
An Integrative Approach for Attaching Semantic
Annotations to Service Descriptions

Luc Moreau, Juri Papay, Simon Miles, Terry Payne, Keith Decker

Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK

Abstract. Service discovery in large scale, open distributed systems is
difficult because of the need to filter out services suitable to the task
at hand from a potentially huge pool of possibilities. Semantic descrip-
tions have been advocated as the key to expressive service discovery,
but the most commonly used service description and registry protocols
do not support such descriptions in a general manner. In this paper
we present an approach (and implementation) of service registry and
discovery that uses an rdf triple store to integrates the major service
descriptions (wsdl, uddi, and daml-s) and other, task- or even user-
specific metadata that can be used for service discovery. Our approach
allows us to present multiple interfaces (compatible with all the above ap-
proaches and others) so that services registered through one interface are
available to be found via the other interfaces. Furthermore, we provide
ways of extending these interfaces to attach other structured metadata,
and search across it and all of the structures in the component models.
The result is an extremely flexible service registry that can be used as-
is with existing standards, or as the basis of a far more sophisticated
semantically-enhanced service discovery engine.

1 Introduction

Service discovery is a difficult task in large scale, open distributed systems such
as the Grid and Web, due to the potentially large number of services advertised.
In order to filter out the most suitable services for the task at hand, many have
advocated the use of semantic descriptions that qualify functional and non-
functional characteristics of services in a manner that is amenable to automatic
processing [1, 4, 15].

Semantic discovery is the process of discovering services capable of inter-
operability, even though the languages or structures with which they are de-
scribed may be different. Typically, a semantic discovery process relies on se-
mantic annotations, containing high-level abstract descriptions of service re-
quirements and behaviour. In this paper, our work focuses on the means to
register and discover such semantic annotations.

Current standards in the Web Services and Grid communities do not directly
support semantic discovery of services [11]. On the other hand, uddi and wsdl

have the tremendous advantage of being standards agreed by the community;
their existence is therefore essential to promote inter-operability with compo-
nents such as workflow enactment engines based on [3].

An essential element in semantic discovery is to allow users to augment ser-
vice descriptions with additional information, i.e. metadata. Providers may adopt
various ways of describing their services, access polices, contract negotiation de-
tails etc. However, many resource consumers also impose their own selection
policies on the services they prefer to utilise, such as provenance, derived quality
of service, reputation metrics etc. Furthermore, it is useful to add such metadata
not only to service descriptions, but also to any other concept that may influence
the discovery process, e.g. supported operations, semantic types of arguments,
businesses, users. Such metadata may be structured according to published on-
tologies, so that it can be interpreted unambiguously by multiple users, especially
in the case of a public registry; alternatively, such metadata may also be raw and
unstructured, in the case of a personal registry used by a single user. Relevant
initiatives in that area include the following: daml-s [4] has some support for
attaching semantic annotations to services and their arguments; biomoby [14]
allows semantic descriptions of operations and arguments; our previous work
already introduced the idea of metadata attachment [9].

In summary, current standards are not capable of semantic service descrip-
tions, but promising initiatives allow semantic attachments. Against this back-
gound, we believe that an information model, i.e. an ontology, unifying not only
uddi and wsdl descriptions, but also general metadata attachment [9], and
daml-s and biomoby -style semantic annotations, would provide us with uni-
form way of querying and navigating service information. We see the use of RDF
triples [12] (subject, predicate, object) as the means to represent all the infor-
mation in a uniform manner. This information will be stored in a triple store,
which can be queried uniformly through the use of a query language such as
RDQL [7]. While our integrative information model is suitable for expressing se-
mantic descriptions, it also critical to offer programmatic interfaces that would
allow both publishers and third-party users to register their semantic informa-
tion. Therefore, on top of this triple store, we have implemented standard and
emerging interfaces such as uddi, daml-s, and a biomoby-like functionality.

This work should be seen as a building block of the myGrid (www.mygrid.org.uk)
architecture for semantic service discovery. The functionality we are discussing
here allows the attachment of semantic annotations to services descriptions;
such semantic descriptions can be retrieved, and used for reasoning by a Seman-
tic FindService component, whose description and interaction with the current
component are discussed in a companion paper [cite].

The specific contributions of this paper are the following:

1. We have defined a unifying ontology that links the service descriptions sup-
ported by uddi, wsdl, daml-s, and biomoby.

2. We have adopted rdf triples as underlying representation of the information,
we use a triple store for storing such information, and we support the rdql
query language for uniform navigation of the information.

3. Over this stored information, we have specified multiple interfaces offering
compatibility with multiple standards or emerging approaches (uddi, wsdl,
biomoby, daml-s). Services registered through one interface are available
to be found via the other interfaces.

4. We also provide extended interfaces for these standards and emerging ap-
proaches that allow the attachment and query of both simple and structured
metadata. As an illustration, we make use of these interfaces to register and
find services described according to the myGrid ontology [15]

5. Our design is backed up by an implementation of a service directory capable
of semantic annotations, which can be found at
http://www.mygrid.ecs.soton.ac.uk/service-directory/javadoc.

This paper is organised as follows. In Section 2, we review existing approaches
and discuss their limitations, hereby building up motivation for a unifying in-
formation model, which we present in Section 3. We then discuss the multiple
interfaces that can be supported for this information model, and discuss briefly
our implementation in Section 4. A benefit of our approach is that it underlines
the differences between various “notions of services”, which we discuss in Sec-
tion 5; we also highlight the benefit of our approach by showing how existing
standard interfaces can be enchriched by semantic-oriented facilities, offering an
transitional approach to semantic service directory.

2 Background

The Web Services community has adopted an open standards approach for lo-
cating, describing, choreographing, and enacting heterogeneous services. soap
[17] provides a transport mechanism to shuttle messages between services that
are functionally described by wsdl [16]. Larger services may utilise workflow
based languages (such as wsfl [8] or bpel4ws [3]) to describe the coordination
of serveral services. These services are registered with a uddi service directory
[13]. Service queries are typically white or yellow pages based: they are located
based on a description of their provider or a specific classification (taken from a
published taxonomy) of the desired service type. This typically returns a list of
available services, from which a subset may conform to a known and/or infor-
mally agreed upon policy and thus can be invoked.

Such approaches work well within small, closed communities, where a priori
definitions of signatures and data formats can be defined. However, across open
systems, assumptions cannot be made about how desired services are described;
how to interact with them, and how to interpret their corresponding results.
Many of the existing systems assume some form of adherence to a standard or
agreed model. For example, printer services within a Jini environment [10] are
expected to share the same signature and provide a core subset of functionality
so that consumers looking for “printer services” will be able to interoperate.
However, service providers typically vary in the way they model and present
services, often because of the subtle differences in the service itself. This raises
the problem of semantic inter-operability , which is the capability of computer

systems to operate in conjunction with one another, even though the languages
or structures with which they are described may be different. Semantic discovery
is the process of discovering services capable of semantic inter-operability.

Current standards in the Web Services and Grid communities do not support
semantic discovery of services [11]. The uddi (Universal Description, Discovery,
and Integration) standard supports a construct called TModel which essentially
serves two purposes: it can serve as a namespace for a taxonomy or as a proxy
for a technical specification that lives outside the registry [6]. We believe that
such a TModel construct has some intrisinc limitations. While there is no doubt
that service classifications are useful, services are not the only entities to be
classified. Classifications can also be defined for individual operations or their
argument types. Why should we use searching mechanisms for services that are
distinct from those for their argument types? Likewise, a TModel’s reference
to an external technical specification, such as a wsdl file describing a service
interface, also implies that a different mechanism is required for reasoning over
service interfaces.

daml-s [4] is a set of ontologies designed for describing, choreographing and
invoking services and workflows within open, distributed systems. Built upon
the DARPA Agent Markup Language (daml) [], it exploits the definition of
concepts defined and distributed across the Semantic Web [1], and the ability
to reason across these concepts with respect to referential ontologies so as to
identify and interpret service descriptions at the semantic level. daml-s provides
four high level ontologies, which can be employed, or subclassed, to facilitate
the modeling of service descriptions. The Service model represents the service
itself, and presents three different views on the service; the Profile model, which
describes what the service does (in terms of a capability description); the Process
model, which describe how the service works (in term of a process workflow),
and a Grounding model, which maps the process workflow to a wsdl description
of the service.

Of interest to this paper is daml-s’ capability to attach semantic annotations
to service descriptions. First, by its ontological nature, the daml-s ontology may
be subclassed to provide new information about services such as, e.g. the task
performed by a service or the algorithm it relies upon, as discussed in [15].
We will refer to this kind of semantic description as ontology-design time since
description types, e.g. the task performed by a service, are decided at ontology
design time. Furthermore, such semantic descriptions apply to classes of services
and not service instances.

daml-s provides an alternate mechanism that allows service publishers to
attach semantic information to the parameters of a service. Indeed, the argument
types referred to by the profile input and output parameters are semantic. Such
semantic types are mapped to the syntactic type specified in the wsdl interface
by the intermediary of the service grounding. We feel that such a mechanism
is a step in the right direction, but it is convoluted (in particular, because the
mapping from semantic to syntactic types involves the process model, which we
did not discuss). It also has some limitations since it only supports semantic

annotations provided by the publisher, and not by third party annotators; a
profile only supports one semantic description per parameter and does not allow
multiple interpretations. Finally, such semantic annotations are restricted to
input and output parameters, but may not be applied in a similar manner to
other elements of a wsdl interface specification.

In the bioinformatics community, biomoby [14] is highly visible project whose
aim is to explore methodologies for representing, distributing and discovery bi-
ological data. biomoby Central is the registry through which services can be
published and discovered. biomoby Central has some support for semantic de-
scription, which we now outline. biomoby services are seen as atomic operations;
for each operation, both the syntactic and semantic types of the inputs and out-
puts have to be specified. Symmetrically, a service can be discovered according
to the semantic types of their inputs and outputs. In fact, the biomoby way of
registering information has strong similarities with daml-s: the capabilities are
a subset of the daml-s-capabilities but the mechanism is lighter weight (there is
no process description, since each service is an atomic operation, and there is no
grounding as the wsdl description can be generated on-the-fly). Like daml-s,
such semantic descriptions essentially remain limited to inputs and outputs; for
each of them, only a publisher’s annotation is supported, without any support
for third party annotations.

Therefore, we favour the use of an integrative information model capable
of the kind of semantic annotations supported by daml-s and biomoby, but
still preserving the uddi and wsdl standards. Our proposed approach differs
radically from the one advocated in [11]: they propose a mechanism by which,
whenever a daml-s service is registered, an equivalent service is automatically
registered in a uddi registry, therefore allowing such a service to be discovered
by the regular uddi protocol. This approach is not satisfactory for two reasons:
first, it does not allow a service registered by the uddi interface to be discovered
by the daml-s one; second, it does not have a single information repository
including both uddi and daml-s information that can be navigated uniformly.
We address these two deficiencies in our design.

3 Integrating Different Services Description Models

In this section, we present the information model integrating different approaches
for service descriptions. All our ontologies are made available from http://www.
mygrid.ecs.soton.ac.uk/service-directory/. We have chosen three mod-
els as the basis of our integration; uddi, wsdl, and daml-s. As we have just
dicussed, each brings with it different strengths and weaknesses, and also two
different, but complementary conceptualizations of what a service is, namely,
service-as-endpoint and service-as-goal-achieving-process.

For specifications driven mostly by the traditional distributed computing
community (uddi, wsdl) “service” tends to indicate a physical computing en-
tity or entities that present some well-specified interface at specific physical
endpoints. For specifications driven by the software agent, or more general AI

community (daml-s, biomoby), “service” tends to indicate a process by which
one may achieve a goal. These two viewpoints have significant overlap—an ex-
tremely common case in specification examples and in real implementations is
one where a physical computing entity presents a single well-specified interface
which in turn enacts a process that achieves a goal. However, there are also situ-
ations that are harder to reconcile at this very high level of abstraction. First, in
a service-as-process view a “service” could very well represent a large workflow
quite explicitly spanning multiple physical computing entities that achieves a
clear goal. On the other hand, a single service in the service-as-endpoint view
(such as, a uddi service itself) clearly encompasses many processes, each of which
achieves different goals (e.g., typical client goals such as finding a business entity
with certain qualifications, administrative goals such as deleting a business en-
tity record, etc.). To put it succinctly, in the service-as-endpoint view an agent
is a service, while in the service-as-process view an agent provides a service or
services.

The syntactic key to linking these disparate models is the use of metadata
annotations to indicate certain places where the conceptual models overlap. We
support both structured and unstructured metadata. While the former lends
itself to better navigation and querying, the latter is still very much in use in
the bioinformatics domain. We also believe that service directories can be used
by individual users to attach their personal experiences about services (such as
accuracy of results, reliability or trust), and therefore, metadata may be used
either to support automatic processing in an open manner, or simply for human
reading and analysis.

3.1 UDDI and WSDL

Figures 1 and 2 present summaries of the information model for uddi and wsdl.
Both present a view of service-as-endpoint(s), but at different levels of detail.
While they are independent information models, they are linked together indi-
rectly through the TModel construct, used to register a wsdl document in a
uddi registry [2], and directly via a metadata assertion.

The core information model in UDDI consists of four concepts, BusinessEn-
tities, BusinessServices, BindingTemplates, and TModels. In uddi, there are
actually two uses of the term service: a Business Service and a technical ser-
vice. A BusinessService is “descriptive information about a particular family
of technical services” (emphasis ours) [13], a technical service then being rep-
resented by a BindingTemplate, representing an entity with a single specific
access-point/endpoint. The BusinessService structure is “oriented toward auxil-
iary information about . . . services”, simply allowing one “the ability to assemble
a set of services under a common rubric” [13].

With respect to integrating uddi and wsdl, “each bindingTemplate struc-
ture represents an individual Web service.” [13]. From the wsdl standpoint,
a Web Service is a “collection of ports”, and thus of “a collection of related
endpoints” [16]. wsdl documents contain definitions at several levels of abstrac-
tion. “This allows the reuse of abstract definitions: messages, which are abstract

rdf_:hasElement*

NameSequence

BindingTemplateBag

rdf_:hasElement Instance* BindingTemplate

BindingTemplate

hastModelInstanceDetail Instance TModelInstanceDetailsBag

hasCategoryBag Instance CategoryBag

hasBindingKey String

hasAccessPoint Instance* AccessPoint

hasDescription String

hasBusinessService Instance BusinessService

rdf_:hasElement*

TModelInstanceDetailsBag

rdf_:hasElement Instance* TModelInstanceInfo

hastModelInstanceDetail

CategoryBag

rdf_:hasElement Instance* KeyedReference

hasCategoryBag

AccessPoint

hasAccessPoint*

BusinessService

hasServiceKey String

hasIdentifierBag Instance IdentifierBag

hasDescription String

hasCategoryBag Instance CategoryBag

hasBusinessEntity Instance BusinessEntity

hasBindingTemplate Instance* BindingTemplateBag

hasName Instance* NameSequence

hasBusinessService

DiscoveryURL

hasValue String*

hasUseType String*

TModelInstanceInfo

hastModel Instance TModel

hasDescription String

hasInstanceDetail Instance* InstanceDetails

rdf_:hasElement*

TModel

hastModelkey String

hasIdentifierBag Instance IdentifierBag

hasDescription String

hasDeleted String

hasCategoryBag Instance CategoryBag

hasOverviewDoc Instance* OverviewDoc

hasName Instance* NameSequence

hastModel

KeyedReference

hastModel Instance TModel

hasKeyName String

hasKeyValue String

rdf_:hasElement*

hastModel
IdentifierBag

rdf_:hasElement Instance* KeyedReference

rdf_:hasElement*

hasName*

hasCategoryBag

hasIdentifierBag

OverviewDoc

hasOverviewURL String*

hasDescription String

hasOverviewDoc*

DiscoveryURLBag

rdf_:hasElement Instance* DiscoveryURL

rdf_:hasElement*

Contact

hasPhone String*

hasAddress String*

hasEmail String*

hasPersonName String*

hasDescription String

ContactBag

rdf_:hasElement Instance* Contact

rdf_:hasElement*

hasName*

hasBindingTemplate*

hasCategoryBag

hasIdentifierBag

BusinessEntity

hasName Instance* NameSequence

hasdiscoveryURL Instance* DiscoveryURLBag

hasBusinessKey String

hasIdentifierBag Instance IdentifierBag

hasDescription String

hasContact Instance* ContactBag

hasBusinessService Instance BusinessServicesBag

hasCategoryBag Instance CategoryBag

hasBusinessEntity

hasName*hasCategoryBag hasIdentifierBag hasdiscoveryURL*

hasContact*

BusinessServicesBag

rdf_:hasElement Instance* BusinessService

hasBusinessService

Fig. 1. Partial uddi information model

descriptions of the data being exchanged, and port types which are abstract col-
lections of operations. The concrete protocol and data format specifications for
a particular port type constitutes a reusable binding. A port is defined by associ-
ating a network address with a reusable binding, and a collection of ports define
a service” [16] (emphasis ours).

uddi provides no data structures to represent either the abstract or concrete
details, but only a standard way to annotate that a BindingTemplate’s endpoint
does in fact implement a particular wsdl binding (and thus, a port type, a
set of operations, and input/output/fault messages). In the wsdl information
space, then, operations and messages are the key to anchor semantic annotations,
as exploited by daml-s and biomoby. It is precisely in these abstractions that
wsdl is describing processes (or at least the atomic processes) that might achieve
goals, and thus provides a bridge to service-as-process worldview. This is why the
core model of out integrative service directory combines both uddi and wsdl,
otherwise we could not store annotations for goal-directed processes as well as
physical endpoints.

wsdl:hasMessagePart*

wsdl:Binding

wsdl:hasPortType Instance wsdl:PortType

wsdl:hasQName Instance wsdl:QName

wsdl:hasBindingOperation Instance* wsdl:BindingOperation

wsdl:PortType

wsdl:hasQName Instance wsdl:QName

wsdl:hasOperation Instance* wsdl:Operation

wsdl:hasPortType

wsdl:Operation

wsdl:hasOperationStyle Symbol

ONE_WAY

REQUEST_RESPONSE

NOTIFICATION

...

wsdl:hasOutput Instance wsdl:Output

wsdl:hasQName Instance wsdl:QName

wsdl:hasInput Instance wsdl:Input

wsdl:hasFault Instance wsdl:FaultBag

wsdl:fipa:hasCommunicationActType String

wsdl:hasOperation*

WSDL-BindingTemplate

hasMetadata Instance WSDL- Metadata

WSDL-Metadata
uddi:hasValue Instance wsdl:Binding

hasMetadata

uddi:BindingTemplate

uddi:hastModelInstanceDetail Instance uddi:TModelInstanceDetailsBag

uddi:hasCategoryBag Instance uddi:CategoryBag

uddi:hasBusinessService Instance uddi:BusinessService

uddi:hasBindingKey String

uddi:hasAccessPoint Instance* uddi:AccessPoint

uddi:hasDescription String

isa

uddi:hasValue

wsdl:Output

wsdl:hasOutput

wsdl:Input

wsdl:hasInput

wsdl:Parameter

wsdl:hasName String

wsdl:hasMessage Instance wsdl:Message

isa

isa

wsdl:Message

wsdl:hasMessagePart Instance* wsdl:MessagePart

wsdl:hasQName Instance wsdl:QName

wsdl:hasMessage

SemanticType

hasOntology String

isa

Metadata

hasDate String

uddi:hasValue String*

hasAuthor String

isa

wsdl:MessagePart

wsdl:hasName String

wsdl:hasElementName Instance wsdl:QName

wsdl:hasTypeName Instance wsdl:QName

Fig. 2. Partial wsdl information model showing explicit link to uddi

3.2 DAML-S

daml-s attempts a full description of a service from the point of view that it
is some process that can be enacted to achieve a goal. A full daml-s service

description incorporates three component perspectives: an abstract description
of the service from the AI planning-based “inputs, outputs, preconditions, and
effects” view (the service profile); the workflow view of the more primitive ser-
vices needed to accomplish a complex goal (the service process); the mapping
of the atomic parts of this workflow to their concrete wsdl descriptions (the
service grounding). The service grounding component is mapped directly to the
wsdl document that we represent directly. With respect to the service process
component, we currently support only atomic processes that can be mapped to
wsdl operations. At its most complex, the daml-s process view may be nested
and include an explicit control model in order to monitor, alter, and possibly
terminate the execution of a non-atomic service. One might then go on to draw
parallels to Web Service process representations such as wsfl and bpel4ws [8,
3] and their associated standards, but this is beyond the scope of this paper.

Figure 3 shows our representation of the daml-s service profile component.
A daml-s service may be classified semantically by a ServiceCategory, and may
have input and output ParameterDescriptions that are annotated with semantic
daml class restrictions, while also being directly linked to wsdl MessageParts.
We attach an atomic daml-s service process representation as metadata to a
wsdl operation representing that atomic process, and also attach the approri-
ate daml-s ParameterDescriptions as metadata to the appropriate wsdl Mes-
sagePart. When registering a daml-s service using the daml-s interface (Sec-
tion 4), we create a simple uddi business service, with one Binding Template
expressing a simple Web Service whose only port type contains a single operation
with input and output messages containing the appropriate message parts.

3.3 Biomoby

biomoby [14] is a service discovery architecture based on a view of a service
as an atomic process or operation that takes a set of inputs and produces a
set of outputs. The service, inputs and outputs can all take semantic types;
inputs and outputs will also have syntactic types. So, for example, a service
provider may register a blast service to take (semantically) nucleotide sequences
(syntactically, simple strings) and perhaps (semantically) a blast e-value cutoff
(syntactically, a real number), and produce a set of matching sequences and e-
values. Essentially, what we have is a simple atomic daml-s service. The trick is
to attach the approriate semantic metadata so that one can recreate biomoby’s
service registration and find service apis. Figure 4 shows one way of doing this,
using a daml-s profile.

4 Multiple Service Directory Interfaces to a Triple Store

Based the information model described in Section 3, we have designed and im-
plemented a service directory that supports multiple interfaces, which we now
describe. Figure 5 and 6 depict excerpts of class and collaboration diagrams.
We see that a service directory implements a series of factory methods to create

uddi_mt:hasMetadata

wsdl:Parameter

wsdl:hasName String

wsdl:hasMessage Instance wsdl:Message

wsdl:Message

wsdl:hasQName Instance wsdl:QName

wsdl:hasMessagePart Instance wsdl:MessagePart

wsdl:hasMessage

wsdl:Input

isa

wsdl:Output

isa

wsdl:MessagePart

wsdl:hasName String

wsdl:hasElementName Instance wsdl:QName

wsdl:hasTypeName Instance wsdl:QName

wsdl:hasMessagePart

Service_daml:ServiceProfile

Service_daml:serviceCategory Instance Service_daml:ServiceCategory
Service_daml:presentedBy Instance Service_daml:Service

Service_daml:serviceName String

Service_daml:qualityRating Instance* Service_daml:QualityRating

Service_daml:textDescription String

...

Service_daml:ParameterDescription

Service_daml:restrictedTo Instance :THING

Service_daml:parameterName String

Service_daml:refersTo Instance :THING

Service_daml:effect*

Service_daml:precondition*

Service_daml:input*

Service_daml:output*

uddi_mt:Metadata

uddi:hasValue String*

uddi_mt:hasAuthor String

uddi_mt:hasDate String

uddi_mt:SemanticType

uddi_mt:hasOntology String

isa

DAML-S-MessagePart

uddi_mt:hasMetadata Instance DAML-S-ParameterDescriptionMetadata

isa

DAML-S-ServiceProfileMetadata
uddi:hasValue Instance Service_daml:ServiceProfile

uddi:hasValue

isa

DAML-S-ParameterDescriptionMetadata
uddi:hasValue Instance Service_daml:ParameterDescription

isauddi_mt:hasMetadata

uddi:hasValue

wsdl:Operation

wsdl:hasFault Instance wsdl:FaultBag

wsdl:fipa:hasCommunicationActType String

wsdl:hasInput Instance wsdl:Input

wsdl:hasOutput Instance wsdl:Output

wsdl:hasOperationStyle Symbol

ONE_WAY

REQUEST_RESPONSE

NOTIFICATION

...

...

wsdl:hasInput

wsdl:hasOutput

DAML-S-Operation

uddi_mt:hasMetadata Instance DAML-S-ServiceProfileMetadata

isa

Metadata from
WSDL Message Part

Metadata from
WSDL Operation

Fig. 3. Semantic descriptions of operations and parameters linked to daml-s profile

instances of interfaces to the triple store. The triple store is passed as argument
to the factory methods and is itself created by a store factory; different imple-
mentations of a store may exist, in memory or in a relational database [7]. We
currently support the following interfaces to the service directory.

The InquiryUDDI and PublishUDDI interfaces are full implementations of the
inquiry and publish interfaces of uddi version 2, which relies on the information
model defined by the ontology presented in Section 3.1.

The WSDL interface allows the registration of a wsdl file in the registry,
resulting in all its contents to be explicitly represented according to the ontology
of Section 3.1.

The PublishMetadata interface allows metadata to be attached to any entity
of the information model, whereas the InquiryMetadata allows the discovery
of such entitities according to metadata. These interfaces were designed in a
similar style to the uddi interface, so that uddi clients could easily be extended

Service_daml:restrictedTo

biomoby:Object

biomoby:hasObjectType Instance biomoby:ObjectType

biomoby:ObjectType

biomoby:hasAuthURI String

biomoby:hasXSD String

biomoby:hasdescription String

biomoby:hasAccessionNumber String

biomoby:hasObjectType

biomoby:OutputObject

isa

biomoby:InputObject

biomoby:hasNamespaceType Instance biomoby:NamespaceType

isa

Service_daml:ParameterDescription

Service_daml:restrictedTo Instance :THING

Service_daml:refersTo Instance :THING

Service_daml:parameterName String

BiomobyParameterDesciption

Service_daml:restrictedTo Instance biomoby:Object

isa

Service_daml:ServiceProfile

Service_daml:presentedBy Instance Service_daml:Service

Service_daml:textDescription String

Service_daml:qualityRating Instance* Service_daml:QualityRating

Service_daml:serviceParameter Instance* Service_daml:ServiceParameter

Service_daml:serviceName String

Service_daml:input Instance* Service_daml:ParameterDescription

Service_daml:precondition Instance* Service_daml:ParameterDescription

Service_daml:contactInformation Instance* Service_daml:Actor

Service_daml:output Instance* Service_daml:ParameterDescription

Service_daml:serviceCategory Instance Service_daml:ServiceCategory

Service_daml:effect Instance* Service_daml:ParameterDescription

Service_daml:input* Service_daml:precondition* Service_daml:output*

Service_daml:effect*

BiomobyServiceProfile

biomoby:hasAuthURI String

Service_daml:serviceCategory Instance biomoby:ServiceType

biomoby:hasAccessionNumber String

isa

biomoby:ServiceType

biomoby:hasdescription String

biomoby:hasAccessionNumber String

Service_daml:serviceCategory

Fig. 4. Attaching biomoby semantic information to a daml-s service profile

Service Directory

...

InquiryUDDI4J

+ find_service
..

InquiryMetadata

+ findServiceByMetadata
..

WSDL

+ addWSDLFile
+ removeWSDLFile
...

ModelMem

...

StoreFactory

+ makeBerkleyTripleStore
+ makeMemoryStore

Model

...

PublishUDDI4J

+ save_service
...

1.. ∗

ServiceDirectoryInterfaceFactory•

+ getInquiryInterface
+ getWSDLInterface
...

1..
∗

m
em

oryM
odel

1

1

1

1 1 1
product product product

product

store

Fig. 5. Class Diagram

to support such features. As an illustration, the following methods allow the
attachment of metadata to a uddi business service, identified by its key, and the
retrieving of a service according to metadata.

Metadata addMetadataToBusinessService (String serviceKey,

WSDLInstance: WSDLinquiryInstance: InquiryUDDI4J

:StoreFactory

memStore: ModelMem

aTester:

metadataInstance: InquiryMetadatapublishInstance: publishUDDI4J

factory: Service Directory

1.1 makeMemoryStore(): Model

1.1.1 create(): ModelMem

1. create(): Service Directory

2. getMetadataInquiryInterface ():

1.2 create(Model):InquiryUDDI4J 1.5 create(Model):WSDL

1.3 create(Model):PublishUDDI4J 1.4 create(Model):InquiryMetadata

InquiryMetadata

Fig. 6. Collaboration Diagram

Metadata metadata)

ServiceDetail findServiceByMetadata (Metadata metadata)

Metadata is particularly useful to attach semantic descriptions to message
parameters (as specified by wsdl files); therefore, we also provide methods for
both registring and querying such information for wsdl message parts.

Metadata addMetadataToMessagePart (String messageNamespace,

String messageName,

String partName,

Metadata metadata);

MetadataDetail getWSDLMessagePartMetadata (String messageNamespace,

String messageName,

String partName);

The Lease interface provides support for soft-state based registrations [5],
also known as leases in Jini [10], according to which services are registered for a
period of time, after which, in the absence of a lease renewal, registrations will
no longer be visible through the inquiry interface. It belongs to the management
policy (to be discussed in Section 5.2) to decide what action to take in such
circumstances.

There is some partial support for the daml-s ontology in the form of the
service profile, which describes the functionality the service offers, its semantic
inputs and outputs, and the service grounding , which provides a mapping to
wsdl message descriptions; we currently only focus on atomic processes. We
allow a service profile and grounding to be registered and to be discovered using
a Java api that we conceived for daml-s and now explain. For each class of the
daml-s ontology, a Java interface (and its implementation) is defined. In order
to register a service, the programmer needs to construct the corresponding Java
objects, and submit them using the api. (We are also defining a parser able to
construct such Java objects directly from complete daml-s files.) The querying
interface is similar, in the spirit of the uddi4j library for uddi: programmers

can construct partial service objects, i.e., with some field not defined, which
correspond to a query that it executed over the triple store.

The biomoby interface provides some functionality similar to biomoby cen-
tral: it allows a service and its semantic inputs and outputs to be registered,
and it allows services to be discovered according to their semantic inputs and
outputs.

Finally, we are also providing a more direct interface to the triple store,
allowing users to query the service directory using the rdql query language [7].
We are also finalising the api to allow users to store triples in the triple store: the
difficulty here is to ensure that a triples submissions do not corrupt the invariant
of the data model we have adopted.

We have defined a generic mechanisms that allows us to attach metadata to
resources related to service descriptions. As an illustration of this mechanism,
we show how it can be used to register services described according to the my-
Grid ontology [15]. In this context, services are given a profile specifying which
task they perform (perform task), which resources they use (uses resources),
what function they consist of (is function of), and what method they use
(uses method). We have defined a convenience function that expects values for
each of these relationships and asserts the corresponding triples in the triple
store. A relevant excerpt of a result triple store linearisation is displayed in Fig-
ure 7, with A8 an anonymous ode denoting a service and A3 the node denoting
the “myGrid profile”. Symmetrically, a convenience function for searching across
such attributes is also provided.

<rdf:RDF ...>
<rdf:Description rdf:nodeID=’A8’>

<rdf:type rdf:resource=’http://www.mygrid.ecs.soton.ac.uk/uddi.rdf#BusinessService’/>
<uddi:hasServiceKey>e88b9a57-04bd-481d-888b-dde169b9c48b</uddi:hasServiceKey>
<uddi:hasName rdf:nodeID=’A4’/>
<uddi:hasDescription>a test service</uddi:hasDescription>
<uddi:hasBindingTemplate rdf:nodeID=’A0’/>
<uddi:hasMetadata rdf:nodeID=’A3’/>

</rdf:Description>

<rdf:Description rdf:nodeID=’A3’>
<rdf:type rdf:resource=’http://www.mygrid.ecs.soton.ac.uk/mygrid.rdf#Profile’/>
<rdf:value rdf:resource=’http://www.mygrid.ecs.soton.ac.uk/mygrid.rdf#Pe88b9a57-04bd-481d-888b-dde169b9c48b’/>
<metadata:hasDate>Wed Apr 23 20:39:19 BST 2003</metadata:hasDate>
<metadata:hasAuthor>Luc Moreau</metadata:hasAuthor>

</rdf:Description>

<rdf:Description rdf:about=’http://www.mygrid.ecs.soton.ac.uk/mygrid.rdf#Pe88b9a57-04bd-481d-888b-dde169b9c48b’>
<mygrid:performs_task>retrieving</mygrid:performs_task>
<mygrid:uses_resources>SWISS-PROT</mygrid:uses_resources>
<mygrid:is_function_of>BLAST</mygrid:is_function_of>
<mygrid:uses_method>method</mygrid:uses_method>

</rdf:Description>
</rdf:RDF>

Fig. 7. Excerpt of an RDF Linearisation for a myGrid profile (Values must be more convincing!!)

All these interfaces have been specified and implemented in Java. The doc-
umentation of these interfaces, the ontolgies and an example an RDF linearisa-
tion of a triple store containing a complete service descriptions are available at:
http://www.mygrid.ecs.soton.ac.uk/service-directory/

5 Discussion

5.1 Extending Existing Interfaces with Semantic Discovery Support

In Section 4, we have presented all the interfaces that currently provide access
to our general information model. Some of them preserve compatibility with the
existing standards uddi, and ensure inter-operability within the Web Services
community. Others, such as the direct interface to the triple store, directly ex-
pose the information model, and offer a powerful and radically different way of
discovering services through the rdql interface. While such a functionality is
very useful, its radically different nature, does not offer a smooth transition for
clients implementors wishing to adopt semantic discovery.

The benefit of our approach is the ability to extend some existing interfaces
in an incremental manner, so as to facilitate an easier transition to semantic
discovery for existing clients. For instance, we have extended the find service
method of the uddi interface to support queries over metadata that would have
been attached to published services. In the method specification below, a new
criterion metadataBag for identifying services is accepted, containing a set of
metadata that a service must satisfy; all other method arguments remain iden-
tical to the uddi specification.

public ServiceList find_service (String businessKey,

Vector names,

CategoryBag categoryBag,

TModelBag tModelBag,

MetadataBag metadataBag, // NEW

FindQualifiers findQualifiers,

int maxRows);

5.2 Management policy

In the paper, we have mentioned the use of a policy to define how to manage the
service directory in some specific circumstances. While such ideas are still under
investigation, our design and implementation are intended to accomodate them.
Currently, we foresee the use of policies to support leases, explicit reasoning,
and configuration of the system in a distributed system. We now discuss these
specific points in turn.

One can imagine several ways of handling the expiry of a lease. A service that
has not been renewed could be removed from the directory, or could be made
invisible to queries, or even pro-actively contacted to ascertain its existence. Each
individual solution is plausible in some scenario, but can difficultly be imposed

as the only way of systematically handling such a situation. Our solution is to
rely on a policy that would specify how to react to a lease expiry event.

In our current implementation, we have hard-coded the fact that when a
daml-s atomic process is registered, we construct the necessary uddi entities,
such as a BusinessService with a ServiceKey, so that they can also be retrieved
from the uddi interface; symmetrically, when a uddi service is registered, we also
automatically construct a daml-s profile for all of its operations. Such decisions
need not be hard coded by the implementation of the service; instead, they can
be made explicit in the form of inference rules also specified in a management
policy.

Finally, we have identified different useful ways of deploying a service direc-
tory. First, it can be deployed as a standalone service, available to any client
according to its security policy, and presenting the set of interfaces required
by its deployer. Second, users could deploy it as a “proxy” to a publicly avail-
able service directory for which they do not have write access [9]; the proxy
would typically tunnel queries to an existing service directory, but would hold
any metadata information about registered services, and would therefore act as
a personalised service directory. Finally, the service could also federate entries
from multiple service directories. Such configurations, and many others, can only
be decided at deployment time according to the specific users’ needs. We believe
that they must be described in policy files which can be loaded at initialisation
time.

6 Conclusion and future work

In this paper, we have discussed an ontology that encompasses the informa-
tion models of several standards related to service discovery (uddi,wsdl) and
emerging techniques to semantically describe services (daml-s,biomoby). Such
an ontology facilitates the encoding of semantics-enriched service descriptions in
a triple store, and the triple store is made accessible through multiple interfaces
supporting the above standards. The ontology allows us to offer powerful and un-
paralleled querying capabilities through the rdql query language. The ontology
also allowed us to explore and relate the different notions of services underlying
the different approaches. Finally, we have designed extensions to the standard
interface uddi to provide semantic capabilities, hereby offering a smooth tran-
sition to semantic discovery for uddi clients.

In the short term, we want to support further interfaces including the Grid
MDS (Monitoring and Discovery Service), and the emerging jaxr offering an
information model for both ebxml and uddi. We also intend to rely on a ontology
for bioinformatics services [15] to describe domain-specific properties of services.
Currently, all our policies have been hard-coded and we want to look at specific
policy languages to support the management of our service directory.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

2. John Colgrave and Karsten Januszewski. Using wsdl in a uddi registry, version
1.08. http://www.oasis-open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-
using-wsdl-v108-20021110.htm, 2002.

3. Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,
Satish Thatte, and Sanjiva Weerawarana. Business process execution language for
web services. http://www.ibm.com/developerworks/library/ws-bpel/, 2002.

4. DAML-S Coalition:, A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic Web. In First International
Semantic Web Conference (ISWC) Proceedings, pages 348–363, 2002.

5. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiol-
ogy of the Grid — An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Argonne National Laboratory, 2002.

6. Java API for XML Registries (JAXR). http://java.sun.com/xml/jaxr/, 2002.
7. Jena semantic web toolkit. http://www.hpl.hp.com/semweb/jena.htm.
8. Frank Leyman. Web Services Flow Language (WSFL). Technical report, IBM,

May 2001.
9. Simon Miles, Juri Papay, Vijay Dialani, Michael Luck, Keith Decker, Terry Payne,

and Luc Moreau. Personalised grid service discovery. Technical report, University
of Southampton, 2003.

10. Scott Oaks and Henry Wong. Jini In a Nutshell. O’Reilly, 2000.
11. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Im-

porting the Semantic Web in UDDI. In Web Services, E-Business and Semantic
Web Workshop, 2002.

12. Resource Description Framework (RDF). http://www.w3.org/RDF/, 2001.
13. Universal Description, Discovery and Integration of Business of the Web.

www.uddi.org, 2001.
14. MD Wilkinson and M. Links. Biomoby: an open-source biological web services

proposal. Briefings In Bioinformatics, 4(3), 2002.
15. Chris Wroe, Robert Stevens, Carole Goble, Angus Roberts, and Mark Greenwood.

A suite of daml+oil ontologies to describe bioinformatics web services and data.
International Journal of Cooperative Information Systems, 2003.

16. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl, 2001.
17. XML Protocol Activity. http://www.w3.org/2000/xp, 2000.

