
BioMAS: a Multi-Agent System for Genomic Annotation�

Keith Decker Salim Khan Carl Schmidt Gang Situ Ravi Makkena
Dennis Michaud

March 27, 2002

Abstract

The explosive growth in genomic (and soon, expression and proteomic) data, exemplified by the
Human Genome Project, is a fertile domain for the application of multi-agent information gathering
technologies. Furthermore, hundreds of smaller-profile, yet still economically important organisms are
being studied that require the efficient and inexpensive automated analysis tools that multi-agent ap-
proaches can provide. In this paper we discuss the use of DECAF, a multi-agent system toolkit based
on RETSINA and TAEMS, to build reusable information gathering systems for bioinformatics. We will
cover why bioinformatics is a classic application for information gathering, how DECAF supports it, and
several extensions that support new analysis paths for genomic information.

1 Introduction

Massive amounts of raw data are currently being generated by biologists while sequencing organisms. Most
of this raw data must be analyzed through the piecemeal application of various computer programs and
hand-searches of various public web databases. Typically both the raw data and any valuable derived knowl-
edge will remain generally unavailable except in published natural language texts such as journal articles.
However, it is important to note that a tremendous amount of genetic material issimilar from organism
to organism, even when they are as outwardly different as a yeast, fruit fly, mouse, or human being. This
means that if a biologist studying the yeast can figure out what a certain gene does—itsfunction—that other
biologists can at least guess that similar genes in other organisms play similar roles. Thus huge databases
are being populated with sequence data and functional annotations [3]. All new sequences are routinely
compared to known sequences for clues as to their functions.

Furthermore, themethodsby which biologists hypothesize function other than by similarity become
other important clues to the identification of gene function in new organism sequences. The “function” of
a gene can refer to one or all of concepts such as the molecular/biochemical function of a gene product,
how this is used in some larger biological process, and also where (in the cell, or in which tissue) the gene
product does its work [33]. For example, biologists can get clues to gene function by:

� looking for certain patterns of amino acids (calledmotifsor largerdomains) that indicate likely molec-
ular/biochemical activity

� looking for certain patterns of amino acids (especially at the ends of a protein) that indicate where the
gene product will be used

�This work was supported by the National Science Foundation under grants IIS-9812764, IIS-9733004 and BDI-0092336.



� looking for information about similar gene products (proteins), rather than just similar genes

A large amount of work in bioinformatics over the past ten years has gone into developing algorithms
(pattern matching, statistical, and/or heuristic/knowledge-based) to support the work of hypothesizing gene
function. Many of these are available to biologists in various implementations, and now many are available
over the web. Meta-sites combine many published algorithms, and sites specialize in information about
particular topics such as protein motifs.

From a computer science perspective, several problems have arisen, as we have described elsewhere
[7]. To summarize, what we have is a large set of heterogeneous and dynamically changing databases, all
of which have information to bring to bear on the biological problem of determining genomic function.
We have biologists producing thousands of possible genes, for which functions must be hypothesized. For
the case of all but the largest and well-funded sequencing projects, this must be done by hand by a single
researcher and their students.

Multi-agent information gathering systems have a lot to contribute to these efforts. Several features
make a multi-agent approach to this problem particularly attractive:

� information is available from many distinct locations

� information content is heterogeneous

� information content is constantly changing

� much of the annotation work for each gene can be done independently

� biologists wish to both make their findings widely available, yet retain control over the data

� new types of analysis and sources of data are appearing constantly

We have used DECAF, a multi-agent system toolkit based on RETSINA [32, 12, 8]: and TAEMS
[11, 34], to construct a prototype multi-agent system for automated annotation and database storage of
sequencing data for herpesviruses [7]. The resulting system eliminates tedious and always out-of-date hand
analyses, makes the data and annotations available for other researchers (or agent systems), and provides a
level of query processing beyond even some high-profile web sites.

Since that initial system, we have used the distributed, open nature of our multi-agent solution to ex-
pand the system in several ways that will make it useful for biologists studying more organisms, and in
different ways. This paper will briefly describe our approach to information gathering, based on our work
on RETSINA; the DECAF toolkit; our initial annotation system; and our new extensions for functional
annotation, EST processing, and metabolic pathway reasoning.

2 The RETSINA model of information gathering

We view information gathering as a catch-all phrase indicating information retrieval, filtering, integration,
analysis, and display. In particular, information gathering is done in domains where information (unique,
redundant, or partially redundant) is available at many different locations and is constantly being changed or
updated, with even new information sources appearing over time. Centralized access is not available from
the information sources because they are being produced by different organizational entities, usually for
different purposes than those of the information gathering user. Examples of information gathering domains

2



are financial information (evaluating, tracking, and managing a stock portfolio)[8, 12], military strategic
information (integration of friendly troop movements, enemy observations, weather, satellite data, civilian
communications)[19], and annotation of gene sequences (as discussed briefly in the introduction).

Solutions to the information gathering problem tend to draw on two lines of technologies: research on
heterogeneous databases and research on multi-agent systems. Work on heterogeneous databases in both
the database and AI communities brings to bear the concepts of ontologies, wrappers, mediators, materi-
alization, and query planning. Work on multi-agent systems brings to the table a way to actually embody
wrappers and mediators; ways to do query planning in real-time domains; ways to deal with the dynamic
nature of the data and the data sources; ways to handle issues of efficient distributed computation and ro-
bustness; ways to deal with the organizational issues involved in distributed information problems.

We promote the use of the RETSINA multi-agent organization1 for building information gathering sys-
tems. The RETSINA approach consists of three general classes of agents[32, 12]:

� Information Extraction Agents, which interact directly with external data sources, i.e. wrapping sen-
sors, databases, web pages.

� Task Agents, which interact only with other agents to handle the bulk of the information processing
tasks. These include both domain-dependent agents that take care of filtering, integration, and analy-
sis; also domain-independent “middle agents” that take care of matchmaking, service brokering, and
complex query planning.

� Interface Agents, that interact directly with the end user.

A surprisingly large number of these agents are all or mostly reusable [8], which contributes to faster
and faster prototyping of information gathering systems. DECAF (described in the next section) provides
an implementation of these middle agents, reusable agent classes, and other tools for building multi-agent
information gathering systems.

2.1 Operating Model

Our abstract model of information gathering relies primarily on query processing as its basic action. Inter-
face agents primarily allow users to make direct queries (e.g. “should I buy shares in this stock” or “show
me the HVT-1 genes that contain a prenylation motif”), or indirect queries via some materialized data view
(e.g. a live web page representing a user’s stock portfolio or a “clickable plant” representing all the available
information on arabidopsis thaliana). There are several difficulties that need to be overcome even with such
a simple model, namely:

� How to deal with the fact that the answers to queries change over time

� How to deal with the fact that typically user queries cannot be answered by routing to a single source

� How to deal with the heterogeneity of the user’s information model when compared to the models of
any other agent in the system

� How to deal with queries that would typically return tremendous volume of answers

1We will usually use the wordorganizationto indicate the structure of a collection of agents, andarchitectureto indicate the
structure of the internals of a single agent.

3



� How to deal with secondary or meta-expectations of the user with regards to the speed or resource
usage expected of the query

� How to deal with an open system where the very structure of the queries that can be created may in
fact change over time

From the information extraction end, then, all sources can be treated as “databases”, but this again brings
up similar, related issues: dealing with change, relating the available information to some common infor-
mation model, how new sources can be added dynamically to a large system. Issues unique to these agents
include how to deal with the fact that many sources are not actually complete databases, and attempting to
buffer or otherwise ameliorate robustness and access issues for web-accessible resources.

Task agents fit in by either providing direct query services (i.e. access to some indirect information
that can only be derived from analysis of other data) or support mechanisms that deal with some of the
difficulties mentioned earlier. For example, middle agents such as matchmakers allow new services to be
advertised dynamically, and then accessed by interface agents. Brokers or other types of middle agent
mediators can provide seamless robust, load-balanced access to services. Query planning itself can often be
computationally expensive enough to be handled by separate task agents.

To summarize, we model an information gathering system as an extended distributed query processing
system. In particular, the multi-agent implementation of such a system deals with these “extensions” over
traditional database systems:

� Dynamic Information: Data or derived information that changes over time

� Open Systems: data or derived information sources come and go over time

� Secondary User Utility: users don’t just expect an answer, but they often have expectations about the
time it will take to get that answer or how many resources (e.g. money) to spend to achieve an answer
of some characterization (quality, certainty, etc.)

The next section will describe our realization of this general model using DECAF.

3 DECAF

DECAF (Distributed, Environment-Centered Agent Framework) is a Java-based toolkit for creating multi-
agent systems [17]. In particular, several tools have been developed specifically for prototyping information
gathering systems. Also, the internal architecture of each DECAF agent has been designed much like an
operating system—as a set of services for the “intelligent” (resource-efficient, adaptively-scheduled, soft
real-time, objective-persistent) execution of agent actions. DECAF consists of a set of well defined control
modules (initialization, dispatching, planning, scheduling, and execution, each in a separate, concurrent
thread) that work in concert to control an agent’s life cycle. There is one core task structure representation
that is shared between all of the control modules. This has meant that even non-reusable domain-dependent
agents can be developed more quickly than by the API approach where the programmer has to, in effect,
create and orchestrate the agent’s architecture as well as its domain-oriented agent actions. This section will
first discuss the internal architecture of a generic DECAF agent, and then discuss the tools (such as middle
agents, system debugging aids, and the information extraction agent shell) we have built to implement multi-
agent information gathering systems.

4



3.1 The DECAF Internal Architecture

DECAF provides the necessary architectural services of a large-grained intelligent agent [12, 32]: communi-
cation, planning, scheduling, execution monitoring, coordination, and eventually learning and self-diagnosis
[21]. This is essentially the internal “operating system” of a software agent, to which application program-
mers have strictly limited access. The overall internal architecture of DECAF is shown in Figure 1. These
modules runconcurrently, each in their own thread. Details of the DECAF implementation can be found
elsewhere [17].

Agent 
Initialization

DECAF Task and Control Structures

Plan File Incoming KQML messages

Domain Facts and Beliefs

KQML Messages
Outgoing Action Modules

Hashtable Action Queue
Pending

Results Queue
Action 

Dispatcher Planner Executor

Message Queue
Incoming 

Queue
Objectives

Queue
Task

Queue
Agenda

Scheduler

Task Templates

Figure 1: DECAF Architecture Overview

3.1.1 Agent Initialization

The execution modules control the flow of a task through its life time. After initialization, each module
runs continuously and concurrently in its own Java thread. When an agent is started, theAgent Initialization
module will run. The agent initialization module will read aplan file that describes the agent’s capabilities
as a specially-annotated HTN (Hierarchical Task Network). Each task reduction specified in the plan file
will be added to theTask Templates Hash table(plan library) along with the tree structure that is used to
specify actions that accomplish that objective.

3.1.2 Dispatcher

Agent initialization is done once and then control is passed to the Dispatcher which waits for an incoming
KQML (or FIPA) message. These messages will then be placed on theIncoming Message Queue. An
incoming message contains a KQMLperformativeand its associated information. An incoming message can
result in one of two actions by the dispatcher. First, the message may be a part of an ongoing conversation.

5



The Dispatcher makes this distinction mostly by recognizing the KQML:in-reply-to field designator,
which indicates the message is part of an existing conversation. In this case the dispatcher will find the
corresponding action in thePending Action Queueand set up the tasks to continue the agent action.

Second, a message may indicate that it is part of a new conversation. This is the case whenever the
message does not use the:in-reply-to field. If so a newobjective is created (similar to the BDI
“desires” concept[28]) and placed on theObjectives Queuefor the Planner. An agent typically has many
active objectives, not all of which may be achievable.

3.1.3 Planner

The Planner monitors the Objectives Queue and matches new goals to an existing task template as stored
in the Plan Library. A copy of the instantiated plan, in the form of an HTN corresponding to that goal, is
placed in theTask Queuearea, along with a unique identifier and any provisions that were passed to the agent
via the incoming message. If a subsequent message comes in requesting the same goal be accomplished,
then another instantiation of the same plan template will be placed in the task networks with a new unique
identifier. The Task Queue at any given moment will contain the instantiated plans/task structures (including
all actions and subgoals) that should be completed in response to an incoming request.

3.1.4 Scheduler

TheSchedulerwaits until the Task Queue is non-empty. The purpose of the Scheduler is to determine which
actionscan be executed now, whichshouldbe executed now, and in what order they should be executed.
This determination is currently based on whether all of the provisions for a particular module are available.
Some provisions come from the incoming message and some provisions come as a result of other actions
being completed. This means the Task Queue Structures are checked any time a provision becomes available
to see which actions can be executed now.

It is possible to add significant reasoning ability to the scheduling module. This effort involves anno-
tating the task structure with performance and scheduling information to allow the scheduler to select an
“optimal” path for task completion.2

3.1.5 Executor

The Executoris set into operation when the Agenda Queue is non-empty. Once an action is placed on
the queue the Executor immediately places the task into execution. One of two things can occur at this
point: The action can complete normally (Note that “normal” completion may be returning an error or
any other outcome) and the result is placed on theAction Result Queue. The framework waits for results
and then distributes the result to downstream actions that may be waiting in the Task Queue. Once this
is accomplished the Executor examines the Agenda queue to see if there is further work to be done. The
Executor module will start each task in its own separate thread improving throughput and assisting the
achievement of the real-time deadlines. Alternatively, an action may fail and not return, in which case the
framework will indicate failure of the task to the requester.

2Optimal in this case may mean some definition of quality or deadline and real-time goals.

6



3.2 DECAF Task Structures

DECAF’s underlying Hierarchical Task network (HTN) representation ties together two pieces of work:
Williamson’s work on information-flow representations used in RETSINA [37, 36], and Decker’s work on
representations of how local and non-local action executions effect those characteristics over which an agent
expresses preferences (via a utility function) used in TÆMS [11, 34].

3.2.1 RETSINA Information Flow

The unique contribution of the RETSINA information flow representation used in DECAF is the declarative
description of the information requirements of actions and the information producing abilities of actions
[36]. This is in addition to the traditional precondition and effect representations used in planning systems.
The information needs of an action are represented by a set ofprovisions. Provisions can be thought of as
a generalization of plan action parameters and runtime variables, in which each provision has an associated
queueof values. This information may be queued statically at plan-generation time or dynamically during
plan execution. An action isenabledwhen there is at least one element queued for each of the actions
provisions. Upon execution, the provision is consumed.Parametersare a subset of action provisions that are
not consumed when an action runs (and thus do not involve a queue of values). When an action completes
it produces both anoutcomeand aresult. The outcome is one of a finite set of pre-designated symbols
(e.g. the outcomes of CNLP or the observation labels of C-BURIDAN). The result is an arbitrary piece
of information. Provision Linksdesignate information flow of results from the outcomes of actions to the
provisions of other actions.

3.2.2 TÆMS

TÆMS task structures are abstraction hierarchies whose leaves are instantiated basic actions or “executable
methods”. At a basic level this is similar to HTN (Hierarchical Task Network) or TCA (Task Control
Architecture) approaches to action representation[16, 30]. Additionally, TÆMS allows the specification
of dynamically changing and uncertain task characteristics that effect an agent’s preferences (utility) for
some state of the world, including tasks with hard or soft deadlines. A TÆMS specification also indicates
relationships between local and non-local tasks or resources that effect these agent preference characteristics.
Thus it extends HTN ideas toward specifying “worth-oriented” domains [29]. Recent extensions to TÆMS
have included named provision relationships and multiple outcome specifications [36, 34]. In utility theory,
agents have preferences over possible final states (action or plan outcomes), and preference-relevant features
of an outcome are calledattributes. A substantial body of work exists on relating attribute values to overall
utilities [35]. At its core, TÆMS is about specifying these attributes and the processes by which they
change—what we call a model of the task environment. In DECAF, we use TÆMS specifications to focus
on three common attributes,quality, cost, andduration.

Actions. A DECAFactionrepresents the smallest unit of analysis. For the purpose of utility calculation,
each action has a probabilistic model, called thebehavior profile, which specifies the likelihood of each
outcome, and the probability distribution function for the quality, cost, and duration associated with each
outcome.

Tasks. A DECAF task(or subtask) represents a set of related subtasks or actions, joined by a common
quality accumulation function. For example, in an AND/OR tree, an AND task indicates that all subtasks
must be accomplished to accomplish the task, while an OR task indicates that only one subtask needs to
be accomplished. Since TÆMS is about worth-oriented environment modeling, it uses continuous rather

7



than logical quality accumulation functions (for examplemin instead of AND,max instead of OR3). For
example, subtasks may be joined by a SUM quality accumulation function, indicating that as many subtasks
as possible should be attempted. DECAF allows the explicit specification of acharacteristic accumulation
functionfor each characteristic (e.g. quality, cost, duration).

Plan Editor. The control or programming of DECAF agents is provided via an ASCIIPlan File
written in the DECAF programming language. The plan file is created using a GUI interface called the
Plan-Editorwhich allows visual programming of HTNs and the TÆMS annotations. This provides a soft-
ware component-style programming interface with desirable properties such as component reuse and some
design-time error-checking. The chaining of activities can involve traditional looping and if-then-else con-
structs.

The DECAF Plan-Editor attaches to each action a performance profile which is then used and updated
internally by DECAF to provide real-time local scheduling services. The reuse of common agent behaviors
is thus increased because the execution of these behaviors does not depend only on the specific construction
of the task network but also on the dynamic environment in which the agent is operating.

For example, a particular agent may be “persistent”, or “flexible” [38] meaning the agent will attempt
to achieve an objective, possibly via several approaches, until a result is achieved. This construction also
allows for a certain level of non-determinism in the use of the agent action building blocks. Figure 2 shows
a Plan-Editor session.

Figure 2: Sample Plan-Editor Session

3.3 DECAF Support for Info Gathering

DECAF provides core internal architectural support for secondary user utility. Thus DECAF plans can in-
clude alternatives, and these alternatives can be chosen dynamically at runtime depending on user constraints
on answer timeliness or other resource constraints. DECAF also supports building information gathering
systems by providing useful middle agents and a shell for quickly building information extraction agents
for wrapping web sites. Agent name servers, matchmakers, brokers, and other middle-agents support the

3The full set of quality accumulation functions, including alternate definitions for AND and OR, is discussed in [10].

8



creation of open systems where elements may come and go over time. Dynamic information change is sup-
ported by reusable Information Extraction Agent behaviors that include the ability to push data values to the
user, or to set up persistant queries that pull data from providers only when the answer changes significantly.

In order to support the development of agents, other tools have also been developed to support agent
operations and software design.Middle Agents have been developed to support common multi-agent ac-
tivities. A middle agent is an agent that facilitates agent operation while not directly related to completing a
specific task.

3.3.1 Agent Name Server

The current DECAF Agent Name Server handles the registration of agents and “white-pages” services: map-
ping agent names to TCP addresses and port numbers. It is based on protocols in use at CMU’s RETSINA
project.

3.3.2 Matchmaker and Broker Agents

The Matchmaker agent serves as a “yellow pages” tool to assist agents in finding other agents in the com-
munity that may provide a useful service An agent willadvertiseits capabilities with the Matchmaker and if
those capabilities change or are no longer available, the agent willunadvertise. The Matchmaker stores the
capabilities in a local database. A requester wishing to ask a query will formulate the query to the Match-
maker andaskfor a set of matching advertisements. The requester can then and make request directly to the
provider. A requester can alsosubscribeto the Matchmaker and be informed when new services or interest
are added or removed.

A Brokeragent advertises summary capabilities built from all of the providers that have registered with
one Broker. The Broker in turn advertises with the Matchmaker. For example, one Broker may have all the
capabilities to build a house (plumber, electrician, framer, roofer,. . . ). The broker can now provide a larger
service than any single provider can, and often manage a large group of agents more effectively [9].

3.3.3 Proxy Agent

DECAF agent can communicate with any object that uses the KQML or FIPA message construct. However,
web browser applets cannot (due to security concerns) communicate directly with any machine except the
applet’s server. The solution is aProxyagent. The Proxy agent is constructed as a DECAF agent and uses
fixed addresses and socket communication to talk to Java applets or any application. Through the Proxy
agent, applications outside the DECAF or KQML community have access to MAS Services.

3.3.4 Agent Management Agent

The Agent Management Agent (AMA) creates a graphical representation of agents which are currently
registered with the ANS, as well as the communication between those agents. This allows the user to have
a concept of the community in which an agent is operating as well as the capabilities of the agents and the
interaction between agents. The AMA frequently queries the ANS to determine which agents are currently
registered. These agents are then represented in a GUI. The AMA also queries the Matchmaker to retrieve
a profile provided by each agent. This profile contains information about the services provided by an agent.
This profile is accessible to the AMA user by double-clicking on the agent’s icon. In the future, the AMA
will also have the capability of monitoring and displaying communications between these agents. Each

9



agent will send a message to the AMA whenever it communicates with another agent, so that the user may
then monitor all activity between agents.

3.3.5 Information Extraction Agent Shell

The main functions of an information extraction agent (IEA) are [8]: Fulfilling requests from external
sources in response to aone shot query(e.g. “What is the price of IBM?”). Monitoring external sources for
periodic information (e.g. “Give me the price of IBM every 30 minutes.”). Monitoring sources for patterns,
called information monitoringrequests (e.g. “Notify me if the price of IBM goes below $50.”).” These
functions can be written in a general way so that the code can be shared for agents in any domain.

Since our IEA operates on the Web, the information gathered is from external information sources.
The agent uses a set ofwrappersand the wrapper induction algorithm STALKER [26], to extract relevant
information from the web pages after being shown several marked-up examples. When the information is
gathered it is stored in the local IEA “infobase” using Java wrappers on a PARKA [20] knowledgebase. This
makes new IEA’s fairly easy to create, and forces the difficult parts of this problem back on to KB ontology
creation, rather than the production of tools to wrap web pages and dynamically answer queries. Currently,
there are some proposals for XML-based page annotations which, if adopted, will make site wrapping easier
syntactically (but still, does not solve the ontology problem—but see projects such as OIL).

4 A DECAF Multi-Agent System for Genomic Analysis

These tools can be put to use to create a prototype multi-agent system for various types of genomic analysis.
In the prototype, we have chosen to simplify the query subsystem by materializing all annotations locally,
thus removing the need for sophisticated query planning (e.g. [24]). This is a reasonable simplification since
most of our work is with viruses that have fairly small genomes (around 100 genes for a herpesvirus and
around 30 herpesviruses) or with larger organisms (e.g. chickens) for which we are constructing a consensus
database explicitly.

Figure 3 shows an overview of the system as four overlapping multi-agent organizations. The first,
Basic Sequence Annotation, is charged with integrating remote gene sequence annotations from various
sources with the gene sequences at the Local KnowledgeBase Management Agent (LKBMA). The second,
Query, allows complex queries on the LKBMAs via a web interface. The third,Functional Annotation
is responsible for collecting information needed to make an informed guess as to the function of a gene,
specifically using the three-part Gene Ontology [33]. The fourth organization,EST Processingenables the
analysis of expressed sequence tags (ESTs) to produce gene sequences that can be annotated by the other
organizations.

An important feature to note is that we are focusing on annotation and analysis services that are not
organism specific. In this way, the resulting system can be used to build and query knowledgebases from
several different organisms. The original subsystems (basic annotation and the simple query system) were
built to annotate the newly sequenced Herpesvirus of Turkey (the bird), and then to compare it to the other
known sequenced herpesviruses. Work is continuing to build a new knowledgebase from chicken ESTs.

4.1 Basic Sequence Annotation and Query Processing

Figure 4 shows the interaction details for the basic sequence annotation and query subsystems. We will
describe the agents by their RETSINA classification.

10



 Functional Annotation
Applet

 Sequence
LKBMA GenBank

Info Extraction Agent

Mouse Genome DB
IEA

SGD (yeast)
IEA

Flybase
IEA

 Proxy
Agent

 Ontology Reasoning
Agent

 Ontology
Agent

 SNP-Finder

 EST
LKBMA

 EST Entry
[Chromatograph/FASTA]

 Proxy
Agent

 Consensus
Sequence

Chromatograph
Processing

 User Query
Applet

 Sequence Addition
Applet

 SwissProt/
ProSite

IEA

 PSort
IEA

 ProDomain
IEA

 Proxy
Agent

 Annotation
Agent

 Sequence Source
Processing Agent

 Proxy
Agent

 Query Processing
Agent

Basic
Sequence
Annotation

Functional
Annotation

Query

EST
Processing

Figure 3: Overview of DECAF Multi-Agent System for Genomic Analysis

Information Extraction Agents. Currently 4 agents based on the IEA shell wrap public web sites. The
Genbank wrapper primarily supplies “BLAST” services: given the sequence of a herpesvirus gene, what are
the most similar genes known in the world (called “homologs”)? The answer here can give the biologist a
clue as to the possible function of a gene, and for any gene that the biologist does not know the function of,
a change in the answer to this query might be significant. The SwissProt wrapper primary provides protein
motif pattern searches. If we view a protein as a one-dimensional string of amino acids, then a motif is a
regular expression matching part of the string that may indicate a particular kind of function for the protein
(i.e. a prenylation motif indicates a place where the protein may be modified after translation by the addition
of another group of molecules) The PSort wrapper accesses a knowledge-based system for estimating the
likely sub-cellular location that a sequence’s encoded protein will be used; in particular, estimating the
number of “transmembrane domains” that indicate a protein that may “stick out of” the cell membrane, and
thus be involved in cell signaling. The ProDomain wrapper allows access to other information about the
encoded protein; a protein domain is similar to a motif but larger. As we move to new organisms, many
more resources could be wrapped at this level (almost all biologists have a “favorite” here).

The local knowledgebase management agent (KBMA) is a slightly different member of this class be-
cause unlike most IEAs it actually stores data via agent messages rather than only querying external data
sources. It is here that the annotations of the genetic information are materialized, and from which most
queries are answered. Each KBMA is updated with raw sequencing data indirectly from a user sequence
addition interface that is then automatically annotated under the control of an annotation task agent. KB-
MAs can be “owned” by different parties, and queried separately or together. In this way, researchers with
limited computer knowledge can create sharable annotated sequence databases using the existing wrappers
and other analysis tools as they are developed, without having to necessarily download and install them

11



 Local Knowledgebase
Management AgentsInformation

Extraction
Agents

 Local Knowledgebase
Management Agents

 Local Knowledgebase
Management Agents

 User Query
Applet

 Sequence Addition
Applet

 Local Knowledgebase
Management Agents

 GenBank
Info Extraction Agent

 SwissProt/ProSite
Info Extraction Agent

 PSort
Info Extraction Agent

 ProDomain
Info Extraction Agent

 Proxy
Agent  Query Processing

Agent

 Annotation
Agent

 Sequence Source
Processing Agent

 Matchmaker
Agent

 Agent Name Server
Agent

Interface Agents

Domain-
Independent
Task Agents

Task Agents

Figure 4: Basic Annotation and Query Agent Organizations

themselves. Using a PARKA-DB knowledgebase allows efficient, modern relational data storage on the
back end and query as well as limited KB inferencing [20].

Task Agents. There are two domain task agents; the rest are generic middle agents described earlier.
The Annotation Agent directs exactly what information should be annotated for each sequence. It is re-
sponsible for storing the raw sequence data, making queries to the various wrapped web sites, storing those
annotations, and also indicating the provenance of the data (meta-information regarding where an annotation
came from). The Sequence Source Processing Agent takes almost raw sequence data in ASN.1 format as
output by typical sequence estimation programs or stored in Genbank. The main function of this agent is to
test this input for internal consistency.

Interface Agents. There are two interface applets that communicate via the proxy agent with other
agents in the system. One is oriented towards adding new sequences to a local knowledgebase (secured
by a password) and the other allows anyone to query the complete annotated KB (or even multiple KBs).
The interface hardly scratches the surface of the queries that are actually possible, but a big problem is that
most biologists are not comfortable with complex query languages. Indeed, the simple interface that allows
simple conjunctive and disjunctive queries over dynamic menus of annotations (constructed by the applet
at runtime from the actual local KB) is quite advanced as compared to most of the existing public sites that
allow textual keyword searches only. The current interface4 allows the user to query based on gene name,
gene product name, number of transmembrane domains, keyword search in homolog text descriptions, virus
taxonomy, protien motif ontology, or any high-level term in the three GO ontologies.

For example, the table below shows a summary of the annotation information gathered by both the basic
annotation agents, and the functional annotation agents (described next) for a representative gene product
from gallid (Chicken) herpesvirus 3 gene SORF4. The input to the system was the gene product (translation)
which is a string of 322 characters representing the amino acid sequence.

4Will be located at http://udgenome.ags.udel.edu; However, if reviewers wish to check the interface out the current interface
demo is located at http://cgi.eecis.udel.edu/ makkena/cgi-bin/menupop/testpopups.html

12



Transmembrane Domains1
Motifs (5) ASN-Glycosylation Site (2)

CAMP- and CGMP-Dependent Protein Kinase Phosphorylation Site (1)
Protein Kinase C Phosphorylation Site (1)
Casein Kinase II Phosphorylation Site (4)
N-Myristoylation Site (3)

Domains (2) Protein Glycoprotein Kinase Marek’s Disease Virus
(length 345; Diameter 91; PAM Radius of Gyration 36;
PAM Sequence Closest to Consensus O89266VVVVV 4-319;
Distance 30 PAM)

HYPOTHETICAL 32.1 KD Protein
(length 294; NO CONSISTENCY VALUES)

BLAST hits (12) R-SORF1 Protein [Gallid Herpesvirus 3]
R-SORF1 Protein [Gallid Herpesvirus 3]
SER/ARG-related Nuclear Matrix Protein; Plenty-Of-Prolines-10 [Mus Musculus]
Extensin-like Protein [Zea Mays]
AHM1 [Triticum Aestivum]
Extensin [Volvox Carteri]
Hypothetical Protein RV3876 [Mycobacterium Tuberculosis H37RV]
HYP-rich Glycoprotein [Zea Diploperennis]
Wiskott-Aldrich Syndrome Protein Homolog [Fission Yeast]
Wiskott-Aldrich Syndrome Protein Homolog 1 [Fission Yeast]
Strong Similarity to Unknown Protein (GB—AAD23008.1) [Arabidopsis Thaliana]
Hydroxyproline-rich Glycoprotein [Perennial Teosinte]
Kexin-like Protease KEX1 [Pneumocystis Carinii F. sp. Muris]
Avena Neural Variant [Gallus Gallus]
CG15021 Gene Product [Drosophila Melanogaster]

Biological Process signal transduction [GO: 7165 ]
Molecular Function two-component sensor molecule [GO: 155 ]
Cellular Component membrane fraction [GO: 5624 ]

4.2 Functional Annotation

Figure 5 shows the Functional Annotation subsystem. This subsystem is responsible for assisting the bi-
ologist in the difficult problem of making functional annotations of each gene. Unfortunately, many of the
millions of genes sequenced so far have fairly haphazard (from a computer scientist’s perspective) functional
annotation: simply free natural language descriptions. Recently, a fairly large group representing at least
some of the primary organism databases have created a consortium dedicated to creating a gene ontology
for annotating gene function in three basic areas: the biological process in which a gene plays a part, the
molecular function of the gene product, and the cellular localization [33]. The subsystem described here
supports the use of this ontology by biologists as sequences are added to the system, eventually leading to
even more powerful analysis of the resulting KBs.

Information Extraction Agents. Besides the gene sequence LKBMA and the GenBank IEA, we are
wrapping several organism-specific gene sequence DBs—for Drosophila (fruit fly), Mus (Mouse), Sac-
crynomaeces cervasie (yeast), and Caenorhabditis elegans (nematode). Each of these organisms is part of

13



 Functional Annotation
Applet

 Sequence
LKBMA

 GenBank
Info Extraction Agent

Mouse Genome DB
IEA

SGD (yeast)
IEA

Flybase
IEA

 Proxy
Agent

 Ontology Reasoning
Agent

 Ontology
Agent

Figure 5: Functional Annotation Agent Organization

the Gene Ontology (GO) consortium, and has spent considerable time in making the proper functional anno-
tation. With respect to the qualitative reliability of the annotations used by GO, each of these databases has
a significant number of gene products that are human-annotated, as opposed to being Inferred by Electronic
Annotation (also referred to by the acronym IEA). We are also wrapping the EBI human-annotated portion
of SwissProt, a general database of gene protein products. Each of these agents, then, finds GO-annotated,
close homologs of the unannotated gene and proposes the annotation of the homologs for the annotation of
the new gene.

Task Agents. There are two new task agents, one is a domain-independent ontology agent using the
FIPA ontology agent specification as a starting point. The ontology agent contains both the GO ontologies
and several mappings from other symbologies (i.e. SwissProt terms developed before the advent of the
GO ontologies) to GO terms. In fact, the Mouse IEA uses the Ontology agent to map some non-GO terms
for certain records to GO terms. Although not indicated on the figure, some of the other organism DB
IEA agents must map from GO ontology descriptive strings to the actual unique GO ID. The other service
provided by the ontology agent (and not explicitly mentioned in the experimental FIPA Ontology Agent
specification) is for the ontology reasoning agent to ask how to terms are related in an ontology. The
Ontology Reasoning Agent uses this query to build a minimum spanning tree (in each of the three GO
ontologies) between all the terms returned in all the homologies from all of the GO organism databases.
This information can then be used to propose a likely annotation, and to display all of the information
graphically for the biologist via the interface agent.

The Ontology Reasoning Agent implements an algorithm we have nicknamed GO-Del for deducing
appropriate electronic GO annotations for unknown gene products. We can model the output of the organism
information extraction agents as a set of BLAST “hits”h gene-id, organism-database, e-valuei. The gene-id
is a unique identifier of the homolog match within the organism-database with the corresponding expectation
value or e-value (BLAST sequence similarity score). Each hith has an set of annotation termsTh, such that
the hith is annotated with every member of annotation setTh. A member termt of the annotation setTh is
a tuple of the formh go-id, go-term, go-evidence-codei where termt corresponds to the go-term identifed
by the go-id identifier, and the go-evidence-code signals the means by the which the annotation termt was
assigned to hith. We will indicateH as the set of all hits returned from all IEAs, andT as the set of all
terms inH.

Minimum Covering Graph Construction.The minimum covering graph (MCG) is a a spanning graph
covering all the terms in setT , with the condition that all the ancestors of the terms inT are included. This
covering graph is then minimized by pruning the path from the GO root (GO:0003673 or GeneOntology)

14



to the node with the greatest depth that covers all the terms in the setT , designating this node as the root of
the MCG. By doing so, we eliminate all the ancestors of the MCG root which were the common ancestors
to all of the terms in setT as well.

The minimum covering graph diffes from a minimum spanning graph in that when a node in the MCG
has multiple parents, then all the paths to that node (i.e. via every parent) is added to the MSG. In the
construction of a minimum spanning graph, a single path that minimized the total weight would have been
chosen instead. We make this distinction to capture the multiple inheritance relationships embedded within
the GO DAG.

Annotation Term Scoring.The MCG demarcates the boundary of annotation for the unknown gene or
gene product. Thus, only the nodes present in the MCG will be used to annotate the unknown object. The
relative scoring of these terms (or nodes) is done on the basis of the hits that were used to produce the MCG.
Therefore, before we can score the nodes within the MCG, the quality of the hits will need to be evaluated.

Hit Score. Our algorithm allows for a hit to be scored along unlimited determinants. For the initial
analysis, we identified two axes along which a hit might be differentiated, and thus scored: e-value score
and GO evidence code5.

The formula to calculate a hit score for a hith is:

S(h) = wevaluefevalue(h) + wevidencefevidence(h)

wherewevalue + wevidence = 1 provide relative weights for the two factors.
Hits within the GO databases with e-values close or equal to 0, are very similar to the sequence of the

unknown object. As the e-value increases, the degree of similarity decreases. To represent this relationship,
the evalue factor is calculated from the function

fevalue(h) = (1=100)e�value(h)

Thus,fevalue is set to 1.0 for an exact match (e-value of zero). As the e-value increases,fevalue drops
off exponentially, and at an e-value of 1,fevalue is reduced to 0.01.

The GO evidence codes indicate the method by which an annotation was assigned. Since this is a
qualitative measure of reliability, a conversion table was created with the aid of a human expert to quantity
the relative evidence factor score for each evidence code. The scoring was patterned on the ”loose hierarchy”
suggested by the GO Consortium6. For example, a Traceable Author Statement (TAS)(fevidence = 1:0)
contributes ten times as much to the hit score than an Inferred by Electronic annotation (IEA) code would
(fevidence = 0:1). When a hit has more than one annotation term associated with it, the best evidence factor
is chosen.

Term Score.The term scores are calculated from the hit scores. A term can aggregate a score on the
basis of the hit ratio of the hits annotated by that term. The hit ratio of a term nodet (denoted asR(t)) is
defined as the ratio of the sum of the hits at that node to the sum of all the hit scores in the MCG:

R(t) =

P
h2Ht

S(h)
P

h2H S(h)

whereHt is the subset of hits in H annotated with the term t.

5Later work may add phylogeny.
6http://www.geneontology.org/GO.evidence.html

15



Since the GO DAG represents subsumption class relationships indicated by edges representing is-a re-
lationships, the support score for a child term should accrues to its parent terms. Thus, the term score can
be recursively defined as

Sterm(t) =
X

c2children(t)

Sterm(c)

jparents(c)j
+R(t)

Assignment of Annotation Term(s).Selecting a final annotation term or terms is now straightforward as
every term in the MCG is associated with a term score. Given a term score threshold, we traverse down
from the root of the MCG until we arrive at a node whose term score is above or equal to the threshold, but
all of its children are not. This node is then associated with the unknown object, for the given term score
threshold. When more than one child has a term score greater than the threshold, both branches are taken
and the process is recursed. A simple check is also required before a final annotation is chosen to ensure
that no descendents of the term to be chosen has an equivalent term score - a possibility engendered by the
score splitting required of terms with multiple parents.

Interface Agents. There are two possible functional annotation interface agents/applets. The first,
ManGO (MANual GO), supports manual annotation of a local knowledgebase. Genes indicated by the
LKBMA as unannotated, or annotated only by GODel (with the IEA Inferred by Electronic Annotation
code) can be brought up, and the MCG dispayed for each on the ontologies. Frames allow editing of the
information needed for a complete manual annotation and submission to the GO Consortium.

The second interface, GO-Figure!7, allows users anywhere on the internet to BLAST their own nu-
cleotide or protein sequence against the functional annotation subsystem databases that have been annotated
with GO terms. The requestor also provides an e-mail address. The search will return an email message with
a URL link to three graphs depicting the GO annotations of similar sequences in the Molecular Function,
Biological Process, and Cellular Component ontologies.

In the resulting graphs, colored boxes indicate term hits, with darker color indicating lower E-value.
Box shape indicates IEA vs. non-IEA evidence codes. Colored boxes can be clicked on, and will bring up a
table of all individual database hits and E-values. Links in this table are functional, and connect back to the
original databases. Figure 6 shows an example graph produced for the Biological Process ontology, given
an IL-1 beta protein as the input.

4.3 EST Processing

One way to broaden the applicability of the system is to accept more kinds of basic input data to the anno-
tation process. For example, we could broaden the reach of the system by starting with ESTs (Expressed
Sequence Tags) instead of complete sequences. Agents could wrap the standard software for creating se-
quences from this data, at which point the existing system can be used. The use of ESTs is part of a relatively
inexpensive approach to sequencing where instead of directly sequencing genomic DNA, we instead use a
method that produces many short sequences that partially overlap. By finding the overlaps in the short se-
quences, we can eventually reconstruct the entire sequence of each expressed gene. Essentially, this is a
“shotgun” approach that relies on statistics and the sheer number of experiments to eventually produce com-
plete sequences. Figure 7 shows a multi-agent subsystem for automating the processing of ESTs to produce
consensus gene sequences.

As a side effect of this processing, information is produced that can be used to find Single Nucleotide
Polymorphisms (SNPs). SNPs indicate a change of one nucleotide (A,T,C,G) in a single gene between

7http://udgenome.ags.udel.edu/gofigure

16



Figure 6: Go-Figure! output for IL-1 beta. Note that “IEA” here refers to Inferred by Electronic Annotation,
and not Information Extraction Agent.

different individuals (often, conserved across strains or subspecies). These markers are very important for
identification even if they do not have functional effects.

Information Extraction Agents. The process of consensus sequence building and SNP identification
does not require any external information, so the only IEAs are the LKBMAs. Up until now, there has
only been one LKBMA, responsible for the gene sequences and annotations. EST processing adds a second
LKBMA responsible for storing the ESTS themselves and the associated information discussed below. Pri-
marily, this is because (especially early on in a sequencing project) there will be thousands of ESTs that do
not overlap to form contiguous sequences, and that ESTs may be added and processed almost daily.

Task Agents. There are three new domain-level task agents. The first deals with processing chro-
matographs. Essentially the chromatograph is a set of signals that indicate the relative strengths of the
wavelengths associated with each luminous nucleotide tag. Several standard Unix analysis programs exist
to process this data, essentially “calling” the best nucleotide for each position. The chromatograph pro-
cessing agent wraps three analysis programs: Phred, which “calls” the chromatograph and also separately
produces an uncertainty score for each nucleotide in the sequence; phd2fasta which converts this output into
a standard (FASTA) format; and x-match which removes a part of the sequence that is a byproduct of the se-

17



 Sequence
LKBMA

 SNP-Finder
[polybayes]

 EST
LKBMA

 EST Entry
[Chromatograph/FASTA]

 Proxy
Agent

 Consensus
Sequence Assembly

[phrap/consed]

Chromatograph
Processing

[phred/phd2fasta/
x-match]

Figure 7: EST Processing Agent Organization

quencing method, and not actually part of the organism sequence. The consensus sequence assembly agent
uses two more programs (Phrap and consed) on all the ESTs found so far to produce a set of candidate genes
by appropriately splicing together the short EST sequences. This produces a set of candidate genes that can
then be added to the gene sequence LKBMA and from which the various annotation processes described
earlier may commence. Finally, a SNP-finder agent operates the PolyBayes program which uses the EST
and Sequence KBs and the uncertainty scores produced by Phred to nominate possible single nucleotide
polymorphisms. Each of the wrapped programs (especially Phred, Phrap, and PolyBayes) has a large num-
ber of parameters to control. Currently we set these in consultation with our biologist parteners, but as
we get more experience we plan to experiment with various automated learning mechanisms for parameter
adjustment.

Interface Agents. There is only one simple interface agent, to allow participants to enter data in the
system. Preferably, this is chromatograph data from the sequencers, because the original chromatograph
allows Phred to calculate the uncertainty associated with each nucleotide call. However, FASTA-format
(simple “ATCG. . . ” named strings) ESTs called from the original chromatographs can be accommodated.
These can be used to build consensus sequences, but not for finding SNPs.

5 Gene Expression Processing

A new kind of genomic data is now being produced, that may swamp even the amount of sequencing data.
This is so-calledgene expressiondata, and indicates quantitatively how much a gene product is expressed
in some location, under some conditions, at some point in time. We are developing an multi-agent system
that uses available on-line genomic and metabolic pathway knowledge to extend gene expression analysis.
By incorporating known relationships between genes, knowledge-based analysis of experimental expression
data is significantly improved over purely statistical methods. Although this system has not yet been inte-
grated into the existing agent community, eventually relevant genomic information will be made available
to the system through the existing GenBank and SwissProt IEAs. Metabolic pathways of interest to the
investigator are identified through a KEGG (Kyoto Encyclopedia of Genes and Genomes) database wrapper.
Analysis of the gene expression data is performed through an agent that executes SAS, a statistical package

18



that includes clustering and PCA analysis methods. Results are to be presented to the user through web
pages hyperlinked to relevant database entries.

Gene expression studies, which identify the set of active genes within a particular state, are beginning
to explore the dynamic nature of intracellular behavior [14]. As cells respond to environmental or physio-
logical changes of state, individual genes are induced and repressed and the corresponding messenger RNA
(mRNA) and protein levels are modified, all according to a complicated but predetermined reaction network.
However, interpreting these complex underlying networks from gene expression experiments is a difficult
process. Current techniques for gene expression analysis have primarily focused on the use of clustering
algorithms, which group genes of similar expression patterns together [15]. Based on the results of such
analysis, researchers have identified conserved control regions (promoters) upstream of co-expressed genes
that appear to be responsible for the similar expression behavior [7]. However, experimental gene expression
data can be very noisy and the complicated pathways within organisms can generate coincidental expression
patterns, which can significantly limit the benefits of standard cluster analysis. In order to separate gene
co-regulation patterns from co-expression, the gene expression processing organization was developed to
gather available pathway-level information in order to presort the expression data into functional categories.
Thus, clustering of the reduced data set is much more likely to find genes that are actually regulated together.
The system also promises to be useful in discovering regulatory connections between different pathways.

A diagram outlining the agents within the system is shown in Figure 8. Although the system currently
only uses the KEGG database to identify pertinent metabolic pathways, other sites are available and shall
be incorporated in the future. One advantage of using the KEGG database is that its gene/enzyme entries
are organized by the EC (Enzyme Commission) ontology, and so are easily mapped to gene names specific
to the organism of interest. The gene expression database agent for this system currently queries a local
copy of the publicly available S. cerevisiae (yeast) whole cell expression data and allows the user to access
data related to diauxic shift, cell cycle, and sporulation. Once the experimental data has been reduced by
the system to only those genes within the metabolic pathways of interest, the SAS statistical package is
then used to cluster the remaining data to identify what are hopefully closely regulated genes within the
organism. The co-regulation of genes is confirmed though the identification of conserved promoter motifs
within each gene’s genetic code. Final results of an analysis run will be presented to the user in graphic form
showing clustered expression patterns along with hyperlinks to relevant on-line database entries for further
exploration.

Currently, we have automated access to the local database, the cluster analysis, and presentation to
demonstrate the biological utility of the approach. Integration with the rest of the systems described here is
planned.

6 Related Work

There has been significant work on general algorithms for query planning, selective materialization, and
the optimization of these from the AI perspective, for example TSIMMIS [5], Information Manifold [23],
Infosleuth [27], HERMES [1], SIMS [2], etc., and of course on applying agents as the way to embody these
algorithms [24, 32, 12, 22].

In Biology, compared to the work being done to create the raw data, all the work on how to organize and
retrieve it is relatively small. Most of the work in computer science directed to biological data has been in
the area of heterogeneous databases, focusing on the semi-structured nature of much of the data that makes
it very difficult to store usefully in commercial relational databases [6]. Some work has begun in applying
the work on wrappers and mediators to biological databases, for example TAMBIS [31]. These systems

19



Figure 8: Overview of gene expression processing organization

differ from ours in that they are pure implementations of wrapper/mediator technology that are centralized,
do not allow for dynamic changes in sources, support persistent queries, or consider secondary user utility
in the form of time or other resource limitations.

Agent technology has been making some inroads in the area. The word “agent” with the popular con-
notation of a single computer program to do a user’s bidding is found in the promotional material for Dou-
bletwist (www.doubletwist.com ). Here, an “agent” stands for a persistent query (e.g. “tell me if a new
homolog is found in your database for the following sequence”). There is no collaboration or communica-
tion between agents.

We know of a few truly multi-agent projects in this domain. First, InfoSleuth has been used to annotate
livestock genetic samples [13]. The flow of information is very similar to our system. However, the system
is not set up for noticing changes in the public databases, for integrating new data sources on the fly, or
for consideration of secondary user utility. Second, the EDITtoTrEMBL system [25] is another automated
annotation system, based on the wrapper and mediator concept, for annotating proteins awaiting manual an-
notation and entry to SwissProt. Dispatcher agents control the application of potentially complex sequences
of wrappers. Most importantly, this system supports the detection and possible revision of inconsisten-
cies revealed between different annotations. Third, the GeneWeaver project [4] is another true multi-agent
system for annotation of genomes. GeneWeaver has as a primary design criterion the observation that the
source data is always changing, and so annotations need to be constantly updated. They also express the
idea that new sources or analysis tools should be easy to integrate into the system, which plays to the open
systems requirement, although they do not describe details. The primary differences are the way in which an
open system is achieved (it is not clear that they use agent-level matchmaking, but rather possibly CORBA
specifications) and that GeneWeaver is not based on a shared architecture that supports reasoning about sec-
ondary user utility. In comparison to the DECAF implementation, GeneWeaver uses CORBA/RMI rather
than TCP/IP communication, and a simplified KQML-like language called BAL.

20



7 Discussion

The system described here is operational and normally available on the web at
http://udgenome.ags.udel.edu/herpes/ . This is a working prototype, and so the interface is strongly
oriented to biologists only. In general, computational support for theprocessesthat biologists use in an-
alyzing data is primitive (Perl scripts) or non-existent. In less than 10 min, we were able to annotate the
HVT-1 sequence, as well as store it in a queryable and web-publishable form. This impressed the biologists
we work with, compared to manual annotation and flat ASCII files. Furthermore, we have recently added
approximately 15 other publicly available herpesvirus sequences (e.g. several strains of Human herpesvirus,
African swine fever virus, etc.). The resulting knowledgebase almost immediately resulted in queries by our
local biologists that indicated possible interesting relationships that may result in future biological work.
We are currently looking for feedback from viral biologists at other universities.

Other things about the system which have excited our biologist co-workers are the relative ease by which
we can add new types of annotation or analysis information, and the fact that the system can be used to build
similar systems for other organisms, such as the chicken. For example, the use of open system concepts
such as a matchmaker allow the annotation agent to access and use new annotation services that were not
available when it was initially written. Secondary user utility will become useful for the biologist when
faced with making a simple office query vs. checking results before publication.

The underlying DECAF system has been evaluated in several ways, especially with respect to the use
of parallel computational resources by a single agent (all of the DECAF components and all of the exe-
cutable actions are run in parallel threads), and the efficacy of the DRU scheduler which efficiently solves a
restricted subset of the design-to-criteria scheduling problem [18]. Running the gene annotation system as
a truly multi-agent system results in true speedups, although most of the time is currently spent in remote
database access (see Table 1). Parallel hardware for each agent will be useful for some of the more locally
computationally intensive tasks involving EST processing.

BLASTP PSort Motif Distr. BLASTP Distr. PSort Distrib. Motif
1994 1296 1833 775 346 809

Table 1: Average processing times on uniprocessor or distributed hardware

8 Conclusions and Future Work

In this paper we have discussed the very real problem of making some use of the tremendous amounts of
genetic sequence information that are being produced. While there is much information publicly available
over the web, accessing such information is different for each source and the results can only be used by
a single researcher. Furthermore, the contents of these primary sources are changing all the time, and new
sources and techniques for analysis are constantly being developed.

We cast this sequence annotation problem as a general information gathering problem, and proposed
the use of multi-agent systems for implementation. Beyond the basic heterogeneous database problem that
this problem represents, an MAS solution gives us mechanisms for dealing with changing data, the dynamic
appearance of new sources, minding secondary utility characteristics for users, and of course the obvious
distributed processing achievements of parallel development, concurrent processing, and the possibility for
handling certain security or other organizational concerns (where part of the agent organization can mirror
the human organization).

21



We currently are offering the system publicly on the web, with the known herpesvirus sequences. A
second system based on chicken ESTs should be available by May of 2002. The GO-Figure! system is
also available on the web seperately. We intend to broaden the annotation coverage and add more complex
analyses. An example would be the estimation of the physical location of the gene as well as its function.
Because biologists have long recorded certain QTLs (Quantitative Trait Loci) that indicate that a certain
physical regionis responsible for a trait (such as chickens with resistance to a certain disease), being able to
see what genes are physically located in the QTL region is a strong indicator as to their high-level genetic
function.

In general, we have not yet designed an interface that allows biologists to take full advantage of the ma-
terialized data —they are uncomfortable with complex query languages. We believe that it may be possible
to build a graphical interface to allow a biologist, after some training, to create a commonly needed analysis
query and to then save this for use in the future by that scientist, or others sharing the agent namespace.

Once we have ported the BioMAS to two organisms, we intend to begin addressing the problems ofn
organism knowledgebases. In a sense, we will begin to explore the questions involving the production of
“peer-to-peer” knowledgebases using multi-agent systems techniques.

Finally, the next major subsystem will be agents to link and analyze gene expression data (which will
in turn interoperate with the metabolic pathway analysis systems described above). This data needs to be
linked with sequence and function data, to allow more powerful analysis. For example, linked to QTL data,
this allows us to ask questions such as “what chemicals might prevent club root disease in cabbage?”.

References

[1] S. Adali and V.S. Subrahmanian. Amalgamating knowledge bases, III: Distributed mediators.Inter-
national Journal of Intelligent Cooperative Information Systems, 1994.

[2] Y. Arens and C.A. Knoblock. Intelligent caching: Selecting, representing, and reusing data in an
information server. InProc. 3rd Intl. Conf. on Information and Knowledge Management, 1994.

[3] D.A. Benson and et al. Genbank. Nucleic Acids Res., 28:15–18, 2000.
http://www.ncbi.nlm.nih.gov .

[4] K. Bryson, M. Luck, M. Joy, and D.T. Jones. Applying agents to bioinformatics in geneweaver. In
Proceedings of the Fourth International Workshop on Collaborative Information Agents, 2000.

[5] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom.
The TSIMMIS project: integration of heterogeneous information sources. InProceedings of the Tenth
Anniversary Meeting of the Information Processing Society of Japan, December 1994.

[6] S. B. Davidson and et al. Biokleisli:a digital library for biomedical researchers.Intnl. J. on Digital
Libraries, 1(1):36–53, 1997.

[7] K. Decker, X. Zheng, and C. Schmidt. A multi-agent system for automated genomic annotation. In
Proceedings of the 5th Intl. Conf. on Autonomous Agents, Montreal, 2001.

[8] K. S. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behaviors for information agents.
In Proceedings of the 1st Intl. Conf. on Autonomous Agents, pages 404–413, Marina del Rey, February
1997.

22



[9] K. S. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. InProceedings of the
Fifteenth International Joint Conference on Artificial Intelligence, pages 578–583, Nagoya, Japan,
August 1997.

[10] Keith S. Decker.Environment Centered Analysis and Design of Coordination Mechanisms. PhD thesis,
University of Massachusetts, 1995.http://dis.cs.umass.edu/˜decker/thesis.html .

[11] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computational task environ-
ments. InProceedings of the Eleventh National Conference on Artificial Intelligence, pages 217–224,
Washington, July 1993.

[12] Keith S. Decker and Katia Sycara. Intelligent adaptive information agents.Journal of Intelligent
Information Systems, 9(3):239–260, 1997.

[13] L. Deschaine, R. Brice, and M. Nodine. Use of infosleuth to coordinate information acquisition,
tracking, and analysis in complex applications. Technical Report MCC-INSL–008-00, MCC, 2000.

[14] J. L. DiRisi, V.R. Iyer, and P.O. Brown. Exploring the metabolic and genetic control of gene expression
on a genomic scale.Science, 278:680–686, 1997.

[15] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of genome-wide
expression patterns.Proc. Nat. Acad. Sci.

[16] K. Erol, D. Nau, and J. Hendler. Semantics for hierarchical task-network planning. Technical report
CS-TR-3239, UMIACS-TR-94-31, Computer Science Dept., University of Maryland, 1994.

[17] J. Graham and K.S. Decker. Towards a distributed, environment-centered agent framework. In N.R.
Jennings and Y. Lesperance, editors,Intelligent Agents VI, LNAI-1757, pages 290–304. Springer Ver-
lag, 2000.

[18] John Graham.Real-time Scheduling in Multi-agent Systems. PhD thesis, University of Delaware,
2001.

[19] T. Harvey, K. Decker, and O. Rambow. Integrating the communicative plans of multiple, independent
agents. InWorkshop on Communicative Agents: The use of natural language in embodied systems,
1999. Autonomous Agents 99.

[20] J. Hendler and Merwyn Taylor Kilian Stoffel. Advances in high performance knowledge representa-
tion. Technical Report CS-TR-3672, University of Maryland Institute for Advanced Computer Studies,
1996. Also cross-referenced as UMIACS-TR-96-56.

[21] B. Horling, V. Lesser, R. Vincent, A. Bazzan, and P. Xuan. Diagnosis as an integral part of multi-agent
adaptability. Tech Report CS-TR-99-03, UMass, 1999.

[22] L. Kerschberg. Knowledge rovers: cooperative intelligent agent support for enterprise information
architectures,. In P. Kandzia and M. Klusch, editors,Cooperative Information Agents, LNAI-1202.
Springer-Verlag, 1997.

[23] T. Kirk, A. Levy, J. Sagiv, and D. Srivastav. The information manifold. Technical report, AT&T Bell
Labs, 1995.

23



[24] C.A. Knoblock, Y. Arens, and C. Hsu. Cooperating agents for information retrieval. InProc. 2nd Intl.
Conf. on Cooperative Information Systems. Univ. of Toronto Press, 1994.

[25] Steffen Möller and Michael Schroeder. Consistent integration of non-reliable heterogeneous informa-
tion applied to the annotation of transmembrane proteins.Journal of Computing and Chemistry, 2001.
To appear.

[26] I. Muslea, S. Minton, and C. Knobloch. Stalker: Learning expectation rules for simistructured web-
based information sources. InPapers from the 1998 Workshop on AI and Information Gathering, 1998.
also Technical Report ws-98-14, University of Southern California.

[27] M. Nodine and A. Unruh. Facilitating open communication in agent systems: the infosleuth infras-
tructure. In M. Singh, A. Rao, and M. Wooldridge, editors,Intelligent Agents IV, pages 281–295.
Springer-Verlag, 1998.

[28] A.S. Rao and M.P. Georgeff. BDI agents: From theory to practice. InProceedings of the First Inter-
national Conference on Multi-Agent Systems, pages 312–319, San Francisco, June 1995. AAAI Press.

[29] J. S. Rosenschein and G. Zlotkin.Rules of Encounter: Designing Conventions for Automated Negoti-
ation among Computers. MIT Press, Cambridge, Mass., 1994.

[30] R. Simmons. Structured control for autonomous robots.IEEE Trans. on Robotics and Automation,
10(1), February 1994.

[31] R. Stevens and et al. Tambis: Transparent access to multiple bioinformatics information sources.
Bioinformatics, 16(2):184–185, 2000.

[32] K. Sycara, K. S. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent agents.IEEE
Expert, 11(6):36–46, December 1996.

[33] The Gene Ontology Consortium. Gene ontolgy: tool for the unification of biology.Nature Genetics,
25(1):25–29, May 2000.

[34] T. Wagner, A. Garvey, and V. Lesser. Complex goal criteria and its application in design-to-criteria
scheduling. InProceedings of the Fourteenth National Conference on Artificial Intelligence, Provi-
dence, July 1997.

[35] M.P. Wellman and J. Doyle. Modular utility representation for decision-theoretic planning. InProc. fo
the First Intl. Conf. on Artificial Intelligence Planning Systems, pages 236–242, June 1992.

[36] M. Williamson, K. S. Decker, and K. Sycara. Executing decision-theoretic plans in multi-agent envi-
ronments. InAAAI Fall Symposium on Plan Execution, November 1996. AAAI Report FS-96-01.

[37] M. Williamson, K. S. Decker, and K. Sycara. Unified information and control flow in hierarchical task
networks. InProceedings of the AAAI-96 workshop on Theories of Planning, Action, and Control,
1996.

[38] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.The Knowledge Engineer-
ing Review, 10(2):115–152, 1995.

24


