel Experiments

In this section we will consider the use of TÆMS as a simulator to explore hypotheses
about the interactions between environmental and agent-structural characteristics. We use
as an example a question explored by Burton and Obel: is there a significant difference in
performance due to either the choice of organizational structure or the decomposability of
technology7?

We equate a technology with a TÆMS task structure, instead of a linear program. Task
structures allow us to use a clear interval measure for decomposability, namely the probability
of a task interrelationship (in this example enables, facilitates, and overlaps). We define a nearly
decomposable task structure to have a base probability of 0.2 for these three coordination
relationships and a less decomposable task structure to have a base probability of 0.8 (see
Figure 6.12). We will continue in this example to look at purely computational task structures,
although the use of physical resources can also be represented (see [Decker and Lesser, 1993e]).

Burton and Obel were exploring the difference in M-form (multidivisional) and U-form
(unitary—functional) hierarchical structures; we will analyze the GPGP family of team-oriented
coordination algorithms. For our structural variable we will vary the communication of
non-local views (GPGP Module 1). Informally, we will be contrasting the situation where
each agent makes commitments and communicates results based only on local information
(no non-local view) with one where the agents freely share task structure information with
one another across coordination relationships (partial non-local view). Figure 6.13 shows an
example—note that in neither case does the agent have the global view of Figure 6.12.

Burton and Obel used a profitability index as their performance measure, derived from
the percentage of optimal profit achieved. In general, the scheduling an arbitrary TÆMS task
structure is an NP-hard problem and so we do not have access to optimal solutions. Instead
we compare performance directly on four scales: the number of communication actions, the
amount of time spent executing methods, the final quality achieved, and the termination
time. Simulation runs for each of the four combinations of non-local view policy and level
of task decomposability were done in matched sets—the randomly generated episode was the
same for each combination with the exception of more coordination relationships (including
more overlapping methods) being added in the less decomposable task structures. Following
Burton and Obel, we used the non-parametric Friedman two-way analysis of variance by
ranks test for our hypotheses. The assumptions of this test are that each block (in our case,
randomly generated episode) is independent of the others and that each block contains matched
observations that may be ranked with respect to one another. The null hypothesis is that the
populations within each block are identical.

We generated 40 random episodes of a single task group, each episode was replicated for the
four combinations in each block. We used teams consisting of 5 agents; the other parameters
used in generating the task structures are summarized in Table 6.6 and a typical randomly
generated structure is shown in Figure 6.12. Figure 6.13 shows the difference in the local
view of one agent with and without creating partial non-local views. We first tested two major
hypotheses:

7Technology is used here in the management science sense of “the physical method by which resources are
converted into products or services” or a “means for doing work” [Burton and Obel, 1984, Scott, 1987].

166

Table 6.6. Parameters used to generate the 40 random episodes

Parameter Value
Mean Branching factor (Poisson) 1
Mean Depth (Poisson) 3
Mean Duration (exponential) 10
Redundant Method QAF Max
Number of task groups 1
Task QAF distribution (50% min) (50% max)
Decomposition parameter p = 0.2 or 0.8
Hard CR distribution (p enables) ((1-p) none)
Soft CR distribution (p facilitates) (10% hinders)

((.9-p) none)
Chance of overlaps (binomial) p

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

facilitates relationship

agent

T
min

T
max

T
max

T
max

T
max

T
max

T
max

A B C D E

A B C D E

B C D E

T
min

T
max

T
max

T
max

T
max

T
max

T
max

E

A C E

B E

More Decomposable (p=0.2)
Less Decomposable (p=0.8)

Figure 6.12. Example of a randomly generated objective task structure, generated with the
parameters in the previous table.

167

Hypothesis 1: There is no difference in performance between agents with a partial non-local view
and those without. For the communication and method execution performance measures,
we reject the null hypothesis at the 0.001 level. We cannot reject the null hypothesis
that there is no difference in final quality and termination time. Teams of computational
agents that exchange information about their private, local views consistently exchange
more messages (in this experiment, a mean increase of 7 messages) but do less work (here,
a mean decrease of 20 time units of work, probably due mostly to avoiding redundancy).

Hypothesis 2: There is no difference in performance due to the level of decomposability of technology.
For the communication and method execution performance measures, we reject the
null hypothesis at the 0.001 level. We cannot reject the null hypothesis that there
is no difference in final quality and termination time. Teams of computational agents,
regardless of their policy on the exchange of private, local information communicate more
messages (in this experiment, a mean increase of 47 messages) and do more work (here, a
mean increase of 24 time units) when faced with less decomposable computational task
structures (technology).

Again following Burton and Obel, we next test for interaction effects between non-
local view policy and level of technology decomposability by calculating the differences in
performance at each level of decomposability, and then testing across non-local view policy.
This test was not significant. To reiterate, based on the experimental results in this section it
seems that TÆMS has potential for use in computational organization theory, though this is out
of the scope of this dissertation.

T
min

T
max

T
max

T
max

T
max

T
max

A C E

Partial Non-local View at Agent A (p=0.2) No Non-Local View at Agent A (p=0.2)

T
min

T
max

T
max

A

Figure 6.13. Example of the local view at Agent A when the team shares private information
to create a partial non-local view and when it does not.

6.8 Exploring the Family Performance Space

Finally, we looked at the multidimensional performance space for the family of coordination
algorithms over four different performance measures. At the most abstract level, each of the
five mechanisms are parameterized independently (the first two have three possible settings
and the last three can be ‘in’ or ‘out’) for a total of 72 possible coordination algorithms.

168

Clustering can be a useful method for dealing with large algorithm spaces to prune search
for an appropriate combination of mechanisms. We applied two standard statistical clustering
techniques to develop a much smaller set of significantly different algorithms. The resulting five
‘prototypical’ combined behaviors are a useful starting point when searching for an appropriate
algorithm family member in a new environment.

-2.0

-1.0

0.0

1.0

2.0

Balanced Mute Myopic Simple Tough

-3

-2

-1

0

1

2

Balanced Mute Myopic Simple Tough

C
om

m
un

ic
at

io
n

A
ct

io
ns

M
et

ho
d

E
xe

cu
ti

on
 A

ct
io

ns

-3.0

-2.0

-1.0

0.0

1.0

2.0

Balanced Mute Myopic Simple Tough
-3

-2

-1

0

1

2

3

Balanced Mute Myopic Simple Tough

To
ta

l F
in

al
 Q

ua
lit

y

To
ta

l M
is

se
d

D
ea

dl
in

es

Figure 6.14. Standardized Performance by the 5 named coordination styles.

The analysis proceeded as follows: we generated one random episode in each of 63
randomly chosen environments, and ran each of the 72 “agent types” on the episode (4536
cases). We collected four performance measures: total quality, number of methods executed,
number of communication actions, and termination time. We then took this data and
standardized each performance measure within an environment. So now each measure is
represented as the number of standard deviations from the mean value in that environment.
We then took summary statistics for each measure grouped by agent types—this boils the
4536 cases (standardized within each environment) into 72 summary cases (summarized across
environments). Each of the 72 summaries correspond to the average standardized performance
of one agent-type for the four performance measures. We then used both a hierarchical

169

clustering algorithm (SYSTAT JOIN with ‘complete linkage’8) to produce the following general
prototypical agent classes (we chose one representative algorithm in each class):

Simple: No commitments or non-local view, just broadcasts results.

Myopic: All commitment mechanisms on, but no non-local view.

Balanced: All mechanisms on.

Tough-guy: Agent that makes no soft commitments.

Mute: No communication whatsoever9

Figure 6.14 shows the values of several typical performance measures for only the five
named types. Performance measures were standardized within each episode, (i.e_across all 72
types). Shown for each are the means and 10, 25, 50, 75, and 90 percent quantiles. All agents’
performances are significantly different by Tukey Kramer HSD except for: Method Execution
(Simple vs. Mute), Total final quality (Balanced vs. Tough), Deadlines missed (simple vs.
mute) and (balanced vs. tough).

We are also analyzing the effect of environmental characteristics on agent performance.
Figure 6.15 shows an example of the effect of the a priori amount of overlap on the number
of method execution actions for the five named agent types. Note again that the balanced and
tough agents do significantly less work when there is a lot of overlap (as would be expected).
The performance of the tough and balanced agents is similar because (from Table 6.2) only
half the experiments had any facilitation, and when it was present was only at 50% power.

A linear clustering algorithm, SYSTAT KMEANS, produces a similar result as hierarchical
clustering, and also produces the mean value of each performance measure for each group, so
you can in fact see that the non-communicating agents have a high negative mean "number-of-
communications" (-1.16–remember these were averaged from standardized scores) but execute
more methods on average and produce less final quality. They also terminate slightly quicker
than average. Our "Balanced" group, in comparison, communicates a little more than average,
executes many fewer methods (-1.29—way out on the edge of this statistic), returns better-than-
average quality and about average termination time. This is reasonable, as ‘avoiding redundant
work’ and other work-reducing ideas are a key feature of the GPGP algorithm. For example
purposes, complete KMEANS output for 48 of the agent types10 is listed in Tables 6.7 and 6.8.
Each of the 48 agent types is summarized by a alphabetic genotype. The first letter is ‘H’ if
mechanism 5 (Hard relationships) is on and ‘–’ if it is off. The second letter is ‘S’ if mechanism
4 (Soft relationships) is on and ‘–’ if it is off. The third letter is ‘R’ if mechanism 3 (simple
Redundancy) is on and ‘–’ if it is off. The fourth letter indicates the state of mechanism 1
(non-local views): ‘s’ for some and ‘n’ for none. The fifth and final letter indicates the state
of mechanism 2 (result communication): ‘A’ for all, ‘C’ for commitments only, and ‘T’ for
commitments + task groups. Note that the KMEANS clustering groups ‘simple’ and ‘myopic’
together, and puts ‘– – – s T’ and ‘– – – s C’ in a different cluster. I chose to keep ‘simple’

8Distances are calculated between the farthest points in each cluster. Other distance measures (Euclidean,
centroid, or Pearson correlation) gave similar results.

9This algorithm makes no commitments (mechanisms 3, 4, and 5 off) and communicates (mechanism 2)
only ‘satisfied commitments’—therefore it sends no communications ever!.

10Agents with mechanism 1 (non-local views) set to ‘all’ were accidentally omitted.

170

M
et

ho
d

E
xe

cu
ti

on
 A

ct
io

ns

-3

-2

-1

0

1

2

-0.1 0.1 0.3 0.5 0.7 0.9 1.1
Overlap

Balanced

Tough

Myopic

Mute
Simple

Figure 6.15. The effect of overlaps in the task environment on the standardized method
execution performance by the 5 named coordination styles (smoothed splines fit to the means).

and ‘myopic’ separated because they are different in an interesting way (‘myopic’ has every
mechanism on except for the exchange of non-local views), whereas the two others are basically
as uninteresting as ‘Mute’ except that they exchange non-local views which fool them into doing
no work and then waiting around forever (until the deadline) for the results to be sent (which
or course never happens since only committed results are communicated and no commitments
are made).

6.9 Summary

In this chapter I described several experiments using TÆMS and the GPGP algorithm.
This chapter differs from Chapter 4 in that the focus here is on examining the performance
of computer programs, rather than the abstract mathematical analysis of a problem that uses
computer programs only for verification. First this chapter described some simple experiments
showing the effect of facilitation power and likelihood on agents; the rest of the chapter focused
on Generalized Partial Global Planning.

The chapter showed how to decide if the addition of a new GPGP mechanism was useful.
It showed the general performance of two GPGP family algorithms compared to a centralized
parallel reference algorithm; GPGP with all mechanisms ‘on’ produces 85% of the quality of the
centralized reference scheduler implementation in a random environment. Such performance
is reasonable and we feel could be made better by developing better local scheduling algorithms
and new coordination mechanisms.

This chapter contained a demonstration of how a feature of the task environment (the
probability of task quality accumulation being MAX) can cause different GPGP family members
to be preferred. This chapter also discussed a sixth mechanism, a load balancing mechanism

171

Table 6.7. Complete KMEANS linear clustering output for all 72 agent types, first three
clusters. All performance parameters were standardized within blocks.

CLUSTER NUMBER: 1
Members Statistics

CASE DISTANCE VARIABLE MINIMUM MEAN MAXIMUM ST.DEV.
SIMPLE - - - nA 0.30 Comm 0.06 0.55 1.20 0.30

- - RnA 0.17 MEA -0.34 0.29 0.57 0.28
-S-nA 0.17 TFQ -0.24 0.09 0.42 0.23
-SRnA 0.25 Term -0.35 -0.02 0.14 0.14
H- - nA 0.16
H-RnA 0.22
HS-nA 0.22
HSRnA 0.36
- - - sA 0.16
-S-sA 0.30

H- - sA 0.26
HS-sA 0.36
- - RnT 0.32
-SRnT 0.14
H-RnT 0.13

Myopic HSRnT 0.20
HSRnC 0.24

CLUSTER NUMBER: 2
Members Statistics

CASE DISTANCE VARIABLE MINIMUM MEAN MAXIMUM ST.DEV.
- - - sT 0.32 Comm -1.26 -1.03 -0.80 0.23
- - - sC 0.32 MEA -0.02 -0.02 -0.02 0.00

TFQ -0.37 -0.37 -0.37 0.00
Term 1.27 1.88 2.48 0.60

CLUSTER NUMBER: 3
Members Statistics

CASE DISTANCE VARIABLE MINIMUM MEAN MAXIMUM ST.DEV.
-S-nT 0.26 Comm -0.94 -0.49 -0.07 0.28

H- - nT 0.15 MEA -0.34 -0.01 0.56 0.31
HS-nT 0.35 TFQ -0.53 0.03 0.63 0.42
-S-sT 0.21 Term -0.29 -0.05 0.15 0.16

Tough H- - sT 0.27
HS-sT 0.41
-SRnC 0.32
H-RnC 0.27
HS-nC 0.34
-S-sC 0.30

H- - sC 0.35
HS-sC 0.36

172

Table 6.8. Complete KMEANS linear clustering output for all 72 agent types, continued. All
performance parameters were standardized within blocks.

CLUSTER NUMBER: 4
Members Statistics

CASE DISTANCE VARIABLE MINIMUM MEAN MAXIMUM ST.DEV.
- - RsA 0.21 Comm -0.37 0.45 1.27 0.48
-SRsA 0.27 MEA -1.49 -1.29 -1.12 0.14
H-RsA 0.36 TFQ -0.35 0.25 0.63 0.40
HSRsA 0.47 Term -0.22 -0.01 0.20 0.16
- - RsT 0.40
-SRsT 0.21
H-RsT 0.21

Balanced HSRsT 0.27
- - RsC 0.52
-SRsC 0.31
H-RsC 0.31
HSRsC 0.22

CLUSTER NUMBER: 5
Members Statistics

CASE DISTANCE VARIABLE MINIMUM MEAN MAXIMUM ST.DEV.
- - - nT 0.18 Comm -1.68 -1.16 -0.75 0.33

Mute - - - nC 0.27 MEA 0.15 0.43 0.57 0.17
- - RnC 0.24 TFQ -0.31 -0.25 -0.20 0.03
-S-nC 0.07 Term -0.35 -0.19 0.03 0.13

H- - nC 0.16

that communicates meta-level information, and showed that it was somewhat more useful when
the variance in duration of the agents’ overlapping tasks was high. This section thus ties-in
back to the discussion at the end of Chapter 4 on the usefulness of meta-level communication
(in this case, the transmission of local load information) when the inter-episode variance (in
this case, in the initial agent loads) is high.

The chapter also presented a version of Burton and Obel’s task decomposability experiment
that used GPGP agent teams instead of hierarchical organizational structures. As in Burton and
Obel’s result, we showed that both the task structure decomposability and the organizational
structure (in our case, the state of the non-local view communication mechanism) have a
significant effect.

Finally, we gave a sense of the performance space of the 5 broadly-parameterized mech-
anisms using a clustering technique. Clustering can be a useful method for dealing with
large algorithm spaces to prune search for an appropriate combination of mechanisms. Such
methods may also lead to ways to learn situation-specific knowledge about the application of
certain mechanisms in certain situations (perhaps using case-based reasoning techniques).

173

Some of the things that are in this chapter that I talked about in Chapter 1 include doing
paired-response comparisons of different coordination algorithms in Section 6.2, doing ablation
studies of the addition/deletion of mechanisms and its effect on performance (Section 6.8) and
examining computerized methods for organizational design (Section 6.7). Finally, this chapter
described several sets of experiments that dealt with the performance of the GPGP mechanisms
in different environments, using a real implementation (running in Common Lisp on multiple
platforms, and being used by more than one person). The implementation uses as submodules
a real implementation of Garvey’s Design-To-Time real-time scheduler [Garvey and Lesser,
1994].

We believe that GPGP can become a reusable, domain-independent basis for multi-agent
coordination when used in conjunction with a library of coordination mechanisms and a
learning mechanism. We intend to develop such a library of reusable coordination mechanisms.
For example, mechanisms that work from the successors of hard and soft relationships instead
of the predecessors, negotiation mechanisms, mechanisms for behavior such as contracting, or
mechanisms that can be used by self-motivated agents in non-cooperative environments. Many
of these mechanisms can be built on the existing work of other DAI researchers. Future work will
also examine expanding the parameterization of the mechanisms and using machine learning
techniques to choose the appropriate parameter values (i.e., learning the best mechanism set
for an environment). Finally, we are also beginning work on using the GPGP approach in
applications ranging from providing human coordination assistance to distributed information
gathering. This will be discussed in the next chapter in the Future Work section. The
next chapter, which is the final chapter, will summarize the previous chapters and discuss the
extremely interesting new areas of research to which this dissertation leads us.

174

C H A P T E R 7

CONCLUSIONS

From decentralization we get responsibility, development of personnel, decisions close
to the facts, flexibility—in short, all of the qualities necessary for an organization to
adapt to new conditions. From coordination we get efficiencies and economies. It must
be apparent that coordinated decentralization is not an easy concept to apply.

— Alfred P. Sloan, Jr., My Years with General Motors

Coordination is the process of managing interdependencies between activities [Malone
and Crowston, 1991]. This dissertation focused on the problem of representing these
interdependencies in a formal, domain-independent way.

This dissertation demonstrated a framework that can be used to specify the task structure
of any computational environment, called TÆMS. It then instantiated an existing methodology
(MAD: Modeling, Analysis and Design [Cohen, 1991]) using this framework to analyze a
particular computational environment (Distributed Sensor Networks) and predict and verify the
performance of two simple coordination algorithms in that environment. Finally, we designed
a family of generic coordination mechanisms for cooperative, soft real-time computational task
environments and demonstrated their performance and why a family of mechanisms is needed
instead of a single static algorithm.

7.1 Summary: Representing Task Environments

This dissertation was about how to represent coordination problems in a formal, domain-
independent way. Such a representation should abstract out the details of the domain, and
leave the basic coordination problem—the choice and temporal ordering of possible actions.
Our solution to this problem was a framework called TÆMS (Task Analysis, Environment
Modeling, and Simulation), which can be used to specify, reason about, analyze, and simulate
any computational environment. The unique features of TÆMS include:

� The explicit, quantitative representation of task interrelationships. Both hard and
soft, positive and negative relationships can be represented. When relationships in the
environment extend between tasks being worked on by separate agents, we often call them
coordination relationships, because they can be used to design and analyze coordination
mechanisms. We demonstrated the usefulness of coordination relationships in creating
coordination mechanisms in Chapters 5 and 6. We gave definitions for fifteen useful
relationships in Chapter 3. The set of relationships is extensible.

� The representation of structures at multiple levels of abstraction. The lowest level of
abstraction is called an executable method. A method represents a schedulable entity,
such as a blackboard knowledge source instance, a chunk of code and its input data,

176

or a totally-ordered plan that has been recalled and instantiated for a task. A method
can also be an instance of a human activity at some useful level of detail, for example,
“take an X-ray of patient 1’s left foot”. A task group contains all tasks that have explicit
computational interrelationships.

� The representation of structure from three different viewpoints. The first view is a
generative model of the problem solving episodes in an environment—a statistical view
of the task structures. The second view is an objective view of the actual, real, instantiated
task structures that are present in an episode. The third view is the subjective view that
the agents have of the objective task structures.

� TÆMS makes very few assumptions about what an ‘agent’ is. TÆMS defines an agent as
a locus of subjective belief (or state) and action (executing methods, communicating,
and acquiring subjective information about the current problem solving episode). This
is important because the study of principled agent construction is a very active area. By
separating the notion of agency from the model of task environments, we do not have
to subscribe to particular agent architectures (which one would assume will be adapted
to the task environment at hand), and we may ask questions about the inherent social
nature of the task environment at hand (allowing that the concept of society may arise
before the concept of individual agents [Gasser, 1991]). Such a conception is unique
among computational approaches.

� TÆMS allows us to clearly specify concepts and subproblems important to multi-agent and
AI scheduling approaches. For example, we discussed the difference between “anytime”
and “design-to-time” algorithms using TÆMSin Chapter 3. Garvey [Garvey et al., 1993]
uses TÆMS to define the concept of a minimum duration schedule that achieves maximum
quality.

� This dissertation is about computational task environments, where methods are things
like blackboard knowledge source instantiations. However, we also described extensions
of TÆMS to represent physical resource constraints.

Along with its formal definition, we also described a simulator for TÆMS written in portable
CLOS (the Common Lisp Object System) and using CLIP[Westbrook et al., 1994] for data
collection.

We validated this framework by building a detailed model of the complex DSN en-
vironment of the Distributed Vehicle Monitoring Testbed (DVMT). Our model included
features that represent approximate processing, faulty sensors and other noise sources, low
quality solution errors, sensor configuration artifacts, and vehicle tracking phenomena such as
training and ghost tracks. Simulations of simplified DSN models showed many of the same
characteristics as were seen in the DVMT [Durfee et al., 1987]. We also described models of
many other environments: hospital patient scheduling, a post office problem, airport resource
management, multi-agent Internet information gathering, and pilot’s associate. Finally, we
validated our framework by allowing others to use it in their work—on design-to-time
scheduling, on parallel scheduling, on the diagnosis of errors in local area networks, and
in the future to model software engineering activities.

177

7.2 Summary: Analyzing a Distributed Sensor Network Environment

The second major result reported here was a detailed analysis of a simplified DSN
environment. The methodology behind this analysis is an instantiation of the MAD (Modeling,
Analysis, and Design) methodology [Cohen, 1991], with TÆMS providing the modeling and
simulation components. This part of the dissertation returns to the work of Durfee, Lesser,
and Corkill [Durfee et al., 1987] that showed that no single coordination algorithm uniformly
outperformed the others. This dissertation explained that result, and went on to predict the
performance effects of changing:

� the number of agents

� the physical organization of agents (i.e., the range of their sensors and how much the
sensed regions overlap)

� the average number of vehicles in an episode

� the agents’ coordination algorithm

� the relative cost of communication and computation

These predictions were verified by simulation.
For example, in Chapter 4 we derived and verified an expression for the time of termination

of a set of agents in any arbitrary simple DSN environment that has a static physical organization
and coordination algorithm. We used this expression (Eq. 4.9) as a predictor by combining it
with the probabilities for the values of Ŝ and N̂ . We verified this model using the simulation
component of TÆMS.

Our analysis explained another observation that has been made about the DVMT—that
the extra overhead of meta-level communication is not always balanced by better performance.
This work represents the first detailed analysis of a DSN, and the first quantitative, statistical
analysis of any Distributed AI system outside Sen’s work on distributed meeting scheduling for
two agents [Sen and Durfee, 1994].

7.3 Summary: Designing a Family of Coordination Mechanisms

The third major result reported here was the design and evaluation of a family of
coordination mechanisms for cooperative computational task environments. We called the
collection of resulting algorithms the Generalized Partial Global Planning (GPGP) family
of algorithms. GPGP both generalizes and extends Durfee’s Partial Global Planning (PGP)
algorithm [Durfee and Lesser, 1991]. Our approach has several unique features:

� Each mechanism is defined as a response to certain features in the current subjective
task environment. Each mechanism can be removed entirely, or parameterized so that
it is only active for some portion of an episode. New mechanisms can be easily defined.
An initial set of five mechanisms was examined and we added a sixth (a simple load
balancing mechanism).

� GPGP works in conjunction with an existing agent architecture and local scheduler. The
experimental results reported here were achieved using a ‘design-to-time’ soft real-time
local scheduler developed by Garvey [Garvey and Lesser, 1993].

178

� GPGP, unlike PGP, is not tied to a single domain.

� GPGP allows more agent heterogeneity than PGP with respect to agent capabilities.

� GPGP mechanisms in general exchange less information than the PGP algorithm,
and the information that GPGP mechanisms exchange can be at different levels of
abstraction. PGP agents generally communicate complete schedules at a single, fixed
level of abstraction. GPGP mechanisms communicate scheduling commitments to
particular tasks, at any convenient level of abstraction.

The fact that most of the GPGP coordination mechanisms use commitments to other agents
as local scheduling constraints is the reason that the GPGP family of algorithms requires
cooperative agents. Nothing in TÆMS the underlying task structure representation, requires
agents to be cooperative, antagonistic, or simply self-motivated. We could develop or co-
opt mechanisms to enforce the keeping of agent commitments (for instance, as contracts
[Sandholm, 1993]) in non-cooperative environments.

In verifying the GPGP family of algorithms, we first showed that they duplicate and
subsume the behaviors of the PGP algorithm. We then looked at several other issues:
General Performance: We examined the general performance of the most complex (all mech-

anisms in place) and least complex (all mechanisms off) members of the GPGP family
in comparison to each other, and in comparison to a centralized scheduler reference
implementation (as an upper bound). We looked at performance measures such as the
total final quality achieved by the system, the amount of work done, the number of
deadlines missed, and the termination time. The centralized schedule reference system
is not an appropriate solution to the general coordination problem, even for cooperative
groups of agents, for several reasons:

� The centralized scheduling agent becomes a possible single point of failure that can
cause the entire system to fail (unlike the decentralized GPGP system).

� The centralized scheduling agent requires a complete, global view of the episode—a
view that we mentioned earlier is not always easy to achieve. We do not account for
any costs in building such a global view in the reference implementation (viewing
it as an upper bound on performance). We do not allow dynamic changes in the
episodic task structure (which might require rescheduling).

� The centralized reference scheduler uses an optimal single-agent schedule as a
starting point. Since the problem of scheduling actions in even fairly simple task
structures is NP-complete, the optimal scheduler’s performance grows exponentially
worse with the number of methods to be scheduled. Since the centralized reference
scheduler has a global view and schedules all actions at all agents, the size of the
centralized problem always grows faster than the size of the scheduling problems
at GPGP agents with only partial views. The size of the episodes was kept small
so that the centralized reference scheduler could find an optimal schedule in a
reasonable amount of run time.

The performance of set of agents using all of the currently defined GPGP coordination
mechanisms is good in comparison to the centralized reference system—GPGP agents
produce on average 85% of the quality of the centralized upper bound reference solution,
and do not miss any more deadlines.

179

Adding a Mechanism: We demonstrated that the addition of a particular mechanism can
improve the system performance.

Family Design Space: We demonstrated the range of performance exhibited by different
members of the GPGP algorithm family, obtained by simple parameterization of the
individual coordination mechanisms.

Different Environments: We showed that different environments require different family
members.

Load Balancing: We demonstrated how a new sixth mechanism, a load balancing mechanism,
can be defined and integrated. We used this mechanism to show that the costs of using
this mechanism are better balanced by performance improvements precisely when there
is a large variance in the amount of work each agent would do by default. This result
agrees with similar results in the distributed processing community on decentralized load
balancing [Need a citation here].

Computational Organization Design: We recreated a set of experiments done by Burton and
Obel [Burton and Obel, 1984] that examined the effects of technical interdependencies
and organizational structure on the performance. GPGP team-oriented coordination
mechanisms were used to define the organizational (team) structure, and TÆMS task
structures defined the problem (as opposed to Burton and Obel’s linear programs). We
reached the same conclusions as Burton and Obel (that both do have an effect), and
argued that one future application for TÆMS is as a tool for computational organization
design.

TÆMS, as a framework to represent coordination problems in a formal, domain-independent
way, is unlike any existing representation that is focussed on coordination issues. As a problem
representation, it is richer and more expressive than game theory or team theory representations.
For example, a typical game or team theory problem statement is concerned with a single
decision; a typical TÆMS objective problem solving episode represents the possible outcomes
of many sequences of choices (interrelated with one another). TÆMS can represent a game
theoretic problem, and we could boil down a single decision made by an agent faced with a
TÆMS task structure into a game theoretic problem (if there were no uncertainty involved—see
Chapter 2). Because TÆMS is more expressive, we can use it to operationalize some of the
rich but informal concepts of organizational science (such as decomposability in Section 6.7).
Another difference between TÆMS and traditional distributed computing task representations
is that TÆMS indicates that not all tasks in an episode need to be done.

To put the second part of this dissertation in context, the analysis of a simple distributed
sensor network presented here is the first formal quantitative analysis of a DSN or DAI system,
other than Sen’s analysis of a two-agent distributed meeting scheduling system (developed at the
same time) [Sen and Durfee, 1994]. Our analysis of a DSN system answers several questions,
and explains phenomena observed in the work with the Distributed Vehicle Monitoring Testbed
(DVMT) such as why different algorithms perform differently in different situations. The work
described here moves beyond anecdotal data to design rules for DSN systems.

GPGP, the last major contribution of this dissertation, extends Durfee’s work on Partial
Global Planning by being domain independent, adding time deadlines, allowing the agents
to be more heterogeneous, requiring less communication, and allowing communication at

180

multiple levels of detail. GPGP is a cooperative approach, and thus is different from algorithms
that assume the agents act in rational self-interest only. For example, agents usually make
decisions with much less a priori knowledge of the other agents’ utilities than competitive
game theory approaches. However, agents using GPGP mechanisms still make decisions in
a boundedly rational way—choosing from among schedules in an attempt to maximize the
system-wide utility given whatever subjective information they have.

7.4 Limitations of this work

The work described here is of course not without limitations. The framework for
representing the task structure of any computational environment, /tems (Chapter 3), has
several limitations. Some of these are currently being addressed in follow-up work. /tems/
describes an environment from three different viewpoints—the generative viewpoint of how
individual episodes come about, the objective viewpoint of the actual structure of an episode,
and the subjective viewpoint of the agents themselves. This dissertation concentrates on the
objective viewpoint. It does not deal with the various representations of uncertainty that might
be in an agent’s subjective view—we are currently working on this aspect. The generative
models in this dissertation are constructed from a statistical viewpoint—an episode can be
characterized by the values of several random variables. While this is far better than using a set
of single-instance examples, it may not be appropriate for dynamic environments, where the
task structure itself is changing dramatically over time. More complex models of generation
may be needed. For example, generation might be modeled by a set of meta-agents.

The idea of the task structure changing dramatically over time is also often important
in modeling human organizations. Human organizations often face external forces that can
reshape the very structure of their environment. For example, the way the government can
enact new laws that affect certain businesses. Factors that influence organizational behavior
or measures of organizational performance might change out from under the organization
(which then must adapt). As we discussed in Section 2.2.2, these responses need not always be
genuine, they might only be symbolic. Nothing in this dissertation deals with such immediate,
unbounded uncertainty, or how and organization might decide between a symbolic or genuine
response.1 Furthermore, we have not discussed periodic or other cyclic, recurring task structures
here, except as a source of future work.

Our results on the analysis of a simple Distributed Sensor Network in Chapter 4 are limited
only by the simplicity of the domain. Some extensions, such as having more than one vehicle
type, would be fairly simple. Other extensions, such as having the vehicles move in patterns,
would invalidate parts of the model (but not all of it). For example, if vehicles tended to stay
on certain paths (roads or underwater rifts), then this information could be used to give new
a priori distributions of agent loads in an episode; the average load for each agent might very
well be unequal. However, the work calculations in that chapter would still hold. The main
limitation of the DSN analysis is that it cannot yet be automated.

The final major contribution, the Generalized Partial Global Planning family of algorithms
(Chapter 5), has several limitations. First of all, the existing set of mechanisms can only be

1As a first approximation, one might adopt a multiple-criteria definition for quality, including an “external
visibility” attribute. Symbolic responses (modeled as alternative methods of low cost, high external visibility, but
low true quality) might then be chosen under stressful situations.

181

used by cooperative agents. Self-interested or antagonistic agents could take advantage of
the commitment mechanism (for example) to cheat other agents. There is a great deal of
work on mechanisms that can avoid this problem (at some cost of overhead). For example,
commitments can be viewed as contracts and enforced by a third party. In some environments,
repetitive episodes can bring about a rational self-interested decision to cooperate, such as
Axelrod’s tit-for-tat strategy in the Prisoner’s Dilemma. The second limitation is that there are
currently only 6 mechanisms, which will not suffice for arbitrary environments. The existing
mechanisms do not, for example, allow for hierarchical organizations. Finally, there is as yet
no learning component, so the designer is responsible for choosing when a mechanism should
be used. We believe this limitation can also be overcome, as we will discuss in the section on
Future Work (Section 7.5, next).

7.5 Future Work

The work described in this dissertation leads directly to several applications, extensions,
and new directions.

The subjective level. We present the TÆMS’ subjective level in this dissertation, but we do not
use it to any great extent except in a few examples. Work has already begun on describing
the various types of subjective uncertainties that can be present in task environments
such as DRESUN. Previous DTT scheduling work has already considered some simple
types of subjective uncertainty, such as the duration and actual quality of methods.

Other subjective level extensions include the indication of methods that provide only
subjective information (i.e., provide better estimates for the duration of methods). The
scheduler will then have to decide when to schedule these meta-level actions rather than
domain-level method executions.

Resources. It is exciting to us that the basic TÆMS mechanisms can handle the representation
of physical resources as described in Section 3.4.5. However, the notation is a bit
ponderous and could be improved with some ‘syntactic sugar’ (as Steele would say). For
example, since all resource relationships come in pairs, we could define them by a single
double relationship (that would have the same semantics as the pair of relationships
used now). More importantly, we can begin to develop or adapt local schedulers to
schedule task structures with resources (both the Spring scheduler [Cheng et al., 1988,
Shen et al., 1993] and Hildum’s DSS scheduler [Hildum, 1994] are examples of such
schedulers). Finally, we can begin to develop new coordination mechanisms to handle
high-level, flexible resource usage. Some ideas about this can be found in Sycara’s and
Nieman’s papers [Neiman et al., 1994, Sycara et al., 1991].

Hard real-time. We hint in Section 5.7 about using GPGP in concert with a true hard real-time
operating system (i.e. Spring). Part of doing this involves the interface between the DTT
scheduler and the Spring scheduler, part involves GPGP. TÆMS methods would probably
be equivalent to Spring task groups. The resulting larger system would not be hard
real-time, but only time-cognizant. It would be interesting to look at what a Spring
guarantee means at a distance (i.e., wrapped in a GPGP commitment). An example of
such a system might be a football team (with soft-real-time interaction between plays
and hard real-time during the plays).

182

Load balancing. The demonstration in Section 6.6 hardly does this subject justice. A consid-
erable amount of effort could be put into developing a more comprehensive set of GPGP
load balancing mechanisms. The analysis of such mechanisms could be attempted by
simplifying the environment as we did in Chapter 4 and by making assumptions about
certain properties of the local scheduler with respect to termination.

Learning. As we described at the start and end of Chapter 5, GPGP is a family of algorithms—
each of the five mechanisms described here are parameterized independently (the first
two have three possible settings and the last three can be in or out) for a total of 72
combinations. More mechanisms such as the load balancing mechanism can been added
to expand the family, but the family can also be enlarged by making each mechanism
more situation-specific. For example, mechanisms can have their parameters set by a
mapping from dynamic meta-level measurements such as an agent’s load or the amount
of real-time pressure. Mechanisms can be ‘in’ or ‘out’ for individual classes of task
groups, or tasks, or even specific coordination relationships, that re-occur in particular
environments. The cross product of these dynamic environmental cues provides a large
but easily enumerated space of potential coordination responses that are amenable to
the adaptation of the coordination mechanisms over time by standard machine learning
techniques or case-based reasoning approaches.

GPGP as DAI infrastructure. GPGP could be developed as a modular, extendible, portable
set of coordination modules that could be linked into existing applications to provide
coordination assistance. The application would supply the task structure and code
stubs for resolving and discovering coordination relationships, and possibly also a local
scheduler. Mechanisms could be chosen by the programmer or by learning mechanisms
such as those just described.

Societies creating agents. Throughout this dissertation, we have focused on the environment
affecting agents. In reality, the environment and agents co-create one another (e.g.,
[Latour, 1987]). The only AI work ever to even being to address this question is Gasser
and Ishida’s work on self-organizing rule-based systems [Gasser and Ishida, 1991]. Gasser
has been talking for years about the chicken-and-egg problem of agents and the society
(e.g., [Gasser, 1991]), but most computer scientists cannot conceive of anything except
societies created out of their agents, and never visa versa. The Gasser and Ishida paper
presents a model where the problem exists and creates the agents—reversing the normal
individualistic process. If there is a problem with this work, it is that the environment
is only a simple set of rules. A clear forward direction is to use TÆMS task structures
instead of rules to specify the task environment. What kind of rules would be needed for
the formation of individuals (agents) from this beginning? When would individuals be
reabsorbed? Would different environments cause the creation of different organizational
structures? We assume that they would. This is related to the next point.

Computational organization design (COD). Future work will include the analysis of more
traditional hierarchical organization forms. The addition of the concept of ‘organiza-
tional role’ can be accomplished through the use of non-local commitments (and their
accompanying expectations). In its simplest sense, agent A’s organizational role is a set
of continuing non-local commitments to certain classes of tasks. By making continuous

183

commitments agents can avoid communicating about every episode anew—assuming
the future structures are somewhat predictable. This reasoning leads naturally to learning
organizational roles and to open systems concepts of temporarily settled questions (the
current set of continuous commitments) and algorithms to re-open and re-settle these
questions as the task environment changes. The development of such algorithms can
then lead to exploring conceptions of agents as nothing more than convenient bundles
of organizational roles [Gerson, 1976, Gasser et al., 1989], and to when and why
organizations do not act like ‘big agents’ [Allison, 1971]. We will also allow the expansion
of commitments to meta-level roles (i.e., commitments to the coordination parameters in
effect for certain classes of tasks). Related applications fall under the popular buzzwords
Business Process Re-Engineering.

Computational organization theory. Related to COD is the idea of producing computational
versions of traditional organization theories. For example, Masuch and Huang are
formalizing J.D. Thompson’s Organizations in Action using a multi-agent action logic
[Masuch and Huang, 1994]. The book Computational Organization Theory[Carley and
Prietula, 1994] is all about mathematical, logical, and computational approaches; a new
book by the same editors will be about purely computational models (including the one
presented in this dissertation). K. Crowston [personal communication] has talked about
producing an entire book of computational versions of famous organizational theories,
complete with the programs, for students to experiment with. Williamson’s Transaction
Costs Economics [Williamson, 1975] would be an example theory that could be modeled
in TÆMS.

Negotiating Agents. A direct consequence of heterogeneous, dynamic, and real-time agents is
the need for negotiation to solve conflicts. Even with a known global decision evaluation
function, conflicting decisions of equal global value may have very different local value
to the agents. Often the character of an early partial solution will have an impact on
what style of coordination is needed. For example, if early partial results show poor
data and low beliefs, the coordination mechanism may want to encourage redundant
derivations of results in areas shared by more than one agent, or the parallel derivation
of a result by two agents using different algorithms. The Pilot’s Associate scenario in
Section 3.6.3.4 occurs in too short a time-frame to allow negotiation between the agents,
but other Pilot’s Associate scenarios might profitably use negotiation techniques2.

The PGP mechanism uses a shared global plan evaluation function that is parameterized.
One extension is to allow the parameters (such as redundancy and reliability) to vary
during problem solving. A negotiation facility could be developed to allow agents to
usefully alter the global (or perhaps only semi-local — we are interested in agents that
may develop only a partial view of what other agents are working on) decision criteria.
Where the PGP mechanisms exchanged all local information, our extensions would allow
for a multi-stage process [Conry et al., 1991] where agents would communicate only the
information believed relevant to the issue at hand. Agents could ask for more contextual

2For example, a sensor may overheat and be shut down by the system status module, even though it is a
projected resource requirement for some tactical situation. The tactical planner and system status may negotiate
over the amount of time that the damaged sensor can be used if the situation arises.

184

information when it is needed to resolve a conflict between agents. Agents would not
automatically acquire information from other agents performing non-related problem
solving activities. Negotiation can interact with sophisticated real-time local schedulers
that have the capability to analyze potential future schedules.

GPGP in multi-agent systems. This is a whole area of mechanisms that could be incorporated
from the rational, selfish agent community. New mechanisms would need to be
developed to deal with the possibility of lying or other potentially ‘uncooperative’
behavior. Results from the game theoretic DAI community could be adapted fairly
easily.

Dynamic Episodes. Up to this point, we have focused on the interrelationships and the
uncertainty arising directly from the generative model of the environment, but we
would also like to explore the uncertainty and variance arising from the difference in the
objective and subjective models. Different relationships between these models will lead
to different organizational structures. For example, in the case of uncertainty arising
from the generative model of an environment, we showed that the wide variance in
performance of a system of agents with static organizations in different episodes led to
the use of meta-level communication to reorganize the agents to adapt to the particular
episode at hand [Decker and Lesser, 1993c]. We are also looking to expand the TÆMS

conception of environments to encompass more dynamic situations: another important
source of environmental uncertainty. For example, in the Tower of Babel problem [Ishida,
1992], agents try to pile numbered blocks into a tower in numerical order. When many
agents try to solve this problem without centralized coordination, they tend to bottleneck
around the tower itself, bumping into one another. Ishida solves this problem by dividing
the agents into two groups: one to collect blocks and bring them near (but not too near)
the tower, and one group to stack the tower. From our point of view, the task structure
at low levels is changing rapidly, and no agent can (or needs to) keep track of all the
changes in relationships between agent and block positions. The rapid change in the
environment means that agents’ subjective views are always out of date. By dividing the
agents into two groups, the bottleneck resource is controlled by organization—removing
it from the uncertainties facing the agents. Stacking agents know there are not enough of
them to saturate the bottleneck, and other agents no longer use the resource at all. The
uncertainty is still there, but it no longer has an impact on the agents’ decision-making
process.

Coordination assistance for mixed human and computational agent systems. The operational
vision of the ARPA/Rome Labs Planning Initiative (ARPI) is one of a network of
workstations that enable concurrent and distributed assessment, plan generation, and
analysis. It envisions that groups of humans and computational ‘agents’ will cooperatively
create, resource, evaluate, execute, and monitor crisis management or manufacturing
plans. Both problems and opportunities arise from a truly distributed and cooperative
environment. A possible area of future work would be the development of support tools
for distributed, cooperative work by groups of human and computational agents, based
on TÆMS and GPGP.

In ARPA’s Air Campaign Planning domain, for example, the development of objectives,
target analyses, and situational analyses (e.g. identification of centers-of-gravity (COGs))

185

are mixed initiative processes that can take place concurrently, and are carried out
by the JFACC (Joint Forces Air Component Commander) and his staff (intelligence,
operations, logistics, weather, etc.). As the planner makes decisions to focus on certain
enemy vulnerabilities, he creates (concurrent) taskings for intelligence and other staff
members or computational agents; as the staff uncovers certain information, that same
information may impact back on the main planning task (revealing logistical, intelligence,
or other problems with certain targets). This pattern of interrelated task structures that
are partially shared by multiple agents with mixed initiative tasking appears in many
military and commercial environments (transportation planning, target assignment,
hospital scheduling, manufacturing scheduling, coordinating large software development
efforts). These interrelationships provide not only potential problems to avoid (such as
forgetting a required task) but also opportunities to take advantage of (such as doing a
task needed by more than one other agent first, or doing a favor for another agent).

In general, each person and computational agent involved in such distributed cooperative
work has a set of initially unrelated tasks before them that currently need to be done
(identifying targets in several areas, collecting intelligence on each of several disparate
targets, etc.). One possible way to assist users in task selection is by developing
something like a User Coordination Assistant Agent (UCAA) that keeps track of a
workstation user’s current agenda of tasks and presents a possible schedule (ordering)
of these tasks according to user- and domain-directed preferences. Such an agenda is
not developed in isolation, but rather through a distributed coordination process using
multiple coordination mechanisms triggered by the coordination relationships between the
task structures of the different agents involved. A similar Agent Coordination Module
(ACM) could be developed for purely computational agents. The ACM would provide
agenda management services for coordinating computational agents in the context of
user task-order preferences.

Such a set of tools will allow the development of systems that can truly support command
and control planning. Such planning will involve both people at multiple workstations
and computational agent assistants. The tools will help to manage and organize the
workloads of both these types of agents. Certain tasks will be dependent on other
tasks and be time critical, and such information for differentiating tasks could be
lost in critical situations if only ad hoc coordinating mechanisms are used. More
information than simply task assignments and task coordination relationships is useful
to communicate. For example, users and computational agents can request possible due
dates for potential tasks before assignment (allowing both better time estimates and load
balancing) and request commitments to complete certain time-critical tasks (in effect,
supporting inter-agent negotiation protocols). Our approach of tying coordination
mechanisms to the particular kinds of coordination relationships that exist in a particular
task environment provides for a reusable tool foundation (the UCAA and its interactive
human interface, the ACM and its interface to a computational agent) and a customizable
set of coordination mechanisms for a particular application environment (since no
single coordination mechanism would be useful across environments with different task
coordination relationships).

186

Coordination and scheduling assistance for ARCADIA, a software engineering environment.
Arguments similar to those in the last item apply to other domains, such as the concurrent
engineering of products where designers, engineers, sales/marketing representatives and
manufacturing staffers work together to develop a new product or an extension of an old
product. We have already been exploring the use of our technology in the representation
and management of large software engineering projects to help schedule tasks being
performed by many different programmers using many different resources. Part of
the ARCADIA [Kadia, 1992, Taylor et al., 1988] environment is directly concerned
with representing and tracking the state of: software development processes (including
interrelationships), the products being produced, and the resources available. This
information can be used by a UCAA-like application that can provide scheduling and
coordination facilities to ARCADIA users. The most unique feature of this domain is
the presence of high levels of uncertainty in task durations (compared to manufacturing
domains).

Multi-agent distributed information gathering. Distributed information gathering applica-
tions using the Internet might look something like the following using the technology
developed in this thesis: The original user query would be transformed into set of agents,
each with their own plans for gathering information, where some plan elements must
deal with the coordination of activities and construction of the final query response.
Agents could be assigned to concurrently pursue different sources to answer different
aspects of the query or to make use of alternative types of sources (e.g., text vs. images)
to generate a more comprehensive answer. The agents would proceed to work in a
distributed, asynchronous fashion, but there may need to be coordination among the
agents. For example, the results of work by one agent may suggest the need for some of
the existing agents to gather additional information from their sources or use alternative
sources, or it might suggest the need for additional agents. The agents must also deal
with uncertainties about the availability of sources and the workload associated with the
sources, which may require a new division of tasks among the agents.

REFERENCES

[Adler et al., 1989] M.R. Adler, A.B. Davis, R. Weihmayer, and R.W. Worrest. Conflict
resolution strategies for nonhierarchical distributed agents. In L. Gasser and M. N. Huhns,
editors, Distributed Artificial Intelligence, Vol. II, pages 139–162. Pitman Publishing Ltd.,
1989. Also COINS Technical Report 88-89, University of Massachusetts, 1988.

[Agre, 1991] Philip E. Agre. Title undecided. To be published by Cambridge University Press.
Position paper presented at AAAI Fall Symposium on Knowledge and Action at Social and
Organizational Levels, 1991.

[Allison, 1971] Graham T. Allison. Essence of Decision: Explaining the Cuban Missle Crisis.
Little, Brown and Company, Boston, 1971.

[Anderton, 1994] D.L. Anderton. Anderton questions for decker’s defense. Private Commu-
nication., 1994.

[Axelrod, 1984] R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

[Blau and Schwartz, 1984] P.M. Blau and J.E. Schwartz. Crosscutting Social Circles: Testing a
Macrostructural Theory of Group Relationships. Academic Press, New York, 1984.

[Boddy and Dean, 1989] Mark Boddy and Thomas Dean. Solving time-dependent planning
problems. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pages 979–984, Detroit, August 1989.

[Bond and Gasser, 1988] Alan H. Bond and Les Gasser. An analysis of problems and research
in DAI. In Alan H. Bond and Les Gasser, editors, Readings in Distributed Artificial
Intelligence, pages 3–35. Morgan Kaufmann, 1988.

[Bonissone and Decker, 1986] Piero P. Bonissone and Keith S. Decker. Selecting uncertainty
calculi and granularity: An experiment in trading-off precision and complexity. In L. N.
Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence. North Holland, 1986.

[Broverman et al., 1987] C. A. Broverman, K. E. Huff, and V. R. Lesser. The role of plan
recognition in design of an intelligent user interface. In Proceedings of the IEEE Systems,
Man, and Cybernetics Conference, pages 863–868, Atlanta, Georgia, 1987.

[Burrell et al., 1994] G. Burrell, M. Reed, M. Alverson, M. Calás, and L. Smircich. Why
Organization? why now? Organization, 1(1):5–17, 1994.

[Burt, 1982] R.S. Burt. Toward a structural theory of action : network models of social structure,
perception, and action. Quantitative studies in social relations. Academic Press, New York,
1982.

[Burton and Obel, 1984] Richard M. Burton and Børge Obel. Designing Efficient Organiza-
tions: Modelling and Experimentation. North Holland, Amsterdam, 1984.

[Cammarata et al., 1983] Stephanie Cammarata, David McArthur, and Randall Steeb. Strate-
gies of cooperation in distributed problem solving. In Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, pages 767–770, Karlsruhe, Germany, August 1983.

188

[Carley and Prietula, 1994] K.M. Carley and M.J. Prietula, editors. Computational Organiza-
tion Theory. Lawrence Erlbaum Associates, 1994.

[Carver et al., 1991] Norman Carver, Zarko Cvetanovic, and Victor Lesser. Sophisticated
cooperation in FA/C distributed problem solving systems. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 191–198, Anaheim, July 1991.

[Carver, 1994] N. Carver. A note on multi-agent information retrieval. Private Communica-
tion., 1994.

[Castelfranchi, 1993] C. Castelfranchi. Commitments:from individual intentions to groups
and organizations. In Michael Prietula, editor, AI and theories of groups & organizations:
Conceptual and Empirical Research. AAAI Workshop, 1993. Working Notes.

[Chambers et al., 1984] F.B. Chambers, D.A. Duce, and G.P. Jones, editors. Distributed
Computing, volume 20 of APIC Studies in Data Processing. Academic Press, London, 1984.

[Chandrasekaran, 1981] B. Chandrasekaran. Natural and social system metaphors for dis-
tributed problem solving: Introduction to the issue. IEEE Transactions on Systems, Man,
and Cybernetics, 11(1):1–5, January 1981.

[Cheng et al., 1986] S. Cheng, J.A. Stankovic, and K. Ramamritham. Dynamic scheduling
of groups of tasks with precedence constraints in distributed hard real-time systems. In
Real-time Systems Symposium, December 1986.

[Cheng et al., 1988] S. Cheng, J. Stankovic, and K. Ramamritham. Scheduling algorithms
for hard real-time systems. In Hard Real-Time Systems. IEEE Press, 1988.

[Chisholm, 1989] Donald Chisholm. Coordination Without Hierarchy: Informal Structures in
Multiorganizational Systems. University of California Press, Berkeley, 1989.

[Cohen and Levesque, 1990] Philip R. Cohen and Hector J. Levesque. Intention is choice
with commitment. Artificial Intelligence, 42(3):213–261, 1990.

[Cohen et al., 1989] Paul Cohen, Michael Greenberg, David Hart, and Adele Howe. Trial
by fire: Understanding the design requirements for agents in complex environments. AI
Magazine, 10(3):33–48, Fall 1989. Also COINS-TR-89-61.

[Cohen, 1991] Paul R. Cohen. A survey of the Eighth National Conference on Artificial
Intelligence: Pulling together or pulling apart? AI Magazine, 12(1):16–41, Spring 1991.

[Cohen, 1992] Paul R. Cohen. Tactics for generalization. Course notes for Experimental
Design in AI, 1992.

[Conry et al., 1991] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer. Multistage
negotiation for distributed constraint satisfaction. IEEE Transactions on Systems, Man, and
Cybernetics, 21(6), November 1991.

[Corkill and Lesser, 1983] Daniel D. Corkill and Victor R. Lesser. The use of meta-level
control for coordination in a distributed problem solving network. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, pages 748–755, Karlsruhe,
Germany, August 1983.

[Corkill, 1979] Daniel D. Corkill. Hierarchical planning in a distributed environment. In
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, pages 168–175,
Cambridge, 1979. Also COINS TR–79–13.

189

[Crowston, 1994] Kevin Crowston. Coordinating restaurant service: An analysis of TGI
Friday’s process. Presentation given at the TIMS/ORSA Workshop on Mathematical and
Computational Organization Theory, April 1994. Crowston is a professor at the University
of Michigan School of Business.

[Daniel, 1978] W. W. Daniel. Applied Nonparametric Statistics. Houghton-Mifflin, Boston,
1978.

[Davis and Smith, 1983] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed
problem solving. Artificial Intelligence, 20(1):63–109, January 1983.

[Dean and Wellman, 1991] T. L. Dean and M. P Wellman. Planning and Control. Morgan
Kaufman Publishers, San Mateo, California, 1991.

[Dean, 1987] Thomas Dean. Planning, execution, and control. In Proceedings of the DARPA
Knowledge-based Planning Workshop, December 1987.

[Decker and Lesser, 1990] Keith S. Decker and Victor R. Lesser. Extending the partial global
planning framework for cooperative distributed problem solving network control. In
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling and Control,
pages 396–408, San Diego, November 1990. Morgan Kaufmann. Also COINS TR-90-81.

[Decker and Lesser, 1992] Keith S. Decker and Victor R. Lesser. Generalizing the partial
global planning algorithm. International Journal of Intelligent and Cooperative Information
Systems, 1(2):319–346, June 1992.

[Decker and Lesser, 1993a] Keith S. Decker and Victor R. Lesser. Analyzing a quantitative
coordination relationship. Group Decision and Negotiation, 2(3):195–217, 1993.

[Decker and Lesser, 1993b] Keith S. Decker and Victor R. Lesser. An approach to analyzing
the need for meta-level communication. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, pages 360–366, Chambéry, France, August 1993.

[Decker and Lesser, 1993c] Keith S. Decker and Victor R. Lesser. A one-shot dynamic
coordination algorithm for distributed sensor networks. In Proceedings of the Eleventh
National Conference on Artificial Intelligence, pages 210–216, Washington, July 1993.

[Decker and Lesser, 1993d] Keith S. Decker and Victor R. Lesser. Quantitative modeling of
complex computational task environments. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 217–224, Washington, July 1993.

[Decker and Lesser, 1993e] Keith S. Decker and Victor R. Lesser. Quantitative modeling of
complex environments. International Journal of Intelligent Systems in Accounting, Finance,
and Management, 2(4):215–234, December 1993. Special issue on “Mathematical and
Computational Models of Organizations: Models and Characteristics of Agent Behavior”.

[Decker et al., 1990] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending
a blackboard architecture for approximate processing. The Journal of Real-Time Systems,
2(1/2):47–79, 1990.

[Decker et al., 1991] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R.
Lesser. Effects of parallelism on blackboard system scheduling. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, pages 15–21, Sydney, Australia, August
1991. Extended version to appear in the International Journal of Pattern Recognition and
Artificial Intelligence 7(2) 1993.

190

[Decker et al., 1992] Keith Decker, Alan Garvey, Marty Humphrey, and Victor Lesser. A
blackboard system for real-time control of approximate processing. In Proceedings of the
25th Hawaii International Conference on System Sciences, January 1992. Extended version to
appear in the International Journal of Pattern Recognition and Artificial Intelligence 7(2)
1993.

[Decker et al., 1993a] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R.
Lesser. Control heuristics for scheduling in a parallel blackboard system. International
Journal of Pattern Recognition and Artificial Intelligence, 7(2):243–264, 1993.

[Decker et al., 1993b] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R.
Lesser. A real-time control architecture for an approximate processing blackboard system.
International Journal of Pattern Recognition and Artificial Intelligence, 7(2):265–284, 1993.

[Decker, 1987] Keith S. Decker. Distributed problem solving: A survey. IEEE Transactions
on Systems, Man, and Cybernetics, 17(5):729–740, September 1987.

[Decker, 1994a] Keith S. Decker. Distributed artificial intelligence testbeds. In G. O’Hare
and N. Jennings, editors, Foundations of Distributed Artificial Intelligence, chapter 3. Wiley
Inter-Science, 1994. Forthcoming.

[Decker, 1994b] Keith S. Decker. Environment Centered Analysis and Design of Coordination
Mechanisms. PhD thesis, University of Massachusetts, 1994.

[Decker, 1994c] Keith S. Decker. Tæms: A framework for analysis and design of coordination
mechanisms. In G. O’Hare and N. Jennings, editors, Foundations of Distributed Artificial
Intelligence, chapter 16. Wiley Inter-Science, 1994. Forthcoming.

[Dubois and Prade, 1984] D. Dubois and H. Prade. Criteria aggregation and ranking of
alternatives in the framework of fuzzy set theory. In H.J. Zimmermen, L. A. Zadeh, and
B.R. Gains, editors, TIMS/Studies in Management Science, volume 20, pages 209–240.
Elsevier Science Publishers, 1984.

[Durfee and Lesser, 1987] Edmund H. Durfee and Victor R. Lesser. Using partial global
plans to coordinate distributed problem solvers. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, August 1987.

[Durfee and Lesser, 1988a] E. Durfee and V. Lesser. Predictability vs. responsiveness: Co-
ordinating problem solvers in dynamic domains. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pages 66–71, St. Paul, Minnesota, August 1988.

[Durfee and Lesser, 1988b] Edmund H. Durfee and Victor R. Lesser. Incremental planning to
control a time-constrained, blackboard-based problem solver. IEEE Transactions on Aerospace
and Electronic Systems, 24(5):647–662, September 1988.

[Durfee and Lesser, 1989] Edmund H. Durfee and Victor R. Lesser. Negotiating task
decomposition and allocation using partial global planning. In L. Gasser and M. N.
Huhns, editors, Distributed Artificial Intelligence, Vol. II. Pitman Publishing Ltd., 1989.

[Durfee and Lesser, 1991] E.H. Durfee and V.R. Lesser. Partial global planning: A coordina-
tion framework for distributed hypothesis formation. IEEE Transactions on Systems, Man,
and Cybernetics, 21(5):1167–1183, September 1991.

191

[Durfee and Montgomery, 1990] Edmund H. Durfee and Thomas A. Montgomery. A
hierarchical protocol for coordinating multiagent behaviors. In Proceedings of the Eighth
National Conference on Artificial Intelligence, July 1990.

[Durfee and Montgomery, 1991] E. H. Durfee and T. A. Montgomery. Coordination as
distributed search in a hierarchical behavior space. IEEE Transactions on Systems, Man, and
Cybernetics, 21(6):1363–1378, November 1991.

[Durfee et al., 1987] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent
cooperation among communicating problem solvers. IEEE Transactions on Computers,
36(11):1275–1291, November 1987.

[Durfee et al., 1989] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Cooperative distributed
problem solving. In A. B. Barr, P. Cohen, and E. Feigenbaum, editors, The Handbook of
Artificial Intelligence, volume 4, pages 83–147. Addison Wesley, 1989.

[Durfee et al., 1993] E.H. Durfee, J. Lee, and P.J. Gmytrasiewicz. Overeager reciprocal
rationality and mixed strategy equilibria. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 225–230, Washington D.C., 1993.

[Durfee, 1987] Edmund H. Durfee. A Unified Approach to Dynamic Coordination: Planning
Actions and Interactions in a Distributed Problem Solving Network. PhD thesis, University of
Massachusetts, 1987. Also COINS-TR-87-84.

[Ephrati and Rosenschein, 1994] E. Ephrati and J.S. Rosenschein. Divide and conquer in
multi-agent planning. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 375–380, Seattle, 1994. AAAI Press/MIT Press.

[Fox, 1981] Mark S. Fox. An organizational view of distributed systems. IEEE Transactions
on Systems, Man, and Cybernetics, 11(1):70–80, January 1981.

[Galbraith, 1977] J. Galbraith. Organizational Design. Addison-Wesley, Reading, MA, 1977.

[Garvey and Lesser, 1993] Alan Garvey and Victor Lesser. Design-to-time real-time schedu-
ling. IEEE Transactions on Systems, Man, and Cybernetics, 23(6):1491–1502, 1993.

[Garvey and Lesser, 1994] Alan Garvey and Victor Lesser. A survey of research in deliberative
real-time artificial intelligence. The Journal of Real-Time Systems, 6, 1994.

[Garvey et al., 1993] Alan Garvey, Marty Humphrey, and Victor Lesser. Task interdependen-
cies in design-to-time real-time scheduling. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 580–585, Washington, July 1993.

[Garvey et al., 1994] Alan Garvey, Keith Decker, and Victor Lesser. A negotiation-based
interface between a real-time scheduler and a decision-maker. CS Technical Report 94–08,
University of Massachusetts, 1994.

[Gasser and Ishida, 1991] Les Gasser and Toru Ishida. A dynamic organizational architecture
for adaptive problem solving. In Proceedings of the Ninth National Conference on Artificial
Intelligence, pages 185–190, Anaheim, July 1991.

[Gasser et al., 1989] Les Gasser, N. F. Rouquette, R. W. Hill, and J. Lieb. Representing and
using organizational knowledge in distributed AI systems. In L. Gasser and M. N. Huhns,
editors, Distributed Artificial Intelligence, Vol. II. Pitman Publishing Ltd., 1989.

192

[Gasser, 1991] Les Gasser. Social conceptions of knowledge and action. Artificial Intelligence,
47(1):107–138, 1991.

[Genesereth et al., 1986] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooper-
ation without communication. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 51–57, Philadelphia, PA., August 1986.

[Georgeff, 1983] Michael Georgeff. Communication and interaction in multiagent planning.
In Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pages
125–129, August 1983.

[Georgeff, 1984] Michael Georgeff. A theory of action for multiagent planning. In Proceedings
of the Fourth National Conference on Artificial Intelligence, pages 121–125, August 1984.

[Gerson, 1976] Elihu M. Gerson. On ‘quality of life’. American Sociological Review, 41:793–
806, 1976.

[Gmytrasiewicz et al., 1991] Piotr J. Gmytrasiewicz, Edmund H. Durfee, and David K. Wehe.
A decision-theoretic approach to coordinating multiagent interactions. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence, pages 62–68, Sydney,
Australia, August 1991.

[Goldman and Rosenschein, 1993] C. Goldman and J. R. Rosenschein. Emergent coordi-
nation through the use of cooperative state-changing rules. In Proceedings of the Twelfth
International Workshop on Distributed AI, Hidden Valley, PA, May 1993.

[Halpern and Moses, 1985] Joseph Y. Halpern and Yoram Moses. A guide to the modal logics
of knowledge and belief: Preliminary draft. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 480–490, August 1985.

[Halpern, 1986] Joseph Y. Halpern, editor. Theoretical Aspects of Reasoning About Knowledge:
Proceedings of the 1986 Conference. Morgan Kaufmann Publishers, Inc., March 1986.

[Hayes-Roth et al., 1988] F. Hayes-Roth, L. Erman, S. Fouse, J. Lark, and J. Davidson. ABE:
A cooperative operating system and development environment. In Alan H. Bond and
Les Gasser, editors, Readings in Distributed Artificial Intelligence, pages 457–490. Morgan
Kaufmann, 1988.

[Hewitt, 1986] Carl Hewitt. Offices are open systems. ACM Transactions on Office Information
Systems, 4(3):271–287, July 1986.

[Hewitt, 1991] Carl Hewitt. Open information systems semantics for distributed artificial
intelligence. Artificial Intelligence, 47(1):79–106, 1991.

[Hildum, 1994] David W. Hildum. Flexibility in a Knowledge-Based System for Solving Dynamic
Resource-Constrained Scheduling Problems. PhD thesis, Department of Computer Science,
University of Massachusetts, Amherst, September 1994.

[Ho, 1980] Y.-C. Ho. Team decsision theory and information structures. Proceedings of the
IEEE, 68, June 1980.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under varying and uncertain resource constraints.
In Proceedings of the Seventh National Conference on Artificial Intelligence, August 1988.

193

[Huff and Lesser, 1988] K. E. Huff and V. R. Lesser. A plan-based intelligent assistant that
supports the software development process. In Proceedings of the Third ACM Symposium on
Software Development Environments, Boston, MA, November 1988.

[Hulthage, 1994] Ingemar Hulthage, editor. Computational Organization Design. AAAI Spring
Symposium, 1994. Working Notes.

[Ishida, 1992] Toru Ishida. Tower of Babel: Towards organization-centered problem solving.
In Proceedings of the 11th Workshop on Distributed Artificial Intelligence, pages 141–153, The
Homestead, Michigan, 1992.

[Jennings, 1993] N. R. Jennings. Commitments and conventions: The foundation of
coordination in multi-agent systems. The Knowledge Engineering Review, 8(3):223–250,
1993.

[Kadane and Larkey, 1982] J.B. Kadane and P.D. Larkey. Subjective probability and the theory
of games. Management Science, 28(2):113–120, February 1982.

[Kadia, 1992] R. Kadia. Issues encountered in building a flexible software development
environment: Lessons from the Arcadia project. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments (SDE5), pages 169–180, Tyson’s Corner,
VA, December 1992.

[Kleijnen, 1987] Jack P. C. Kleijnen. Statistical Tools for Simulation Practitioners. Marcel
Dekker, New York, 1987.

[Knoblock, 1991] Craig A. Knoblock. Search reduction in hierarchical problem solving. In
Proceedings of the Ninth National Conference on Artificial Intelligence, Anaheim, July 1991.

[Kornfeld and Hewitt, 1981] William A. Kornfeld and Carl E. Hewitt. The scientific
community metaphor. IEEE Transactions on Systems, Man, and Cybernetics, 11(1):24–33,
January 1981.

[Lampson et al., 1981] B. W. Lampson, M. Paul, and H. J. Siegert, editors. Distributed Systems
Architecture and Implementation. Springer-Verlag, New York, 1981.

[Lander and Lesser, 1989] Susan Lander and Victor R. Lesser. A framework for the integration
of cooperative knowledge-based systems. In Proceedings of the 4th IEEE International
Symposium on Intelligent Control, pages 472–477, September 1989.

[Latour, 1987] Bruno Latour. Science in Action. Harvard University Press, Cambridge, MA,
1987.

[Lawrence and Lorsch, 1967] Paul Lawrence and Jay Lorsch. Organization and Environment.
Harvard University Press, Cambridge, MA, 1967.

[Lesser and Corkill, 1981] Victor R. Lesser and Daniel D. Corkill. Functionally accurate,
cooperative distributed systems. IEEE Transactions on Systems, Man, and Cybernetics,
11(1):81–96, January 1981.

[Lesser and Corkill, 1983] Victor R. Lesser and Daniel D. Corkill. The distributed vehicle
monitoring testbed. AI Magazine, 4(3):63–109, Fall 1983.

[Lesser et al., 1987] V. R. Lesser, D. D. Corkill, and E. H. Durfee. An update on the distributed
vehicle monitoring testbed. Computer Science Technical Report 87–111, University of
Massachusetts, 1987.

194

[Lesser et al., 1988] Victor R. Lesser, Jasmina Pavlin, and Edmund Durfee. Approximate
processing in real-time problem solving. AI Magazine, 9(1):49–61, Spring 1988.

[Lesser, 1991] V. R. Lesser. A retrospective view of FA/C distributed problem solving. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1347–1363, November 1991.

[Levesque et al., 1990] Hector J. Levesque, Philip R. Cohen, and José H. T. Nunes. On acting
together. In Proceedings of the Eighth National Conference on Artificial Intelligence, pages
94–99, July 1990.

[Levitt et al., 1994] R.E. Levitt, P.G. Cohen, J.C. Kunz, C. Nass, T. Christiansen, and Y. Jin.
The virtual design team: Simulating how organizational structure and communication
tools affect team performance. In K.M. Carley and M.J. Prietula, editors, Computational
Organization Theory. Lawrence Erlbaum Associates, 1994.

[Lin and Carley, 1993] Z. Lin and K. Carley. Proactive or reactive: An analysis of the effect
of agent style on organizational decision-making performance. International Journal of
Intelligent Systems in Accounting, Finance, and Management, 2(4):271–289, December 1993.
Special issue on “Mathematical and Computational Models of Organizations: Models and
Characteristics of Agent Behavior”.

[Liu et al., 1991] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao.
Algorithms for scheduling imprecise computations. IEEE Computer, 24(5):58–68, May
1991.

[Luce and Raiffa, 1958] R. Duncan Luce and Howard Raiffa. Games and Decisions: Introduc-
tion and Critical Survey. John Wiley & Sons, New York, 1958.

[Malone and Crowston, 1991] Thomas W. Malone and Kevin Crowston. Toward an interdis-
ciplinary theory of coordination. Center for Coordination Science Technical Report 120,
MIT Sloan School of Management, 1991.

[Malone et al., 1983] T. W. Malone, R. E. Fikes, and M. T. Howard. Enterprise: A market-like
task scheduler for distributed computing environments. Technical Report CISR-WP-111,
MIT Center for Information Systems Research, October 1983.

[Malone et al., 1986] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Market-like
task scheduling in distributed computing environments. Technical Report CISR-WP-139,
MIT Center for Information Systems Research, March 1986.

[Malone et al., 1993] Thomas W. Malone, Kevin Crowston, Jintae Lee, and Brian Pentland.
Tools for inventing organizations: Toward a handbook of organizational processes. Center
for Coordination Science Technical Report 141, MIT Sloan School of Management, 1993.

[Malone, 1987] Thomas W. Malone. Modeling coordination in organizations and markets.
Management Science, 33:1317–1332, 1987.

[Malone, 1988] Thomas W. Malone. What is coordination theory? In Proceedings of the
National Science Foundation Coordination Theory Workshop, February 1988.

[March and Simon, 1958] J. G. March and H. A. Simon. Organizations. Wiley, New York,
1958.

195

[Masuch and Huang, 1994] M. Masuch and Z. Huang. A logical deconstruction of organi-
zational action: Formalizing J.D. thompson’s organizations in action in a multi-agent action
logic. CCSOM Woring Paper 94-120, Department of Statistics and Methodology, PSCW,
University of Amsterdam, Netherlands, 1994.

[McKelvey, 1982] Bill McKelvey. Organizational Systematics. University of California Press,
Berkeley, CA, 1982.

[Meyer and Rowan, 1977] J.W. Meyer and B. Rowan. Institutionalized organizations: Formal
structures as myth and ceremony. American Journal of Sociology, 83:340–363, 1977.

[Meyer and Scott, 1983] J.W. Meyer and W.R. Scott. Organizational Environments: Ritual
and Rationality. Sage Publications, Beverly Hills, CA, 1983.

[Mi and Scacchi, 1990] P. Mi and W. Scacchi. A knowledge-based environment for modeling
and simulating software engineering processes. IEEE Transactions on Knowledge and Data
Engineering, 2(3):283–294, September 1990.

[Mirchandaney et al., 1989] R. Mirchandaney, D. Towsley, and J. Stankovic. Analysis of the
effects of delays on load sharing. IEEE Transactions on Computers, 38(11):1513–1525,
November 1989.

[Moe, 1984] Terry M. Moe. The new economics of organization. American Journal of Political
Science, 28(4):739–777, November 1984.

[Moehlman et al., 1992] T. Moehlman, V. Lesser, and B. Buteau. Decentralized negotiation:
An approach to the distributed planning problem. Group Decision and Negotiation,
1(2):161–192, 1992.

[Montgomery and Durfee, 1992] Thomas A. Montgomery and Edmund H. Durfee. Search
reduction in hierarchical distributed problem solving. In Proceedings of the Eleventh
International Workshop on Distributed AI, Glen Arbor, Michigan, February 1992.

[Neiman et al., 1994] D.E. Neiman, D.W. Hildum, V.R. Lesser, and T.W. Sandholm. Ex-
ploiting meta-level information in a distributed scheduling system. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, Seattle, August 1994.

[Nilakant and Rao, 1994] V. Nilakant and H. Rao. Agency theory and uncertainty in
organizations: An evaluation. Organizational Studies, 15(5):649–672, 1994.

[Nirenburg and Lesser, 1988] Sergei Nirenburg and Victor Lesser. Providing intelligent
assistance in distributed office environments. In Alan H. Bond and Les Gasser, editors,
Readings in Distributed Artificial Intelligence, pages 590–598. Morgan Kaufmann, 1988.

[Oates et al., 1994] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative
information gathering: A distributed problem solving approach. Technical Report 94-66,
Department of Computer Science, University of Massachusetts, September 1994.

[Ow et al., 1989] P. S. Ow, M. J. Prietula, and W. Hsu. Configuring knowledge-based systems
to organizational structures: Issues and examples in multiple agent support. In L. F. Pau,
J. Motiwalla, Y. H. Pao, and H. H. Teh, editors, Expert Systems in Economics, Banking, and
Management, pages 309–318. North-Holland, Amsterdam, 1989.

[Padgett, 1992] John F. Padgett. The alchemist of contingency theory. American Journal of
Sociology, 97(5):1462–1470, March 1992.

196

[Paker and Verjus, 1983] Y. Paker and J.-P. Verjus, editors. Distributed Computing Systems:
Synchronization, Control, and Communication. Academic Press, London, 1983.

[Pavlin, 1983] Jasmina Pavlin. Predicting the performance of distributed knowledge-based
systems: A modeling approach. In Proceedings of the Third National Conference on Artificial
Intelligence, pages 314–319, Washington, D.C., August 1983.

[Perrow, 1986] Charles Perrow. Complex Organizations. Random House, New York, 1986.

[Pfeffer, 1983] J. Pfeffer. Organizational demography. In L.L. Cummings and B.M. Staw,
editors, Research in Organizational Behavior, volume 5. JAI Press, Greenwich, CT, 1983.

[Pfeffer, 1991] J. Pfeffer. Oganizational theory and structural perspectives on management.
Journal of Management, 17(4):789–803, December 1991.

[Pfeffer, 1993] J. Pfeffer. Barriers to the advance of organizational science: Paradigm
development as an independent variable. Academy of Management Review, 18(4):599–620,
1993.

[Pollack and Ringuette, 1990] Martha E. Pollack and Marc Ringuette. Introducing Tileworld:
Experimentally evaluating agent architectures. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 183–189, Boston, July 1990.

[Ramamritham et al., 1990] Krithi Ramamritham, John A. Stankovic, and Perng-Fei Shiah.
Efficient scheduling algorithms for real-time multiprocessor systems. IEEE Transactions on
Parallel and Distributed Systems, 1(2):184–195, April 1990.

[Rapoport and Guyer, 1966] A. Rapoport and M. Guyer. A taxonomy of 2 x 2 games. In
Yearbook of the Society for General Systems Research XI, pages 203–214. 1966.

[Rasmusen, 1989] Eric Rasmusen. Games and Information: An Introduction to Game Theory.
Basil Blackwell, 1989.

[Reed and Lesser, 1980] S. Reed and V.R. Lesser. Division of labor in honey bees and dis-
tributed focus of attention. COINS Technical Report 80–17, University of Massachusetts,
November 1980.

[Robinson and Fickas, 1990] William N. Robinson and Stephen Fickas. Negotiation freedoms
for requirements engineering. Technical Report CIS-TR-90-04, Department of Computer
and Information Science, University of Oregon, April 1990.

[Rosenschein and Breese, 1989] J. S. Rosenschein and J. S. Breese. Communication-free
interactions among rational agents: A probabilistic approach. In L. Gasser and M. N.
Huhns, editors, Distributed Artificial Intelligence, Vol. II. Pitman Publishing Ltd., 1989.

[Rosenschein and Genesereth, 1984] J. S. Rosenschein and M. R. Genesereth. Communi-
cation and cooperation. Technical Report HPP-84-5, Stanford Heuristic Programming
Project, 1984.

[Rosenschein and Genesereth, 1985] J. S. Rosenschein and M. R. Genesereth. Deals among
rational agents. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pages 91–99, August 1985.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. Do the Right Thing: Studies in
Limited Rationality. MIT Press, Cambridge, MA, 1991.

197

[Russell and Zilberstein, 1991] Stuart J. Russell and Shlomo Zilberstein. Composing real-time
systems. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
pages 212–217, Sydney, Australia, August 1991.

[Sandholm, 1993] Tuomas Sandholm. An implementation of the contract net protocol based
on marginal cost calculations. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 256–262, Washington, July 1993.

[Scott, 1987] W. Richard Scott. Organizations: Rational, Natural, and Open Systems. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1987.

[Sen and Durfee, 1994] S. Sen and E. Durfee. On the design of an adaptive meeting scheduler.
In Proceedings IEEE Conference on AI Applications, 1994.

[Shen et al., 1993] Chia Shen, Krithi Ramamritham, and John A. Stankovic. Resource
reclaiming in multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed
Systems, 4(4):382–398, April 1993.

[Shoham and Tennenholtz, 1992] Y. Shoham and M. Tennenholtz. On the synthesis of useful
social laws for artificial agent societies (preliminary report). In Proceedings of the Tenth
National Conference on Artificial Intelligence, pages 276–281, San Jose, July 1992.

[Shoham, 1991] Yoav Shoham. AGENT0: A simple agent language and its interpreter.
In Proceedings of the Ninth National Conference on Artificial Intelligence, pages 704–709,
Anaheim, July 1991.

[Šiljak, 1991] D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, Inc.,
Boston, 1991.

[Simon, 1957] Herbert A. Simon. Models of Man. Wiley, New York, 1957.

[Simon, 1982] Herbert A. Simon. Models of Bounded Rationality, Volume 2. The MIT Press,
Cambridge, MA, 1982.

[Smith and Broadwell, 1987] David Smith and Martin Broadwell. Plan coordination in
support of expert systems integration. In Proceedings of the DARPA Knowledge-Based Planning
Workshop, pages 12.1–12.6, December 1987.

[So and Durfee, 1992] Y.-P. So and E. H. Durfee. A distributed problem solving infrastructure
for computer network management. International Journal of Intelligent and Cooperative
Information Systems, 1(2):363–392, June 1992.

[Spangler et al., 1978] E. Spangler, M.A. Gordon, and R.M. Pipkin. Token women: An
empirical test of kanter’s hypothesis. American Journal of Sociology, 85:160–170, 1978.

[Stankovic and Ramamritham, 1987] J. A. Stankovic and K. Ramamritham. The design of
the spring kernel. In Proceedings of the 1987 Real-time Systems Symposium, December 1987.

[Stankovic et al., 1989] J. A. Stankovic, K. Ramamritham, and D. Niehaus. On using the
Spring kernel to support real-time AI applications. In Proceedings of the EuroMicro Workshop
on Real-time Systems, 1989.

[Stankovic, 1984a] J. A. Stankovic. A perspective on distributed computing systems. IEEE
Transactions on Computers, C–33(12):1102–1115, December 1984.

198

[Stankovic, 1984b] J. A. Stankovic. Simulations of three adaptive, decentralized controlled,
job scheduling algorithms. Computer Networks, 8:199–217, 1984.

[Stankovic, 1985] J. A. Stankovic. An application of bayesian decision theory to decentralized
control of job scheduling. IEEE Transactions on Computers, C-34(2):117–130, February
1985.

[Stinchcombe, 1987] Arthur L. Stinchcombe. Constructing Social Theories. University of
Chicago Press, Chicago, 1987.

[Stinchcombe, 1990] Arthur L. Stinchcombe. Information and Organizations. University of
California Press, Berkeley, CA, 1990.

[Sugawara and Lesser, 1993] Toshiharu Sugawara and Victor R. Lesser. On-line learning of co-
ordination plans. Computer Science Technical Report 93–27, University of Massachusetts,
1993.

[Sycara et al., 1991] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained
heuristic search. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1446–1461,
November/December 1991.

[Taylor et al., 1988] R.N. Taylor, F.C. Belz, L.A. Clarke, L. Osterweil, W.W. Selby, J.C.
Wileden, A.L. Wolfe, and M. Young. Foundations for the Arcadia environment architecture.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 1–12, Boston, MA, November 1988.

[Thompson, 1967] James D. Thompson. Organizations in Action. McGraw-Hill, New York,
1967.

[v. Bochmann, 1983] Gregor v. Bochmann. Distributed Systems Design. Springer-Verlag,
Berlin, 1983.

[v. Martial, 1990] Frank v. Martial. A conversation model for resolving conflicts among
distributed office activities. In Proceedings of the Fifth Conference on Office Information
Systems, pages 99–108, Cambridge, MA, April 1990.

[v. Martial, 1992] Frank v. Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag,
Berlin, 1992. Lecture Notes in Artificial Intelligence no. 610.

[Weber, 1947] Max Weber. The Theory of Social and Economic Organization. Oxford
University Press, New York, 1947. Translated and edited by A. M. Henderson and T.
Parsons.

[Wellman, 1993] Michael Wellman. A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1–23, 1993.

[Wesson et al., 1981] Robert Wesson, Frederick Hayes-Roth, John W. Burge, Cathleen Statz,
and Carl A. Sunshine. Network structures for distributed situation assessment. IEEE
Transactions on Systems, Man, and Cybernetics, 11(1):5–23, January 1981.

[Westbrook et al., 1994] D.L. Westbrook, S.D. Anderson, D.M. Hart, and P.R. Cohen. Com-
mon lisp instrumentation package: User manual. Technical Report 94–26, Department of
Computer Science, University of Massachusetts, 1994.

199

[Williamson, 1975] Oliver E. Williamson. Markets and Hierarchies: Analysis and Antitrust
Implications. The Free Press, New York, 1975.

[Zhao et al., 1987] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling tasks with
resource requirements in hard real-time systems. IEEE Transactions on Software Engineering,
May 1987.

[Zlotkin and Rosenschein, 1990] Gilad Zlotkin and Jeffrey S. Rosenschein. Blocks, lies,
and postal freight: The nature of deception in negotiation. In Proceedings of the Tenth
International Workshop on Distributed AI, Texas, October 1990.

[Zlotkin and Rosenschein, 1991] G. Zlotkin and J. S. Rosenschein. Incomplete information
and deception in multi-agent negotiation. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 225–231, Sydney, Australia, August 1991.

