
Matchmaking: Distributed Resource Management for High Throughput
Computing

Rajesh Raman
Miron Livny

Marvin Solomon
University of Wisconsin
1210 West Dayton Street

Madison, WI 53703�
raman,miron,solomon � @cs.wisc.edu

Abstract

Conventional resource management systems use a sys-
tem model to describe resources and a centralized sched-
uler to control their allocation. We argue that this paradigm
does not adapt well to distributed systems, particularly
those built to support high-throughput computing. Obsta-
cles include heterogeneity of resources, which make uniform
allocation algorithms difficult to formulate, and distributed
ownership, leading to widely varying allocation policies.

Faced with these problems, we developed and imple-
mented the classified advertisement (classad) matchmak-
ing framework, a flexible and general approach to resource
management in distributed environment with decentralized
ownership of resources. Novel aspects of the framework in-
clude a semi-structured data model that combines schema,
data, and query in a simple but powerful specification lan-
guage, and a clean separation of the matching and claiming
phases of resource allocation. The representation and pro-
tocols result in a robust, scalable and flexible framework
that can evolve with changing resources.

The framework was designed to solve real problems en-
countered in the deployment of Condor, a high throughput
computing system developed at the University of Wiscon-
sin—Madison. Condor is heavily used by scientists at nu-
merous sites around the world. It derives much of its ro-
bustness and efficiency from the matchmaking architecture.

1. Introduction

A principal consideration of resource management sys-
tems is the efficient assignment of resources to customers.
The problem of making such efficient assignments is re-

ferred to as the resource allocation or scheduling problem,
and it is commonly formulated in the context of a schedul-
ing model that includes a system model, which is an abstrac-
tion of the underlying resources. The system model pro-
vides information to the allocator regarding the availability
and properties of resources at any point in time. The allo-
cator uses this information to allocate resources to tasks so
as to optimize a stated performance metric. This paradigm
is useful for high performance applications, which have
tight constraints. Efficient scheduling of resources is crit-
ical in meeting these constraints. However, an increasing
number of organizations now have environments that are
not amenable to this resource management paradigm; their
customers are interested in throughput and their computing
resources are distributively owned.

In a distributively owned environment, the owner of a re-
source has the right to define its usage policy, which may be
very sophisticated. For example, the policy may state that a
job can run on a workstation only if the it belongs to a par-
ticular research group, or if it is run between 6 p.m. and 6
a.m., or if the keyboard hasn’t been touched for over fifteen
minutes and the load average is less than 0.1. Distributed
ownership makes it impossible to formulate a monolithic
system model . There is therefore a need for a resource man-
agement paradigm that does not require such a model and
that can operate in an environment where resource owners
and customers dynamically define their own models. The
Matchmaking resource management paradigm presented in
this paper was designed to address this need.

Matchmaking uses a semi-structured data model—the
classified advertisements data model—to represent the prin-
cipals of the system and folds the query language into the
data model, allowing entities to publish queries (i.e., re-
quirements) as attributes. The paradigm also distinguishes
between matching and claiming as two distinct operations

in resource management: A match is an introduction be-
tween two compatible entities, whereas a claim is the es-
tablishment of a working relationship between the entities.
This distinction has several benefits, which will be dis-
cussed in Section 3.

We found the matchmaking paradigm to work extremely
well in an environment where a large number of dissim-
ilar resources (such as workstations, tape drives, network
links, application instances, and software licenses) transit
between available and unavailable states without advance
notice and where resources may be available to some en-
tities, and unavailable to others. Such an environment has
to employ opportunistic scheduling: Resources are used as
soon as they become available and applications are migrated
when resources need to be preempted. The applications that
most benefit from opportunistic scheduling are those that
require high throughput rather than high performance. Tra-
ditional high-performance applications measure their per-
formance in instantaneous metrics like floating point opera-
tions per second, while high throughput applications usually
use such application-specific metrics as weather simulations
per week or crystal configurations per year. In other words,
rather than MIPS (millions of instructions per second), the
performance of high-throughput applications might mea-
sured in TIPYs (trillions of instructions per year).

The rest of this paper is structured as follows. Section 2
describes related work, and Section 3 describes the pro-
posed matchmaking framework. In Section 4, we describe
how the framework has been used in the Condor system.
We conclude with a summary of our results and an outline
of our plans for continuing research in Section 5.

2 Related Work

Although details of current distributed resource manage-
ment systems vary dramatically, there are aspects that they
share. Instead of providing a survey of a large number
of systems, we briefly discuss the basic matching mecha-
nisms of some resource management environments to high-
light the differences between conventional resource alloca-
tion and matchmaking.

Systems such as NQE [13], PBS [6], LSF [15] and Load-
Leveler [1] process user submitted jobs by finding resources
that have been identified either explicitly through a job con-
trol language, or implicitly by submitting the job to a par-
ticular queue that is associated with a set of resources. Cus-
tomers of the system have to identify a specific queue to
submit to a priori, which then fixes the set of resources that
may be used, and hinders dynamic qualitative resource dis-
covery. Furthermore, system administrators have to antici-
pate the services that will be requested by customers and set
up queues to provide these services. Over time, the system
may accumulate a large number of queues whose service se-

mantics differ to various extents, complicating the process
of finding the appropriate queue for a job.

Globus [4, 2] defines an architecture for resource man-
agement of autonomous distributed systems with provisions
for policy extensibility and co-allocation. Customers de-
scribe required resources through a resource specification
language (RSL) that is based on a pre defined schema of
the resources database. The task of mapping specifications
to actual resources is performed by a resource co-allocator,
which is responsible for coordinating the allocation and
management of resources at multiple sites. The RSL allows
customers to provide very sophisticated resource require-
ments, but no analogous mechanism for resources exists.

Legion [5] takes an object-oriented approach to resource
management, formulating the matching problem as an ob-
ject placement problem [7]. The identification of a can-
didate resource is performed by an object mapper, whose
recommendation is then implemented by a different object.
The Legion system defines a notation [7] that is similar
to classads, although it uses an object-oriented type sys-
tem with inheritance to define resources [8], as contrasted
with the simple attribute-oriented Boolean logic of class-
ads. Legion supports autonomy with a jurisdiction magis-
trate (JM), which may reject requests if the offered requests
do not match the policy of the site being managed by the
JM. While the JM gives a resource veto power, there is no
way for a resource to describe requests that haven’t been
offered that it would rather serve.

3 The Matchmaking Framework

The basic idea of matchmaking is simple: Entities which
provide or require a service advertise their characteristics
and requirements in classified advertisements (classads).
A designated matchmaking service (matchmaker) matches
classads in a manner that satisfies the constraints specified
in the respective advertisements and informs the relevant
entities of the match. The responsibility of the matchmaker
then ceases with respect to the match. The matched entities
establish contact, possibly negotiate further terms, and then
cooperate to perform the desired service.

The matchmaking framework may be decomposed into
five components:

1. the classad specification, which defines a language
for expressing characteristics and constraints, and a
semantics of evaluating these attributes,

2. the advertising protocol, which defines basic conven-
tions regarding what a matchmaker expects to find in
a classad if the ad is to be included in the matchmak-
ing process, and how the matchmaker expects to re-
ceive the ad from the advertiser,

3. the matchmaking algorithm, which defines how the
contents of ads and the state of system relate to the
outcome of the matchmaking process,

4. the matchmaking protocol, which defines how
matched entities are notified and what information
they are given in case of a match, and

5. the claiming protocol, which defines what actions the
matched entities take to enable discharge of service.

There are two noteworthy aspects of this approach that
distinguish it from conventional resource allocation models.

� Conventional resource management systems only al-
low customers to impose constraints on the type of
services they require. Our mechanism also allows
service providers to express constraints on the cus-
tomers they are willing to serve.

� The semantics of a matchmaker identifying a match
between entities A and B is not “allocating A to B.”
Rather, a match results in a mutual introduction of
the two entities, who may activate a separate claim-
ing protocol, not involving the matchmaker, to com-
plete the allocation. Either entity may choose to not
proceed further and reject the introduction altogether.
Thus, a match is to be construed as a “hint.” A bene-
ficial consequence of this approach is that the match-
maker is a stateless service, which simplifies recovery
in case of failure.

We discuss important aspects of the paradigm in further
detail below.

3.1 Classified Advertisements

A classad is a highly flexible and extensible data model
that can be used to represent arbitrary services and con-
straints on their allocation. The model has several novel
aspects.

� Classads use a semi-structured data model [11], so
no specific schema is required by the matchmaker,
allowing the matchmaker to work naturally in a het-
erogeneous environment.

� The classad language folds the query language into
the data model. Constraints (i.e., queries) may be ex-
pressed as attributes of the classad.

� Classads are first-class objects in the model. They can
be arbitrarily nested, leading to a natural language
for expressing resource aggregates or co-allocation
requests.

[
Type = "Machine";
Activity = "Idle";
DayTime = 36107 // current time
// in seconds since midnight

KeyboardIdle = 1432; // seconds
Disk = 323496; // kbytes
Memory = 64; // megabytes
State = "Unclaimed";
LoadAvg = 0.042969;
Mips = 104;
Arch = "INTEL";
OpSys = "SOLARIS251";
KFlops = 21893;
Name = "leonardo.cs.wisc.edu";
ResearchGroup = { "raman", "miron",

"solomon", "jbasney" };
Friends = { "tannenba", "wright" };
Untrusted = { "rival", "riffraff" };
Rank =
member(other.Owner, ResearchGroup) * 10
+ member(other.Owner, Friends);

Constraint =
!member(other.Owner, Untrusted)
&& Rank >= 10

? true
: Rank > 0

? LoadAvg<0.3 && KeyboardIdle>15*60
: DayTime < 8*60*60

|| DayTime > 18*60*60;
]

Figure 1. A classad describing a workstation

A classad is a mapping from attribute names to
expressions. � For example, Figure 1 shows a classad that
describes a workstation in a Condor [10, 3] pool at the Uni-
versity of Wisconsin, � and Figure 2 shows a classad that
describes a job submitted for execution.

Attributes may be simple integer, real, or string con-
stants, or they may be more complicated expressions con-
structed with arithmetic and logical operators and record
and list constructors. Expressions can also refer to other
attributes, as in “Rank >= 10.” Expressions and attribute
references are discussed in greater detail below.

�
Similar structures have been called records, dictionaries, and frames

in other contexts.�
Examples in this paper are adapted from actual ads in use in a work-

ing Condor installation. They have been edited slightly for clarity and to
illustrate features of the classad mechanism.

[
Type = "Job";
QDate = 886799469;

// Submit time secs. past 1/1/1970
CompletionDate = 0;
Owner = "raman";
Cmd = "run_sim";
WantRemoteSyscalls = 1;
WantCheckpoint = 1;
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
Memory = 31;
Rank =

KFlops/1E3 + other.Memory/32;
Constraint =

other.Type == "Machine"
&& Arch == "INTEL"
&& OpSys == "SOLARIS251"
&& Disk >= 10000
&& other.Memory >= self.Memory;

]

Figure 2. A classad describing a submitted
job

3.2 Matching and Claiming

We now describe the specific actions taken by entities
which require matchmaking services. Providers and cus-
tomers construct classads describing themselves and send
them to the Matchmaker (Step 1 in Figure 3). These class-
ads must be constructed to conform to the advertising proto-
col specified by the matchmaker, which attaches a meaning
to some attributes. For example, the advertising protocol
may specify that the attribute Constraint indicates com-
patibility and the attribute Rank measures the desirability
of a match (see Figures 1 and 2). The advertising proto-
col also specifies how the entities send the classads to the
matchmaker.

The matchmaker then invokes a matchmaking algorithm
by which matches are identified (Step 2). To perform the
match, the matchmaker evaluates expressions in an envi-
ronment that allows each classad to access attributes of the
other: An attribute reference of the form “self.attribute-
name” refers to another attribute of classad containing the
reference, while “other.attribute-name” refers to an attri-
bute of the other ad. If neither self nor other is men-
tioned explicitly, the evaluation mechanism assumes the
self prefix. For example, in the Constraint of the job
ad in Figure 2, the sub-expression “other.Memory >=
self.Memory” expresses the requirement that the server
advertise an amount of Memory sufficient to meet the mem-

ory needs of this job (the expression could also have been
written “other.Memory >= Memory”).

The classads in Figures 1 and 2 assume a matchmaking
algorithm that considers a pair of ads to be incompatible un-
less their Constraint expressions both evaluate to true.
The Rank attributes is then used to choose among compat-
ible matches: Among provider ads matching a given cus-
tomer ad, the matchmaker chooses the one with the highest
Rank value (non-integer values are treated as zero), break-
ing ties according to the provider’s Rank value.

A reference to a non-existent attribute evaluates to the
constant undefined. Most operators are “strict” with re-
spect to this value—if either operand is undefined, the re-
sult is undefined. In particular, comparison operators are
strict, so that

other.Memory > 32,
other.Memory == 32,
other.Memory != 32,

and

!(other.Memory == 32)}

all evaluate to undefined if the target classad has no
Memory attribute. The Boolean operators || and && are
non-strict on both arguments, so that

Mips >= 10 || Kflops >= 1000

evaluates to true whenever either of the attributes Mips or
Kflops exists and satisfies the indicated bound. There are
also non-strict operators is and isnt, which always return
Boolean results (not undefined), allowing explicit compar-
isons to the constant undefined as in

other.Memory is undefined
|| other.Memory < 32.

The matchmaking algorithm effectively treats undefined as
false—the match fails if the Constraint evaluates to un-
defined—but the three-valued logic used in Boolean ex-
pressions supports natural expression of constraints on ob-
jects whose types are only partially known a priori.

(1) AdvertisementAdvertisement (1)

Matchmaker
Match Algorithm (2)

Entity
(Provider)

Entity
(Requestor)Claiming (4)

(3)
Match

(3)

Notification Notification
Match

Figure 3. Actions involved in the Matchmak-
ing process

After the matching phase, the matchmaker invokes a
matchmaking protocol to notify the two parties that were
matched (Step 3) and sends them the matching ads. The
matchmaking protocol could also include the generation
and hand-off of a session key for authentication and security
purposes. The customer then contacts the server directly,
using a claiming protocol to establish a working relation-
ship with the provider (Step 4). It is important to note that
identifying a match and invoking the matchmaking protocol
does not immediately grant service to a customer. Rather,
the match is a mutual introduction to the advertising enti-
ties.

The separation of matching and claiming has several
beneficial properties.

Weak consistency requirements. Since the state of ser-
vice providers and requesters may be continuously
changing, there is a possibility that the matchmaker
made a match with a stale advertisement. Claiming
allows the provider and customer to verify their con-
straints with respect to their current state. This tolera-
tion of weak consistency makes the remainder of the
system significantly simpler, more robust, and more
efficient.

Authentication. The claiming protocol may use crypto-
graphic techniques for the provider and customer to
convince each other of their identities. A challenge-
response handshake can be added to the claiming pro-
tocol at very little cost.

Bilateral specialization. In dynamic heterogeneous envi-
ronments, it is not possible to write a matchmaker
that is aware of the specifics of allocating all the dif-
ferent kinds of resources that may be added to the
environment. Indeed, the myriad kinds of resources
already present in the environment may itself present
the problem of packing all the resource specific allo-
cation code in the matchmaker.

By pushing the establishment of allocation to the
claiming stage, the details of allocation are contained
in the entities which really need to interact with spe-
cific kinds of providers and customers. The match-
maker may be written as a general service which does
not depend on the kinds of services and resources that
are being matched.

The concept of bilateral specification implies that
since the system does not assume a single monolithic
or static allocation model, the allocation models are
supplied by the entities involved in providing and us-
ing services. The matchmaking framework thus al-
lows several dissimilar “allocation models” to coexist
in the same resource management environment.

End-to-end verification [14]. The principals involved in a
match are themselves responsible for establishing,
maintaining and servicing a match. The matchmaker
does not need to retain any state about the match,
a fact that simplifies recovery in case of failure and
makes the system more scalable.

4 An Example of Matchmaking at Work:
Condor

Condor [9, 10] is an high throughput computing (HTC)
environment that can manage very large heterogeneous col-
lections of distributively owned resources. The architecture
of the system is structured to provide sophisticated resource
management services at the resource, customer and applica-
tion levels to both sequential and parallel applications [12].
This section briefly describes aspects of the Condor system
that are relevant to the problem of matchmaking. �

Resources in the Condor system are represented by
Resource-owner Agents (RAs), which are responsible for
enforcing the policies stipulated by resource owners. An
RA periodically probes the resource to determine its cur-
rent state, and encapsulates this information in a classad
along with the owner’s usage policy. Figure 1 is an ex-
ample of a classad that encapsulates a fairly sophisticated
owner policy, demonstrating the flexibility of the mecha-
nism. The Constraint attribute indicates that the work-
station is never willing to run applications submitted by
users “rival” and “riffraff,” it is always willing to run the
jobs of members of the research group, friends may use the
resource only if the workstation is idle (as determined by
keyboard activity and load average), and others may only
use the workstation at night. The Rank expression states
that research jobs have higher priority than friends’ jobs,
which in turn have higher priority than other jobs.

Customers of Condor are represented by Customer
Agents (CAs), which maintain per-customer queues of sub-
mitted jobs, represented as lists of classads. RAs and CAs
periodically send classads to a Condor pool manager, de-
scribing the resources and job queues respectively. The re-
source classads and the request classads conform to an ad-
vertising protocol that states that every classad should in-
clude expressions named Constraint and Rank, as dis-
cussed previously. The protocol also requires the advertis-
ing parties to include “contact addresses” with their ads, and
allows an RA to include an “authorization ticket” with its
ad.

Periodically, the pool manager enters a negotiation cycle.
This phase invokes the matchmaking algorithm, which de-
termines which CAs require matchmaking services, obtains

�
More information about the project and the system may be found at

http://www.cs.wisc.edu/condor/.

requests from these CAs, and matches them with compati-
ble RA ads. Since the notion of “compatible” is completely
determined by Constraint expressions, classads may be
matched in a general manner. In addition, Rank expres-
sions are used as goodness metrics to identify the more de-
sirable among the compatible matches. The matchmaking
algorithm also uses past resource usage information to en-
force a fair matching policy.

When the pool manager determines that two classads
match, it invokes the matchmaking protocol to contact the
matched principals at the contact addresses specified in their
classads and send them each other’s classads. The manager
also gives the CA the authorization ticket supplied by the
RA.

The CA then performs the claiming protocol by contact-
ing the RA and sending the authorization ticket. The RA
accepts the resource request only if the ticket matches the
one that it gave the pool manager, and the request matches
the RA’s constraints with respect to the updated state of the
request and resource, which may have changed since the
last advertisement. If the request is accepted, the worksta-
tion runs the customer’s job. When the CA finishes using
the resource, it relinquishes the claim, and the RA adver-
tises itself as unclaimed. The RA may also send an ad when
it starts running the job, indicating that although the work-
station is currently busy, it is still interested in hearing from
higher priority customers. The specification of what con-
stitutes “higher priority” is completely under the control of
the RA.

Classads are used for other purposes in Condor as well.
All entities are represented with classads, as are queries sub-
mitted by various administrative and user tools. “One-way
matching” protocols are used to find all objects matching a
given pattern. For example, there are tools to check on the
status of job queues and browse existing resources.

5 Conclusions and Future Research

The classad matchmaking framework is a flexible and
general method of resource management in pools of re-
sources which exhibit physical and ownership distribution.
Novel aspects of the framework include a semi-structured
data model to represent entities, folding the query language
into the data model, and a clean separation of the matching
and claiming phases of resource allocation. The representa-
tion and protocols facilitate both static and dynamic hetero-
geneity of resources, which results in a robust, scalable and
flexible framework that can evolve with changing resources.

The framework has been developed in response to real
problems that have been encountered in the design, devel-
opment and deployment of Condor, a high throughput com-
puting system developed at the University of Wisconsin–
Madison, which finds constant use by scientists at the uni-

versity and around the world. The success of the framework
in a real system demonstrates the validity of our approach.

Although the classad mechanism has no intrinsic no-
tion of a schema, lists of classads representing resources
and customers exhibit a high degree of regularity, which
is manifest in two ways: structural regularity and value
regularity. The former occurs when entities tend to pub-
lish attributes with the same names, and the latter occurs
when groups of entities publish attributes with similar val-
ues. We are currently investigating techniques for exploit-
ing this regularity, and automatically aggregating classads
so that matches may be performed in groups. Group match-
ing may be used to both boost matchmaking throughput and
service co-allocation requests.

The complexity of constraints imposed by resources and
customers may hinder the diagnostic capability of admin-
istrators and customers who may wonder why certain re-
quests are unable to find resources with particular character-
istics. To alleviate this problem, we are researching meth-
ods for identifying constraints which can never be satisfied
by the pool. In addition to diagnostic utilities, this tool may
help discovering hidden characteristics of a pool.

References

[1] I. B. M. Corporation. IBM Load Leveler: User’s Guide,
Sept. 1993.

[2] K. Czajkowski, I. Foster, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A Resource Management Ar-
chitecture for Metacomputing Systems. Available from
ftp://ftp.globus.org/pub/globus/papers
/gram.ps.Z.

[3] D. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne. A Worldwide Flock of Condors : Load Sharing
among Workstation Clusters. Journal on Future Genera-
tions of Computer Systems, 12, 1996.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. To appear in International Journal of
Supercomputer Applications.

[5] A. S. Grimsaw and W. A. Wulf. Legion—A View from
50,000 Feet. In Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing,
Aug. 1996.

[6] R. Henderson and D. Tweten. Portable Batch System: Exter-
nal reference specification. Technical report, NASA, Ames
Research Center, 1996.

[7] J. F. Karpovich. Support for Object Placement in Heterge-
nous Distributed Systems. Technical Report CS-96-03, Uni-
versity of Virginia, Jan. 1996.

[8] M. J. Lewis and A. Grimshaw. The Core Legion Object
Model. In Proc. of the Fifth IEEE Int’l Symposium on High
Performance Distributed Computing, Aug. 1996.

[9] M. J. Litzkow and M. Livny. Experience with the Condor
Distributed Batch System. IEEE Workshop on Experimental
Distributed Systems, 1990.

[10] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—A
Hunter of Idle Workstations. In Proc. of the 8th Int’l Conf.
on Distributed Computing Systems, pages 104–111, 1988.

[11] S. Nestorov, S. Abiteboul, and R. Motwani. Inferring Struc-
ture in Semistructured Data. In Proceedings of the Workshop
on Management of Semistructured Data, Tucson, Arizona,
May 1997.

[12] J. Pruyne and M. Livny. Interfacing Condor and PVM to
harness the cycles of workstation clusters. Journal on Future
Generations of Computer Systems, 12, 1996.

[13] C. Research. Document number in-2153 2/97. Technical
report, Cray Research, 1997.

[14] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Ar-
guments in System Design. ACM Transactions on Computer
Systems, 2(4):277–288, Aug. 1984.

[15] S. Zhou. LSF: Load sharing in large-scale heterogenous dis-
tributed systems. In Proc. Workshop on Cluster Computing,
1992.

