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ABSTRACT
We examine whether and how the Multiagent Plan Coordination
Problem, the problem of resolving interactions between the plans of
multiple agents, can be cast as a Distributed Constraint Optimiza-
tion Problem (DCOP). We use ADOPT, a state-of-the-art DCOP
solver that can solve DCOPs in an asynchronous, parallel man-
ner using local communication between individual computational
agents. We then demonstrate how we can take advantage of novel
flaw-assignment strategies and plan coordination algorithms to sig-
nificantly improve the performance of ADOPT on representative
coordination problems. We close with a consideration of possible
advances in framing our DCOP representation of the Multiagent
Plan Coordination Problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Coordination of multiple agents, Multiagent planning and merging,
Distributed constraint optimization

1. INTRODUCTION
The Multiagent Plan Coordination Problem (MPCP) arises when-

ever multiple agents plan to achieve their individual goals indepen-
dently, but might mutually benefit by coordinating their plans to
avoid working at cross purposes or duplicating effort. Our work [6]
has explored a coordination algorithm that would systematically re-
solve flaws in multiagent plans. Although there was nothing inher-
ent in this work that required the algorithm to be run centrally, we
did not specify any protocol to allow agents to solve the problem in
a decentralized manner.
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Since the MPCP is fundamentally a multiagent problem, it is nat-
ural to think about ways of utilizing multiple agents to help to solve
the coordination problem together, rather than arbitrarily relying on
a single agent to carry out the task alone. The problem of how mul-
tiple agents solve a MPCP in a decentralized manner can be seen
as a type of Distributed Constraint Optimization Problem (DCOP).
Our work in this paper thus maps the decentralized MPCP into a
DCOP, where coordination flaws (such as conflicts or redundan-
cies between agents’ actions) are treated as variables, where flaw
repairs are the possible values that the variables can take on, and
where temporal and causal relationships between actions impose
constraints on legal flaw repair combinations.

By casting our decentralized MPCP as an instance of a DCOP,
we can exploit the large body of work that has been going into de-
veloping fast and powerful techniques for solving DCOPs. Specifi-
cally, in this paper we make use of ADOPT, a distributed constraint
optimization framework developed by Modi, Shin et. al. [11].
We show how many of the features of ADOPT can be gainfully
employed for solving decentralized multiagent plan coordination
problems. We also show how to extend the ADOPT framework to
take advantage of problem structure to improve its performance on
representative MPCPs.

The contributions of this paper are therefore threefold. First,
we examine the degree to which the multiagent plan coordination
problem can be solved in a decentralized manner by modeling the
problem in the well-characterized DCOP framework. Second, we
present a case study in applying domain-independent tools for solv-
ing DCOPs (in this case, ADOPT) to a specific multiagent problem.
Third, we introduce a new strategy for solving the decentralized
multiagent plan coordination problem within the DCOP framework
through an innovative blending of general-purpose DCOP tech-
niques (such as exploiting problem locality) and our (problem-specific)
plan-coordination algorithms.

The remainder of this paper is structured as follows. In Section 2,
we describe our formalization of the Multiagent Plan Coordination
Problem (MPCP), and characterize our plan-space search algorithm
designed to solve the MPCP. In Section 3, we show how the MPCP
can be cast as a Constraint Optimization Problem (COP). In Section
4, we illustrate how we can take our COP formulation of the MPCP
and (with some appropriate modifications) use ADOPT, a state-of-
the-art DCOP framework, to solve the MPCP. In Sections 5 and
6, we explore and evaluate locality-based flaw-resolution strategies
and ADOPT’s own bounded-error approximation technique, both
which significantly improve ADOPT’s performance on solving the
MPCP. Finally, in Section 7 we present our conclusions and future
work.
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2. BACKGROUND
In this section, we review the plan and plan problem formalisms

used in our work, as well as our multiagent plan coordination algo-
rithm. The concepts described in this section are essentially iden-
tical to those described in [6] (and are themselves derivatives of
those described in [3, 13, 1]), but we summarize them here (though
in less detail) for the sake of making this paper self-contained.

2.1 Planning Concepts and Problems
A standard definition of a grounded partial-order, causal-link

(POCL) definition of a plan [13] is as follows:

DEFINITION 2.1. A POCL plan is a tuple P = 〈O,S,≺T ,≺C〉

where O is a set of plan operators, S is a set of plan steps (in-
stantiated operators), ≺T and ≺C are (respectively) the temporal
and causal partial orders on S, where e ∈≺T is a tuple 〈si,s j〉 with
si,s j ∈ S, and where e ∈≺C is a tuple 〈si,s j,c〉 with si,s j ∈ S and
c ∈ Σ. A POCL plan has an init step, init ∈ S, and one or more goal
steps, goali ∈ S where the preconditions of the goal steps represent
the conjunctive goal that the plan achieves, and the postconditions
of the init step represent features of the initial state.

Elements of S are instances of elements in O, and there may be
multiple unique instances of a single operator from O in S. We will
use op(s) to refer to the operator that step s was instantiated from.
Elements of ≺T are commonly called ordering constraints on the
steps in the plan, and elements of ≺C are commonly called causal
links, the latter representing causal relations between steps, where
causal link 〈si,s j,c〉 represents the fact that step si achieves condi-
tion c for step s j . Temporal orderings are transitive and required to
be irreflexive (so there are no cycles in the plan).

The planning problem is the problem of transforming an incon-
sistent plan into a consistent plan. A plan is inconsistent when it
has plan flaws. In the single-agent planning problem, a plan flaw is
either a causal link threat flaw or an open condition flaw.

DEFINITION 2.2. A causal-link threat flaw in a POCL plan ex-
ists when there is some step sk and some causal link e ∈≺C of form
〈si,s j,c〉, s.t. not(c) ∈ post(sk), 〈sk,si〉 /∈≺T and 〈s j,sk〉 /∈≺T .

Given a threat between a step sk and a causal link 〈si,s j,c〉, stan-
dard plan-space methodologies add either 〈sk,si〉 or 〈s j,sk〉 to ≺T .

In addition to causal-link threat flaws, other causes of plan in-
consistency include open precondition flaws.

DEFINITION 2.3. An open precondition flaw exists when there
is some step s j with precondition c but there is no causal link
〈si,s j,c〉 ∈≺C.

An open precondition c of a step s j can be satisfied by adding
a causal link 〈si,s j,c〉 where c ∈ post(si) and either si ∈ S and
〈s j,si〉 /∈≺t (si is already in the plan and not ordered after s j), or
op(si) ∈ O (si can be instantiated from the operator set of the plan).

A plan may be consistent (meaning it has no flaws) but still may
not be optimal. Although there are many ways of defining plan
optimality, a standard measure of optimality adopted in the plan-
ning community is the number of steps in the plan (where fewer is
better), and we will adopt it here too.

2.2 Multiagent Plan Coordination
Although there has been a significant amount of work done on

the single-agent planning problem, less attention has been paid
to the problem of formulating plans for multiple agents to carry
out. Because of the inherent complexity of the multiagent planning

problem, many researchers [8, 4, 12, 5] have explored a divide-and-
conquer approach to multiagent planning, in which agents individ-
ually plan for themselves, and then coordinate with each other by
adjusting their plans given the presence of the other agents. This
divide-and-conquer approach is a compelling one to adopt for the
multiagent planning problem, as long as the process of coordinat-
ing the independently-formed plans of the agents can be done in
an efficient manner, potentially exploiting the computational paral-
lelism possible because multiple agents can work on the coordina-
tion problem simultaneously.

The multiagent plan coordination problem can be seen as the
problem, given a set of agents A and the set of their associated
POCL plans P, of determining if there is some subset of plan steps
from the plans of the agents that can form a consistent multiagent
parallel plan that results in the establishment of all agents’ goals,
given the initial state of the agents (recall that the POCL represen-
tation represents the agent’s initial and goal states as steps in the
plan).

Just as the single-agent planning problem can be seen as the
problem of transforming an inconsistent plan into a consistent plan,
so can the Multiagent Plan Coordination Problem. Before giving
a formalization of plan flaws in the multiagent plan coordination
problem, we first describe how the POCL plan model is extended
to handle the concurrency that can arise in multiagent planning and
execution. Specifically, the operator model is augmented with in-
conditions (or “during” conditions) [4], which describe the state
of the world that holds during the execution of a plan step (this
augmentation also relaxes the assumption that actions are instanta-
neous). Operators (and thus steps) are described by their precondi-
tions, inconditions (in(si)), and postconditions. With this extended
action model, a multiagent POCL plan can be described as follows:

DEFINITION 2.4. A multiagent parallel POCL plan is a tuple
P = 〈A,O,S,≺T ,≺C,#,=,X〉 where 〈O,S,≺T ,≺C〉 is the embed-
ded POCL plan, A is the set of agents, X is a set of tuples of form
〈s,a〉, representing that the agent a ∈ A is assigned to executing
step s1, = is the symmetric concurrency relation over the steps in
S, and # is a symmetric non-concurrency relation over the steps in
S.

The relation 〈si,s j〉 ∈ # is the same as the statement
(〈s j,si〉 ∈≺T )∨ (〈si,s j〉 ∈≺T ). The relation 〈si,s j〉 ∈= means that
si and s j are required to be executed simultaneously. For example,
if a plan has multiple goal steps and is intended to reach a state
where all goals are satisfied simultaneously, then all pairs of goals
steps would be elements of =.

One new source of inconsistency in multiagent plans is a parallel
step threat flaw:

DEFINITION 2.5. A parallel step threat flaw exists in a mul-
tiagent parallel plan when there are steps belonging to different
agents2 s j and si where post(si) or in(si) is inconsistent with post(s j)
or in(s j), 〈s j,si〉 /∈≺T , 〈si,s j〉 /∈≺T and 〈si,s j〉 /∈ #.

This definition is based on the post-exclusion principle [1], stat-
ing that actions cannot take place simultaneously when their post-
conditions are not consistent. Parallel step threat flaws can always
be resolved no matter what other flaw resolution choices are made,

1Although this element raises the possibility of step reassignment,
in this paper we do not consider reassigning actions among agents.
2We assume that a single agent cannot execute actions in parallel.
Obviously, if this restriction is relaxed we can also consider parallel
step threats between steps of the same agent.
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and thus these flaws do not have to be considered using backtrack-
ing search for valid flaw resolutions. Thus, parallel step conflicts
between two steps si and s j can be resolved by adding 〈si,s j〉 to #,
leaving the enforcement of this constraint either to a simple post-
processing step or to the plan execution platform.

The MPCP has other flaws that are not so easy to resolve. Since
the individual plans of the agents are complete, there are no open
condition flaws. However, causal link threat flaws are still present,
as well as possible inter-agent plan step merge flaws.

DEFINITION 2.6. A plan step merge flaw exists in a (poten-
tially inconsistent) multiagent plan P when there exists in P two
steps, si and sk and, for each causal link e ∈≺C of form 〈si,s j,c〉,
it is also the case that c ∈ post(sk) and 〈s j,sk〉 /∈≺T .

That is, there is some step whose postconditions subsume all of
the necessary postconditions (those postconditions associated with
the outgoing causal links) of another step. This definition is based
on the general form of Yang’s plan step merging criteria from [14].
An important difference between plan step merge flaws and threat
flaws is that threat flaws must be resolved for a multiagent plan to
be consistent, whereas a step merge flaw can be ignored if agents
are willing to tolerate the redundancy in the plan. The process by
which steps si and sk are merged (as defined in [14]) is as follows:

1. For each causal link l ∈≺C of form 〈si,s j,c〉 add new link of
form 〈sk,s j,c〉 to ≺C .

2. For each causal link l ∈≺C of form 〈si,s j,c〉 remove link
from ≺C.

3. For each causal link l ∈≺C of form 〈sp,si,c〉 remove link
from ≺C.

4. Remove si from S.

2.3 A Multiagent Plan Coordination Algorithm
To solve the MPCP, in work described elsewhere [6], we have de-

veloped a general plan-space search algorithm that searches through
the space of possible flaw resolutions between a set of agent plans
to produce a coordinated solution. Our algorithm optimizes with
respect to the total number of steps shared by all agents, which is a
global optimality measure.

Algorithm 1: A Multiagent Plan Coordination Algorithm
Input : an inconsistent multiagent plan
Output : an optimal and consistent multiagent plan
Initialize Solution to null;
Add input plan to search queue;
while queue not empty do

Select and remove plan P from search queue;
if P not bounded by Solution then

if (P has no threat flaws) and (P is acyclic)
and(cost(P) < cost(Solution)) then

Solution = P;
end
Select and repair a flaw in P;
Enqueue all repaired plans in search queue;

end
end
return Solution;

The search algorithm (shown in Algorithm 1) begins by initial-
izing the search queue with whatever current (flawed) multiagent

plan it is to operate on, and by initializing the currently best solu-
tion, Solution, to null. Then, while the queue is not empty, it se-
lects and removes a plan-state from the queue (the order of which
is determined by the search’s heuristic function). If the plan-state
passes the bounding test, the algorithm then determines if the plan
is a consistent plan that is better than the best consistent plan seen
so far. If so, it becomes Solution. New plans are generated by
choosing a plan flaw and generating new plans by repairing it (as
even a consistent plan can still have optimality flaws in it). All
possible plan-states generated by the repair are then added to the
search queue. In this way, their algorithm converges to a globally
minimal solution.

3. THE MULTIAGENT PLAN COORDINA-
TION PROBLEM AS A CONSTRAINT
OPTIMIZATION PROBLEM

In our work on multiagent plan coordination [6], no explicit
commitment was made with respect to how the coordination al-
gorithm was to be deployed, either in a centralized or decentral-
ized manner. To demonstrate the flexibility of our work, we have
integrated it with a distributed constraint optimization framework
called ADOPT [11], thus allowing multiple agents to solve an MPCP
concurrently.

To perform this integration, we first illustrate how we can cast the
MPCP as a constraint optimization problem, or COP. A constraint
optimization problem consists of n variables V = x1,x2, ...,xn, where
the possible values of each variable are drawn from a set of discrete
domains D1,D2, ...,Dn. The goal of the problem is to find some set-
tings of values to variables that minimizes the global cost function
over the set of variables. The global cost function is computed by
aggregating the costs of the violated constraints in the problem.

The concept of mapping a planning problem to a constraint sat-
isfaction or optimization problem is not a new one. Do and Kamb-
hampati [7] describe a method of translating GraphPlan’s planning
graph [2], into a Constraint Satisfaction Problem (CSP) that can
then be solved using standard CSP solvers. More recent work by
Lopez and Bacchus [9] extends this work, bypassing the Graph-
plan structure altogether to better exploit the structure of the plan-
ning problem, resulting in even better computational performance
as well as the generalization of their method to richer planning
models.

Given the previous description of the MPCP, we can cast it as a
COP, where the optimization measure we use is identical to that of
the coordination problem, that of minimizing the number of steps,
subject to the constraints that all threat flaws are resolved, and that
the temporal constraints on the steps in the plan remain acyclic.

We convert an MPCP to a COP in the following way. Given a
multiagent plan coordination problem M, we will create a variable
for each possible plan step merge flaw m, and for each possible
threat flaw t. For each step merge flaw m = 〈sa,sb〉, we create a
domain of size two, {i,m}, where i corresponds to the redundancy
being ignored and m corresponds to the merge being performed, the
second step substituting for the first step. For a causal-link threat
flaw t = 〈sa,sb,sc〉 (meaning step sc threatens a link between sa
and sb), we create a domain of size three ({i, p, d}), where i cor-
responds to the threat being ignored, p corresponds to the threat
being resolved by promoting the clobbering step before the link,
and d corresponds to demoting the clobbering step after the link.
Note that the threat can be ignored and a solution is still possible if
either step involved in the causal link, or the clobbering step itself,
is removed by a step merge.

One of the difficulties we encountered when mapping the MPCP

823



to a constraint optimization problem is that the standard COP for-
mulation as used in ADOPT requires that the set of variables and
constraints on the set of variables are static; they cannot change as
assignments are made to variables. However, a feature of the mul-
tiagent plan coordination problem is that as steps are merged, new
flaws can be introduced.

For example, consider the multiagent plan in Figure 1. The num-
bered boxes are steps (boxes with g symbols are goal steps), and
lowercase letters represent conditions (effects or preconditions).
An edge labeled with a condition represents a causal link between
the steps the edge connects. Conditions adjacent to a step and not
on an edge are considered effects of the step. Here, step 2 can
merge with step 4, such that 2 replaces 4 in the plan, because 2
achieves condition c. In its initial form, there is no step merge flaw
involving step 3, but if the step merge is performed between 4 and
2, then the causal link between step 3 and 4 is removed, reducing
step 3’s necessary effects to b, allowing step 5 to merge with it. In
addition, after performing this second merge, there will now be a
causal link between step 5 and step g1, and a new threat between
step 1 and this link.

Figure 1: Example Coordination Problem

If we were simply to create a variable for each threat or step
merge that was identifiable before any step merges are performed,
our mapping of instances of the MPCP to the COP formulation
would be incomplete, and some threats and step merges would be
overlooked. Because ADOPT requires a static constraint network,
we need to initialize it with a complete representation including all
flaws that are contingent on the resolutions of other flaws. As we
saw in the example, step merge flaws can arise because step merg-
ing changes the causal links in the multiagent plan, thus potentially
changing the necessary effects of plan steps as well. In the limit,
all of a step’s outgoing causal links could be removed because of
step merging, allowing it to be removed without needing another
step to replace it (we can think of this step as merging with the
“null” step). To deal with this, we will need to keep track of the
presence of the plan steps whose removal could change the neces-
sary effects of another step, allowing it to be merged away. We do
this by creating variables representing the presence or removal of
relevant plan steps in addition to step merge and threat flaws. Step
variables have domains of {p,r}, as the step can either be present
or removed from the plan.

The set of step merge flaw variables and plan step variables can
be constructed in a straightforward, iterative way. We begin by
identifying all step merges that are possible without the removal of
any other steps. For each step merge flaw m = 〈sa,sb〉, we create
the step merge variable, as well as a step variable for sa. We now
check to see if there are additional step merges that could take place
if any of the steps we just created variables for were removed. As
we saw in the example, new step merges may be possible because

the removal of steps may reduce the set of necessary effects of other
steps that support these removed steps. If it ever is the case that all
of the steps that a step s is supporting become removable, then we
create a special step merge variable m = 〈s,null〉, allowing step s
to be removed if it does not causally support any other steps in the
plan. The process repeats until no new step merges are discovered.
This process will terminate in at most n iterations (where n is the
number of steps in the multiagent plan) as there are at most n steps
that can be removed from the plan. Each iteration takes worst-case
n2 time (the amount of time it takes to perform a pairwise compari-
son of each steps’ effects with the updated necessary effects of each
other step).

After the set of all possible merge pair variables has been com-
puted, handling threats can be accomplished in a more straightfor-
ward way. First, all initial threats present in the MPCP are identi-
fied, and variables are created for them. Then, if there exists a threat
t = 〈sa,sb,sc〉 and a step merge flaw m = 〈sa,sd〉, then we create a
new threat variable representing t ′ = 〈sd ,sb,sc〉, as if m is resolved
such that sd replaces sa, the threat to the adjusted causal link needs
to be dealt with. Since the number of possible step merge flaws
in the plan is polynomial in the number of steps in the multiagent
plan, the number of threat flaws is as well, and the set of threat
variables can also be constructed in time polynomial in the size of
the plan.

3.1 Constructing Variable Constraints
The relations between flaw variables are specified by constraints

over the variables. We will describe the constraints between flaw
variables by indicating the nogood sets between the variables, that
is, combinations of values that the connected variables cannot take.
For example, a binary constraint between variables vi and v j can be
described by a set 〈(0,1),(1,0)〉, meaning that the constraint pre-
vents variables vi and v j from being assigned values 0 and 1, or 1
and 0 respectively. To illustrate of the constraints, we will again
make reference to the MPCP in Figure 1, and its COP representa-
tion, illustrated in Figure 2.

Figure 2: Matching COP

A Handle Threats constraint ensures that a threat flaw be han-
dled either by ordering the steps, or by removing any of the three
steps involved in the threat. For a variable t representing a threat
flaw 〈sa,sc,sd〉, we add a constraint c between the threat variable
whatever subset S of the three steps involved in the threat have vari-
ables in the COP, where c = 〈(i, p1, ...p|S|)〉. This constraint ensures
that a threat is resolved if all of the plan steps in the threat are still
in the plan. If the threat arises after a step merge, then the con-
straint includes the step merge variable that creates it as well, and
c = 〈(i, p1, ...p|S|,m)〉 (as the threat does not have to be addressed
if the step merge is not performed). In Figure 2, there is a Han-
dle Threats constraint between the variable for threat 〈3,g2,1〉 and
step variable 3, as the threat must be either be resolved or step 3
must be removed. There are a polynomial number of threat flaws
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in the plan, and each threat constraint is only of arity five, so these
constraints can be calculated in polynomial time.

A No Transitive Merges constraint prevents a step from replac-
ing another step if it is removed. Formally, for a variable m rep-
resenting step merge flaw 〈sa,sb〉 and variable s representing step
sb, we add a constraint c between m and s, where c = 〈(m,r)〉.
Note that this constraint is only added if a variable representing sb
is in the COP (meaning that sb could be removed from the plan).
Figure 2 has no constraints of this type. Computing these binary
constraints involves looking at each pair of plan step merge flaws,
which are polynomial in number. Thus, these constraints can be
computed in time polynomial in the size of the plan.

A Constrain Step Merges constraint ensures that a merge be-
tween a step sa and step sb will not happen unless the steps needing
necessary conditions from sa that sb cannot support are not present
in the plan. For each step sc that step sa causally supports, but sb
cannot, we create a constraint between step merge variable 〈sa,sb〉

and step variable sc where the constraint is (m, p). In Figure 2,
there is a constraint of this type between the variable for step merge
〈3,5〉 and step variable 4, as the step must be removed before the
merge can be performed. These constraints can be computed si-
multaneously with the step merge variables, thus involving no extra
computation.

A Constrain Step Removal constraint prevents a step from be-
ing removed unless another step replaces it. For each variable rep-
resenting a plan step s and the set M = {m|〈s,s′〉} of merge pair
flaw variables (that is, all merge flaw variables that remove s from
the plan) add a constraint between the step variable representing
s and this set of step merge variables 〈(r, i1, ...i|M|)〉. In Figure 2,
there is a constraint of this type between step merge variable 〈3,5〉
and step variable 3, as well as between 〈4,2〉 and step variable 4.
There will be at most n of these constraints (one for each step that
could be removed), each with maximum arity of n� 1 (the maxi-
mum number of step merge flaws involving the removal of the same
step). Thus, these constraints can be calculated in polynomial time.

A Reward Step Removal constraint ensures that step merging
will always be done, if possible. For a variable s representing a plan
step, we add a unary constraint 〈(p)〉. There are constraints of this
type on plan steps in Figure 2. These unary constraints can trivially
be computed in linear time. Not that, in general, all conceivable
merges cannot be done, so these unary constraints will tend to over-
constrain the problem. This is a motivation for doing constraint
optimization, instead of constraint satisfaction.

A Temporal Consistency constraint to ensure that the multia-
gent coordinated plan remains acyclic in terms of the temporal con-
straints over the steps in the plan. Unlike the previous constraints,
which can be generated in polynomial time, is not computationally
feasible to explicitly enumerate all possible nogoods for a Tempo-
ral Consistency constraint (and thus they are not captured in Figure
2), but the constraint can be checked by implementing possible flaw
resolutions in the temporal network representing the agents’ plans,
and checking the resultant network for cycles, which can be done
in O(n2) time. This, in effect, is how we will test this constraint in
the COP encoding of an MPCP.

In the worst case, temporal consistency constraints would hold
over all flaws in the system, hampering the ability of ADOPT to
solve the COP formulation of the MPCP in parallel. However, de-
pending on the structure of the MPCP, we can partition the flaw
variables so as to restrict the scope of the constraints to just be over
flaw variables inside each partition. To partition the variables in a
straightforward way, we form groups of flaws based on the plans
the flaws are associated with. That is, two flaws belong to the same
partition if they involve steps from the same plan. Furthermore, two

flaws that share a plan with a common third flaw are also placed in
the same group. Finally, a flaw cannot be in more than one group,
so in the worst case all flaws will be in a single partition.

In our work, we assume that agents require consistent plans (mean-
ing acyclic plans without any causal-link threat flaws), but also
want plans that have as few steps as possible (where the greatest
number of step merge flaws have been repaired). To produce this,
we make the cost of violating all constraints except the Reward Step
Removal Constraint infinite, as such violations will result in incon-
sistent plans. The cost of violating a unary Reward Step Removal
Constraint is one, as for each step merge we reduce the overall cost
of the multiagent plan by one step.

4. DISTRIBUTED MULTIAGENT PLAN CO-
ORDINATION USING ADOPT

Distributed Constraint Optimization Problem (DCOP) frameworks
enable agents to converge on a globally consistent solutions to DCOPs
in a distributed manner. Recently, Modi, Shin et. al. [11] have de-
veloped a DCOP framework called ADOPT. Advantages of ADOPT
include the ability to optimize a global function via local communi-
cation, the ability for agents to compute their variable values in an
asynchronous manner, and the ability to provide quality guarantees
so that trade-offs between solution quality and computation time
can be considered.

A straightforward way of using ADOPT is to convert the MPCP
into a COP using our transformation from the previous section, and
then create an ADOPT agent for each COP variable. The ADOPT
agents then use the constraints and the ADOPT protocols to con-
verge on a globally optimal solution. One obvious problem with
this formulation is the fact that the MPCP involves an existing set
of agents, and so it does not make sense to think of “creating”
ADOPT agents. Modi, Shin et. al. [11] indicate how to address
this concern, by allocating to each agent a set of variables, combin-
ing the set of variables into a single variable with a domain that is
the cross-product of the domains of the original variables. For the
MPCP, to minimize the size of these variable domains, we embed
our coordination algorithm (Algorithm 1) in each ADOPT agent
to prune invalid local solutions from this cross product of possible
flaw variable choices. As illustrated in Figure 3, the agents first run
the coordination algorithm on their domains, eliminating all values
that result in infinite-cost constraint violations, and then iteratively
communicate their remaining values to converge on a globally op-
timal set of flaw resolution choices.

Figure 3: Distributed System View

Since the optimization constraints in ADOPT are not just inter-
flaw variable constraints but inter-agent constraints, the scope of
(and thus the number of agents involved in) the Temporal Consis-
tency Constraints will depend on how the agents can be partitioned.
Two agents belong in the same partition if any of their flaws share
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the same partition, or if there is a third agent that has flaw variables
that share partitions with both agents’ flaw variables.

Finally, if each agent has responsibility for flaws that it is partic-
ipating in, then the question of how these flaws are found remains
unanswered. Although the development of protocols for flaw dis-
covery is beyond the scope of this paper, it is not difficult to en-
vision the agents using a simple pairwise plan exchange protocol,
where each agent sends its plan to each other agent, and where the
other agent responds with the relevant flaw information between
the plans. We consider the development of more sophisticated pro-
tocols a challenge to be addressed in our future work.

5. ALTERNATIVE FLAW DISTRIBUTION
STRATEGIES

For ADOPT to be able so solve the DCOP version of the MPCP,
we need to figure out which flaws will be handled by individual
ADOPT agents. In the previous section, we indicated how we could
modify ADOPT to handle this issue, by having an agent handle
multiple flaws, and then using the plan coordination algorithm to
enable agents to prune locally-invalid combinations of values for
these variables, thus improving on the speed of the search. How-
ever, the exact method of distribution was not specified.

In this section, we compare the performance of two alternative
flaw distribution strategies, measuring the number of messages agents
must exchange before ADOPT terminates with the globally-optimal
solution. The first strategy we consider is a load-balancing one, in
which step variables are given to the agent whose plan the step is
from, but flaw variables are distributed randomly in equal numbers
among the ADOPT agents. The second strategy attempts to exploit
problem locality, by having agents take responsibility for the flaws
that involve their associated plans in addition to the steps in their
plans. Since coordination flaws by definition involve more than
one agent’s plan, when allocating a flaw shared by two or more
agents, the agent with the fewest number of current flaws will take
responsibility for the flaw (thus preserving some degree of load-
balancing).

The advantage of locality-based flaw distribution is that flaws
that involve the same plans are more likely to interact with each
other via the problem constraints, which has two obvious bene-
fits. First, since an agent uses the multiagent plan coordination
algorithm to locally prune flaw variable combinations that result
in constraint violations of infinite cost, it is more likely to prune
more combinations, resulting in a faster overall search. Second,
this locality-based assignment makes partitioning the agents (and
thus restricting the scope of the Temporal Consistency Constraints)
easier, as such a distribution only gives agents flaws that were part
of the same original partition, and thus the original flaw partitions
are preserved.

To test this hypothesis, we compared these two alternative flaw
distribution strategies on randomly generated MPCPs. Given a set
of agents, we organized them in a ring topology, such that each
agent only interacts with the two agents on either side of it (thus
providing some degree of locality to the problems).3 For each
agent, we created a plan consisting of ten steps, totally ordered.
Then, we randomly generated plan step merge flaws and threat
flaws between the agents by randomly selecting the first agent (in a
uniform manner) and then picking its counterpart to participate in
the flaw by randomly selecting one of the agent’s neighbors. Since,
as we indicated earlier, flaws can arise based on how other flaws
are handled, with thirty percent probability we would make a step
merge flaw dependent on an existing step merge variable. In ad-

3Alternative topologies are considered in the next section.

dition, if a threat was created that threatened a step that could be
merged away, we would also create a threat variable for the replac-
ing step as well. For n agents, we created n/2 step merge flaws
and n/2 + n mod 2 threat flaws. For both alternative flaw assign-
ment methods, we generated thirty random problems and computed
the median number of messages that the ADOPT agents had to ex-
change before converging on the optimal solution,4 increasing the
number of agents from two to ten.

Figure 4: The Advantages of Locality-based Flaw Assignment

As we can see in the graphs of the performance of the Locality-
Based and Load-Balanced strategies in Figure 4, the benefits of
our locality-based flaw assignment strategy are substantial, signif-
icantly reducing the number of messages agents must exchange to
converge on a globally optimal solution. A caveat, though, is that
the load-balanced strategy suggests what might happen if there is
no locality to exploit. In more tightly coupled problems, it could
turn out to be the case that partial centralization [10] or even fully
centralizing the MPCP and using Algorithm 1 alone, is more effec-
tive.

6. BOUNDED-ERROR APPROXIMATION
One of the key features of ADOPT is its ability to provide quan-

titative quality guarantees when time limitations require agents to
settle for approximately optimal solutions. That is, when provided
a bounding number, ADOPT will return a solution that is guaran-
teed to be no worse than the quality of the optimal solution, plus the
bounding number. This functionality is particularly useful when
solving MPCPs that do not have strong local structure, unlike the
experiments in the previous section.

When given an approximate bound, ADOPT can solve COP for-
mulations of MPCPs significantly faster than when it is required to
return an optimal solution, even when the MPCPs lack any local-
ity. To demonstrate this, we ran ADOPT on MPCPs in which the
agents were composed of a fully-connected agent topology. That
is, all agents interacted with all other agents in the problem. Oth-
erwise, problems were generated the same way they were gener-
ated in the previous section. We then compared the performance of
ADOPT on these problems by giving ADOPT a bound of zero and
a bound of five (meaning that the agents would be willing to ac-
cept a solution which had five fewer steps merged than the optimal
solution.) As we can see in the graph in Figure 5, this marginal sac-
rifice in optimality has had a significant impact in the performance

4Messages passed is a reasonable metric as ADOPT agents do not
have to perform any other computation-intensive tasks.
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of ADOPT, even when it could not leverage problem locality. In
addition, despite the bound, the approximate approach always re-
turned solutions within one merge of the optimal solution.

Figure 5: The Advantages of Bounded-Error Approximation

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a case study in mapping a domain-

specific problem into a domain-independent DCOP formulation, so
that we can make use of multiple agents in the system to solve
the MPCP together. We have also explored novel flaw-assignment
strategies aimed at improving the performance of ADOPT on solv-
ing the MPCP, and shown how even when these strategies prove in-
effective, we can make use of ADOPT’s bounded-error approxima-
tion functionality to quickly find near-optimal solutions. In the fu-
ture, we plan to explore alternative possible COP encodings of the
MPCP that contain more localized constraints, thus allowing more
parallel computation, and to explore more fine-grained temporal
partitioning strategies, aimed at decomposing the MPCP problem
even further so as to better localize the temporal constraints on the
COP encoding of the MPCP. Finally, we plan on more formally es-
tablishing the correctness of our reduction of the MPCP to a DCOP.
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